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Introduction by the compiler

Notation
Notation S, G, n refers to downloadable file n placed on my website

www.sheynin.de which is being diligently copied by Google
(Google, Oscar Sheynin, Home. I apply this notation in case of
sources either rare or translated by me into English.
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I

Oscar Sheynin

Adjustment of a trilateration figure by frame structure analogue

Survey Review, No. 127, vol. 17, 1963, pp. 55 – 56

Referring to the articles of Leung Kui-Wai [9] and F. Halmos [7], I
would like to comment on the connection between the laws of
mechanics and the adjustment of geodetic observations. Following the
line of the article of Halmos, I present several facts from the history of
the subject in question.

The abovementioned connection was no doubt understood very
early, as is implied by the somewhat “mechanical” term “adjustment”
This “mechanical” relationship is also present in the Russian
language, and the German ausgleichen was derived from mechanics
(Gerling, 1843, p. 18).

One of the first applications of statics to the adjustment of (direct)
observations was, I understand, due to Rodger Cotes (1722). Robert
Adrain, the co-founder of the method of least squares, after arriving at
the arithmetic mean as an estimate of direct observations, noted the
analogue of this mean with the corresponding centre of gravity [8].
As to the adjustment of networks (indirect observations), S. V.
Vissotskij [16], whose article could well be considered as preceding
[9], noted that the first application of mechanics was due to S.
Wellisch [17], cf. also [7]. Other Soviet contributors are N. I.
Tovstoljess [13], [14] and I. N. Temovskikh [12].

The application of mechanics led to the method of (geodetic)
relaxation [11, 4]. Curiously enough, some modern contributors to the
“mechanical adjustment” only mention relaxation in their references.
Relaxation is known in two forms: (i) a non-cyclic one-step iterative
process for solving the normal equations; (ii) a process of successive
displacement of geodetic points when adjusting networks without the
normals being worked out. The first form is due to Gauss [6], who
applied it to a problem of station adjustment. Gauss considered his
method as appropriate for calculating while half-asleep or reflecting
on other matters. A point of special interest is that the system of
normal equations was singular, the last normal being equal to the sum
of all the previous normals. After Gauss, this method was
recommended by L. Seidel [10], whose work appears to be
insufficiently known. Besides this, Seidel was the first to use the
second form, although only theoretically.

The second farm, more commonly called “method of
minimization”, appears as a practice] procedure in [3], [4], [15]. Some
later contributions are [2] and [18]. This form was recently applied to
the adjustment of large blocks of triangulation by an electronic
computer [1].
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Both forms are used as “group relaxation” and in this connection
the article of K. Chow [5] (as well as of course [3]) ought to be
mentioned.
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II

O. Sheynin

On the early history of the law of large numbers

Biometrika, vol. 55, 1968, pp. 459 – 467.
Reprint: E. S. Pearson, M. G. Kendall (1970),

Studies in History of Statistics and Probability. London, pp. 231 – 239

Summary
This paper is devoted to the early history of the law of large

numbers. An outline of the prehistory of this law is given in § 1. The
algebraic part of J. Bernoulli’s theorem is presented in a logarithmic
form and. the lesser known role of N. Bernoulli is described in § 2.

Comments on the derivation of the De Moivre – Laplace limit
theorems by De Moivre, in particular, on the inductive character of his
work, on the priority of De Moivre as to the continuous uniform
distribution, on the unaccomplished possibility of Simpson having
arrived at the normal distribution and on the role of Laplace are
presented in § 3. The historical role of J. Bernoulli’s form of the law
of large numbers is discussed in § 4.

l. Prehistory of the law of large numbers
The most rudimentary form of the law of large numbers is to be

credited to Cardano (Ore, 1963, p. 150), who held that in the long run
the number of occurrences of an event in n independent trials is
approximately equal to

μ = np, (1)

where p is the constant probability of the occurrence of this event in
one trial. This reasoning on the mean outcome, as Ore called it (p.
145), was systematically used by Cardano and, again as Ore pointed
out, led him in some cases to erroneous results.

Halley (1693, p. 484) stated that the reason for the frequencies of
mortality of different age groups being irregular seems rather to be
owing to chance, as are also the other irregularities in the series of
age, which would rectify themselves, were the number of years (of
observation on the studied population of Breslaw) much more
considerable ...

Such assertions were possibly also made by other scholars, but what
distinguishes Halley is that he adjusted the frequencies concerned so
that they would more nearly correspond to their general trend and
therefore be applicable to populations other than the population of
Breslaw; see also Graetzer (1883, pp. 77 – 78). However, irregularities
could have been produced by systematic influences. More comment
on Halley is made in § 3.

A reasoning on the mean, differing from Cardano’s, occurs in a
sixteenth-century commentary by Ganésa on a still earlier Indian
mathematical text. Commenting on the calculation of the volume of an
irregular earth excavation considered to be equal to the product
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of the mean measures of the length, width and depth of the
excavation‚ with the measures taken at different places, Ganésa
pointed out (Colebrooke, 1817, p. 97) that the greater the number of
the places (of measurement), the nearer will the mean measure be to
the truth and the more exact will be the consequent computation.

The mean measures were introduced to compensate for inaccuracies
in the mathematical model. The application of the arithmetic mean for
the same purpose can be traced to ancient Babylonia where, for
example (Veiman, 1961, p. 204), the area of a quadrangle was held
to be equal to the product of the half-sums of its opposite sides.
Though the commentary of Ganésa should be specially noticed
because of his reference to the increase of the number of
measurements, it is to be inferred that, strictly speaking, his reasoning
is of a deterministic (not probabilistic) kind and its formalization
would have led to integral sums.

Qualitative assertions for the preference of the arithmetic mean of
several observations over a single observation in astronomy and
geodesy are found in the works of the seventeenth to eighteenth
centuries, notably of Cotes (1722/1768, pp. 57 – 58). But these
assertions, although undoubtedly of a probabilistic nature, are
concerned only with a given set of observations and at least until the
second half of the eighteenth century no mention was made of the
effect of increasing the number of observations.

The general' impression seems to be that the prehistory of the law of
large numbers contains an understanding of the nature and the use of
formula (1) and of the arithmetic mean of a given set of observations.
The matching and further formalization of these separate ideas were
however, due to Jakob Bernoulli.

2. Jakob and Nicholas Bernoulli
J. Bernoulli (1713, German version 1899) proved that as n →∞

lim prob (|
μ | ε) 1.p
n

His work is described notably by Todhunter (1868, §§ 123 – 124)
and Pearson (1925). Bernoulli also gave an example from which it
directly followed that the sum of 2n middle terms of the expansion of
(r + s)(r+s)n, r = 30, s = 20 (even excluding the middlemost term) will
be more than c > 0 times the sum of the other terms of the expansion if
the number of trials

nt = n(r + s) ≥ 25,500 + 5758log(c/1000) = 8226 + 5758 logc. (2)

After the death of J. Bernoulli, but prior to the publication of the
Ars Conjectandi, N. Bernoulli (Montmort, 1713, p. 388) deduced an
approximate estimate for the ratio of the middle part of a binomial
series to its other parts and, taking Arbuthnot’s (1712) data, used
this estimate for probabilistic reasoning about the constant regularity
observed in the births of both sexes.

N. Bernoulli’s estimate was rather crude, but it seems that he was
the first to study how the probability that a random quantity falls in an

7



interval depends on the length of that interval. In more detail, let n be
the annual number of male births, with the ratio of male and female
births equal to m:f. Assuming a binomial distribution, N. Bernoulli
gives the following estimate which, as is also the case with J.
Bernoulli, is equivalent to a local limit theorem

P(|μ– rm| ≤ s) ≈ (t – 1)/t,
t ≈ [1 + s(m + f)/mfr]s/2 ≈ exp[s2(m + f)2/2mfn],
P(|μ – rm| ≤ s) ≈ 1 – exp(s2/2pqn),

P[|μ – np|/ npq ≤ s] ≈ 1 – exp(–s2/2).

Here, p = m/(m + f), q = n/(m + f).

The last lines of N. Bernoulli’ s letter to Montmort (Quand ce Livre
paroîtra nous verrons si dans ces sortes de inatiéres j’ai trouvé une
approximation aussi juste que lui) prove that he, possibly more
interested in problems of ‘moral probabilities’ did not at that time at
least pay sufficient attention to Bernoulli’s law of large numbers.

Later research proved that Nicholas had plagiarised J. B.
3. Derivation of the De Moivre – Laplace limit theorems

3.1. De Moivre
A further development of the law of large numbers leading to the

De Moivre – Laplace limit theorems came with De Moivre. General
information about De Moivre is in many places, all of which,
nevertheless, draw on the two main sources (Eloge, 1759; Maty,
1760). His main work, Doctrine of Chances, appeared in 1718, 1738
and, posthumously, in 1756. The last two editions have recently been
reproduced; this information was recently received from Dr C.
Eisenhart. [Last edition reprinted: New York, 1967.] The relevant
work of De Moivre (Method of Approximating the Sum of the Terms
of the Binomial (a + b)n ...) has been sufficiently described by Pearson
(1924, 1925) and Archibald (1926); I have only a few comments to
offer.

(i) De Moivre drew heavily on his book Miscellamea Analytica de
Seriebus et Quadraturis (1730), an English translation of which is
long overdue. [French translation: Paris, 2009.] It was there, partly in
its Supplement, that all the main algebraic deductions were made.

(ii) It was also there, again in the Supplement, that De Moivre first
published his 14-digit table of logn! for n = 10(10)900. The table is
correct to 11 – 12 digits with a single misprint in the fifth digit of
log 380!. I have compared this table with several modern tables,
notably that of Peters (1922).

Both Pearson and Markov (1924) consider that the approximate
formula for n! was derived by Stirling and De Moivre and should
therefore be named the De Moivre – Stirling formula, while Archibald
attributes it to De Moivre. If De Moivre’s table is taken into account,
as it should be, the opinion of Archibald is substantially strengthened.

(iii) The important appearance of the estimate of accuracy, n–1/2, in
De Moivre’s work was originally occasioned by a pure algebraic fact:
x = n1/2/2 was a bordering value for two different ways of integrating.
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De Moivre employed a power series when l ≤ n1/2/2 and, because of
the slow convergence of this series, otherwise, applying the
approximate method of Newton – Cotes.

(iv) De Moivre experimentally checked the accuracy of his formula
for n = 900 and 100 (Method of Approximating ..., Corol. 5). Although
he gave no indication about the nature of his experiments and
although these experiments seem to be well within mathematics (not
exact sciences at large), the fact that he made these checks is
interesting. The opinion (Walker, 1934, p. 320) that even in his (De
Moivre’s) writings on the Doctrine of Chances his work is deductive
and he does not set up experimental checks on the outcome is hardly
fair.

But a more important comment in this connexion is that the whole
Method of Approximating was clearly intended for experimental
checks, as is proved by the corollary to Problem 87 in the 1738 edition
of the Doctrine of Chances (this is the problem after which
immediately follows the Method):
…if after taking a great number of experiments, it should be

perceived that the happenings and failings have been nearly in a
certain proportion … it may safely be concluded that the probabilities
of happening or failing at any one time assigned will be very near in
that proportion, and that the greater the number of experiments has
been, so much nearer the truth will the conjectures be that are derived
from them.

But suppose it should be said, that notwithstanding the
reasonableness of building conjectures upon observations, still
considering the great power of chance, events might at long run fall
out in a different proportion from the real bent (according to) which
they have to happen one way or the other; and that supposing for
instance that an event might as easily happen as not happen, whether
after three thousand experiments it may not be possible it should have
happened two thousand times and. failed a thousand, and that
therefore the odds against so great a variation from equality should
be assigned, whereby the mind would be the better disposed in the
conclusions derived from the experiments:

In answer to this, I will take the liberty to say that this is the hardest
problem that can be proposed on the subject of chance, for which
reason I have reserved it for the last … I shall derive … some
conclusions that may be of use to every body: in order thereto, I shall
here translate (from the Latin) a paper of mine which was printed
November 12, 1733, and communicated to some friends, but never yet
made public, reserving to myself the right of enlarging my own
thoughts, as occasion shall require.

This quotation means that De Moivre attempted to reconcile
statistical and prior probabilities.

(v) A special comment on the theological reasoning of De Moivre’s
contemporaries is warranted. It is true that, as Pearson points out, De
Moivre and other Fellows of the Royal Society were greatly
influenced by Newton’s theology. But at least one mathematician,
Simpson, who, moreover, humbly refers to De Moivre in the
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introduction to Nature and Laws of Chance (l 740), did not follow
Newton’s theology.

3.2. Simpson
It is hardly appropriate to describe the works of Simpson in detail in

this paper. But it ought to be said that Simpson arrived at a continuous
triangular distribution, proved that with this distribution the
arithmetical mean is preferable to a single observation and went on to
deduce the probability of a given error in the arithmetical mean in the
limiting case. From this he could have arrived at a normal distribution
(as pointed out in a private communication from L. N. Bolshev)
although later than De Moivre and could have been the first to draw a
graph of this distribution. His failure is evident in that his limit curve
(Fig. 20) does not behave as a normal one.

General information about Simpson is given by Clarke (l 929).
Referring to his correspondence with the Royal Society, Penkov
(1961, pp. 300, 302) states that there exists no portrait of Simpson.

[Pearson (1978, pp. 145 and 184) described Simpson’s later attitude
to De Moivre and called him a most disreputable character and an
unblushing liar and a thorough knave at heart.]

3.3. Continuous uniform distribution credited to De Moivre
The tercentenary of the birth of De Moivre occurred in 1967 and it

is opportune to add two short comments not connected with the law of
large numbers.

(i) While considering one of his problems in games of chance De
Moivre followed the same method which Poisson followed when he
originally arrived at his distribution (Newbold, 1927, pp. 490 – 491).

(ii) While calculating annuities on lives De Moivre arrived at the
continuous uniform distribution and used the corresponding first
moment. (I have seen the 1756, posthumous edition of the Treatise of
Annuities on Lives, incorporated in the Doctrine of Chances, 1756,
and the 1743 edition of that treatise.) In problem 20‚ part 1 of the
Treatise, he calculated the expectation of life:

n

nxdx
0

/ = n/2.

Only the result is given. Here n is the complement of life. The
uniform distribution appeared as an empirical law corresponding to
Halley’s data (1693).

In Chapter 8 of Part 2, De Moivre calculates the probability of one
person with a complement of life equal to n outliving another person
whose complement of life is p < n:

P(ξ ≥ x, η = x) = [(n – z)/n]dz/p, P(ξ > η) =
p

0

[(n – z)/n]dz/p = 1 – p/2n.

This result could have been arrived at geometrically. In problem 21,
part 1, De Moivre calculated the expectation of two joint lives (again,
only the result is given):

P(x ≤ ξ ≤ x + dx or x ≤ η ≤ x + dx) =
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[(n – x)/n]dx/p + [(p – x)p]dx/n,

Eζ =
p

0

{[(n – x)/np] + [p – x)p/n]}dx = p/2 – p2/6n.

This reconstruction is due to Czuber, see Note 22 to the German
translation of 1906 of De Moivre’s work.

3.4. Laplace
De Moivre had proved the theorems which are now known as the

De Moivre—Laplace limit theorems (§ 3.1), but even Laplace did not
introduce the concept of uniform convergence which is of a later
origin. Laplace actually repeated these proofs, and, characteristically
for his works in which his own contributions are not readily separated
from those of his predecessors, did not refer to De Moivre, giving only
a barest possible outline of his work in the historical part of his Essai
philosophtque.

It is worth noting that Laplace, who was really able, as no one else,
to grasp and elaborate the ideas of his predecessors, in his first
probabilistic memoir (1774) deduced an exponential distribution

| |1φ( ) .
2

m xx me

A function of this kind might be deduced by reversing (2), the
possibility of which was not mentioned by J. Bernoulli. But (2) is a
deterministic not probabilistic formula and therefore this is an
example, possibly superfluous, of the way Laplace extended the ideas
of his predecessors.

Lastly‚ we note that the correspondence of Lagrange and Laplace
(Lagrange, 1892; see letter to Laplace dated 30 December 1776 on p.
66) testifies that they both, independently, had contemplated
translating De Moivre’s Doctrine of Chances into French. Only
Lagrange is mentioned by Todhunter in this connection.

The appearance of the normal law in the work of De Moivre was
not noticed until Eggenberger (1894, especially p. 165) referred to it,
possibly because this was not mentioned by Laplace. Although noted
by Czuber (1899), Eggenberger’s work seems to be little known,
perhaps because Haussner called it unclear. Haussner’s remark
appears on pp. 158 – 159 of the Ostwald Klassiker, no. 108, see
Bernoulli (1899). And Pearson (1924) independently from
Eggenberger credited the normal law to De Moivre.

[De Morgan noted De Moivrte’s discovery before Eggenberger, see
Sheynin (2017, p. 66). On pp. 133 – 134 I put on record De Morgan’s
unimaginable statements.]

4. The role of the law of large numbers
4.1. Statistics

This law became the stepping stone between the theory of
probability and statistics. The main problem of population theory after
Quetelet, the problem of the stability of statistical frequencies, came
down to the testing of the existence of preconditions for the law of
large numbers in Bernoulli’s form and was solved by Lexis and
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especially by Bortkiewicz (1898) . The latter used the Poisson form of
the law. Bortkiewicz (1905, p. 140) praised Lexis as the first to
establish the integral connexion between theoretical statistics and. the
theory of probability. It seems, however, that initial connections were
made as early as in the 1850’s. For example, following Poisson,
Davidov (1855b) tested the statistical significance of various empirical
inequalities. In another paper Davidov (1855a) stated that the
excessive development of statistics, and its deductions, often
unfounded, can smear statistics and that a discussion of the initial
statistical data with probabilistic verification is the most reliable tool
for eliminating immature deductions. One of his probabilistic tools
was the local De Moivre – Laplace limit theorem.

We note a special passage on the law of universal gravitation
(Davidov, 1855b, p. 63) in a context devoted to philosophical
problems of empirical proofs:

Who is in a position … to state that this law is an exact expression
of the law of nature, and that it is not a particular case of a more
general principle, only approximately correct?

For general information about Davidov (1823 – 1885) see
Zhoukovsky et al (1890).

Similarly, Cournot (1843, or a German translation by Schnuse,
1849) whose book appears to be insufficiently known, reasons on the
possibility of smearing statistics (§ 103), tests the statistical
significance of empirical inequalities (§§ 108 – 110) and considers the
law of large numbers in J. Bernoulli’s form a reliable base for
connecting statistics with probability (§ l15).

4.2. Classical theory of errors
The classical theory of errors originated in the middle of the 18th

century, especially at the hands of Lambert (Sheynin, 1966) and
Simpson. But the concept of random errors of observation which
Simpson effectively introduced became divorced from the concept of
random variables of the theory of probability.

A qualifying remark should be added: a definition of a random
variable did not seem to appear in the classical theory of probability.
But we hold that in the second half of the nineteenth century a
definition of a random variable as dependent on chance and
possessing a certain law of distribution had become so natural, even if
not definitely formulated, that this definition, just as the classical
definition of probability, ought to be called classical.

As to random errors, these were usually taken to be errors with
certain probabilistic properties, their specific distribution especially
following the Theoria Combinationis way of reasoning, being not so
important.

It seems that Vassiliev (1885, p. 133) was the first who definitely
held that random errors of observations are ranked among random
variables. As far as the theory of probability is concerned, A. V.
Vassiliev (1853 – 1929) is known primarily as one of Markov’s
correspondents. It was in a letter to Vassiliev that Markov (1898)
originally described his reasoning on the method of least squares.
According to Markov, references to the law of large numbers in the
theory of errors suddenly became even too numerous and the law was
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misused (p. 249). Although also connecting random errors with
random variables in his other works, Markov stated (1898, p. 250) that
nothing comes from

Pr ob(| | ε) 1 asx a n

because other linear estimates of the constant a possess the same limit
property of consistency as the arithmetic mean x and because,
furthermore, a method optimal in the case of a finite number of
observations is needed. Such a method, according to Markov (p. 246)
was the second (Theoria Combinationis) method of Gauss as opposed
to his first (Theoria Motus) method. On the work of Markov in the
theory of errors, see also Plackett (1949).

The above description of the law of large numbers in the theory of
errors seems somewhat inconsistent, but it reflects different points of
view held at different times. In particular, it is our guess that the
sudden interest in the law of large numbers which occurred at the turn
of the 19th century, and to which Markov refers, was an inevitable
result of the ideas of Lexis and other continental statisticians and of
the work of Bienaymé and Chebyshev becoming generally known.

4.3. Probabilities proper: Markov versus Pearson
Markov (1924) studied Bernoulli’s work on the law of large

numbers simultaneously with or somewhat prior to K. Pearson (1924,
1925). Markov held a high opinion on this law; he edited a Russian
translation (1913) of Part 4 of the Ars Conjectandi, was the originator
of a special sitting of the Russian Academy of Sciences in
commemoration of the bicentenary of the law of large numbers (where
speeches were given by Markov himself, Chuprov (1914) and
Vassiliev) and dedicated the third edition of his Ischislenje
veroyatnostey (1913) to the memory of J. Bernoulli.

Pearson (1924) considered J. Bernoulli’s estimate (the necessary
number of trials) and, furthermore, the whole part 4 of the Ars
Conjectandi as unsatisfactory. This opinion is hardly fair: the law of
large numbers in Bernoulli’s form was of great significance for the
whole development of the theory of probability at least until the time
of Laplace and Poisson, and the crude values of his estimate with their
200 to 300% excesses (Pearson) being no serious obstacle. Similarly‚
this law proved itself of utmost importance in applications of the
theory of probability (§§ 4.1 and 4.2).

As opposed to Pearson, Markov, while modernizing Bernoulli’s
algebraic deductions and improving his estimate, did not use Stirling’s
theorem which remained unknown to Bernoulli. Consequently,
Markov’s estimate turned out to be worse than Pearson’s, but because
of this very reason his approach seems to be methodologically more
correct. [Markov applied that theorem somewhat below but without
warning the readers about that addition.]

A special feature of the Markov’s review is that he eliminated J.
Bernoulli’s tacit condition that the exponent (r + s)n is divisible by the
sum of the terms of the binomial (r + s).

No attempt is made here to describe the original work of Markov in
the field of the law of large numbers.
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O. B. Sheynin

Daniel Bernoulli on the normal law

Biometrika, vol. 57, 1970, pp. 199 – 202.
Reprinted: Sir Maurice Kendall, R. L. Plackett,

Studies in History of Stat. and Prob., vol. 2. London, 1977, pp. 101 – 104

Summary
This paper discusses one of D. B. memoirs in which he deduced the
De Moivre – Laplace limit theorems, nevertheless credited to De
Moivre. The memoir is described in § 2 while § 1 attempts to sum up
Bernoulli’s contributions more generally.

1. General
Between 1738 and. 1778 Daniel Bernoulli (1700 – 1782) published

seven probabilistic memoirs. Their essence except the memoir
described in § 2, is given by Todhunter (1865). The memoirs contain
solutions of important problems in demographic statistics (political
arithmetic) and astronomy obtained with the help of probabilistic
ideas and methods. As to probability and mathematical statistics
proper, Bernoulli was the first to use systematically differential
equations for deducing a number of formulas, one of the first to raise
the problem of testing statistical hypotheses and the first to introduce
moral expectation (due to Cramer) and to study random processes. He
is also to be credited, after Lambert, for the second introduction of the
maximum likelihood principle (Bernoulli 1961). In summary, it may
be argued that D. Bernoulli’s influence upon Laplace, especially
concerning applications of probability, was comparable to that of De
Moivre.

The account of Bernoulli’s memoirs given by Todhunter could well
be modernized but the present paper is restricted to the description of
the 1770 – 1771 memoir, the second part of which remained unnoticed
by Todhunter. For this and other reasons, Todhunter’s account of the
memoir is unsatisfactory and until now no one has remarked on the
appearance in this memoir of the De Moivre – Laplace limit theorems
and of the first published small table of the normal distribution. Had
these limit theorems been noticed in Bernoulli before, they possibly
would not now be called only after De Moivre and Laplace.

2. The normal distribution
and the De Moivre – Laplace limit theorems

[It is too difficult to reproduce the numerous formulas contained here
Instead, I recommend to study those which are inserted in Sheynin
(2017, pp. 72 – 73). However, I retain here some texts.]

2.1. The formula of Wallis
The Wallis formula was known, Euler used it in 1748. It may be

inferred that Bernoulli had forgotten it. It is more difficult to explain
the total lack of references to De Moivre. The title of D. B.’s memoir
includes the expression Mensura Sortis, which coincides with the title
of De Moivre’s memoir published in 1712. Furthermore, Bernoulli
arrives at the normal distribution (see below), already known to De
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Moivre, by starting from the same formula as the latter. And if the
practice of Laplace is remembered, one really could infer that the lack
of references to predecessors was characteristic of those times.

However, it is also possible that Bernoulli, although having read De
Moivre, perhaps some thirty years before 1770, just did not pay due
attention to the essence of his work.

2.2. The Normal Law
Bernoulli used the integral De Moivre – Laplace theorem with

summation instead of integration. He did not note that with a larger
value of a/b the form of his curve would have changed, i. e. that this
curve is specified by an important parameter (standard deviation) and,
as is also the case with De Moivre, paid little attention to the curve
itself.

2.3. Table of normal distribution
In contrast with De Moivre, Bernoulli computed a small table of the

normal curve, the first ever published. It is compiled for exp(–μ2/100)
where μ is the excess of male births and μ = 1(1)5 and 10(5)30 with
four significant digits. In three cases the error of the last digit is unity
and in one case it equals two.

2.4. Testing statistical hypotheses
Bernoulli concludes his memoir with a table of male and female

births in London, 1721 – 1730, compares it with values of a/b = 1.055
and 1.040. Although he doubted the constancy of a/b in time and.
space, his goal was to find the ‘real’ value of this ratio.

He thus raised the question of choosing one or another value of a
statistical parameter. He noted the signs of the deviations between
computed and observed values of male births, singled out deviations
with absolute values less than 47, noticed the prevalence of deviations
of one sign with a/b = 1.055 and of the opposite sign with a/b = 1.040
but reasonably failed to make a definite selection. However, already
the raising of the question of testing statistical hypotheses seems to be
very important. It should be emphasized that he returned to this
question in 1778 (Bernoulli, 1961) and that the method of differential
equations, twice used in this memoir, had been extensively used by
him elsewhere.
Acknowledgement is due to Dr L. N. Bolshev and to Prof. A. A.
Yushkevich for advice and corrections on the first version of this
paper.
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IV

Oscar Sheynin

Lies, damned lies and statistics

Intern. Z. f. Geschichte u. Ethik der Naturwissenschaften,
Technik u. Medizin, Bd. 11, 2003, pp. 191 – 193

In the 19th century, doubts about statistical data and/or conclusions
were being expressed time and time again. Cournot (1843, p. 123)
warned against “les applications prématurées et abusives” of statistics
that can “la décréditer pour un temps”. Quetelet and Heuschling
(1865, p. LXV) concluded that a “document statistique” was not
“certain” but only “probable” and John (1883, p. 672) complained that
statistical data were excessive and unreliable.

Public figures apparently had similar misgivings. Thomas Carlyle
(1795 – 1881) reported that “a witty statesman said, you might prove
anything by figures” (Carlyle 1839, p. 122). And he continued on p.
125 that statistical inquiry “throws not light, but error worse than
darkness”. Saenger (1935, p. 452) maintained, although without proof,
that Bismarck (1815—1898),“für die Statistik sehr wenig übrig hatte
und sie eigentlich für entbehrlich hielt”.

The first appearance of the maxim that I chose as the title of this
note was long ago traced to Mark Twain (1959, Chapter 29), real
name Samuel Langhorne Clemens (1835 – 1910) who testified that it
was attributed to Benjamin Disraeli (1804 – 1881). In this connection
I quote Arthur White (1993, p. 222) who remarked that Mark Twain
was “fascinated” with Disraeli because the latter had been “balancing
the romantic views with those of the hard headed politician”. White
had not mentioned statistics.

I intended to specify Twain’s statement, but Disraeli was much too
prolific for any direct confirmation (or refutation) to be possible.
Indeed, he was not only a great statesman (Prime Minister of England
for several years) but an eminent writer. Here are my indirect
arguments that nevertheless testify that he was not responsible for
coining that pithy saying.

1) The authors of collected sayings (Seldes 1966; Gaither and
Cavazos-Gaither 1996) do not help.

2) Both Professor Stanley Weintraub, the author of a
comprehensive study of Disraeli (Weintraub 1993) and Professor
Melvin G. Wiebe, the Editor of several volumes of Disraeli
(1987/1997), reported, in June 2001, that they have not found the
celebrated maxim in Disraeli’s writings.

3) Oskar Anderson (1887 – 1960) maintained that the maxim had
been attributed to “verschiedenen englischen Staatsmännern, so z; B.
Disraeli …” (Anderson 1962, p. 1). He continued, once more without
substantiation:

“Dieser Ausspruch nur eine ab – bzw. fehlergeleitete Variante eines
viel älteren englischen geflügelten Wortes darstellt, welches die
höchste Steigerung der Lügner in den Juristen Erblickt …”
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4) Fairley (1978, p. 799) provided a somewhat related story.
Disraeli’s reference, he wrote, “was to the testimony of expert
witnesses, not statisticians (see Cook 1913, pp. 433 – 434)”. Here,
however, are Edward T. Cook’s words:
“There is probably no department in human inquiry in which the art
of cooking statistics is unknown, and there are sceptics who have
substituted statistics for expert witnesses in the well-known saying
about classes of false statements”.

Cook did not mention Disraeli!
5) At the turn of the 19th century or later, neither Ladislaus von

Bortkiewicz (1868 – 1931), nor Aleksandr Aleksandrovich Chuprov
(1874 – 1926), both extremely well-read and likely conversant with
everything that was going on in statistics, mentioned the maxim.
Moreover, Chuprov (1903, p. 42) referred instead to Carlyle
as stating that statistics was a carriage that took you wherever you
wished. I have not found that particular passage, but perhaps Chuprov
had freely translated the few lines that I quoted above.

As a fitting epilogue I adduce a statement attributed to Winston S.
Churchill (1874 – 1965):

“When I call for statistics about the rate of infant mortality, what I
want is proof that fewer babies died when I was prime minister than
when anyone else was prime minister. That is political statistics”.

This passage appeared in the February, 2002, issue of the Royal
Statistical Society’s newsletter without any exact references.
Answering my inquiry, the Editor informed me that everybody
believed that the attribution to Churchill was correct, but that no one
knew the exact (likely oral) source.
Acknowledgement. I am grateful to Prof. Herbert A. David for helpful

comments and for contacting Professors Weintraub and Wiebe, as
well as to these scholars who agreed that their opinions be made
public.

References
Anderson, Oskar: Probleme der statistischen Methodenlehre in den
Sozialwissenschaften (1954). Physica: Würzburg, 1962.
Carlyle,Thomas: Chartism (1839), in author’s Historical and Political
Essays.Tauschnitz: Leipzig, 1916, pp. 115 – 214.
Chuprov, Aleksandr Aleksandrovich: Statistics and the Statistical Method. Their
Vital Importance and Scientific Problems (1903), in author’s Voprosy Statistiki
(Issues in Statistics). Gosstatizdat: Moscow, 1960, pp. 6 – 42. In Russian.
Cook, Edward T.: Life of Florence Nightingale (1913). Reprint, Macmillan: New
York, 1942.
Cournot, Antoine Augustin: Exposition de la théorie des chances et des probabilités
(1843). Reprint, Vrin: Paris, 1984. S, G, 54.
Disraeli, Benjamin: Letters, vols. 1—5, edited by Melvin G. Wiebe. University of
Toronto: Toronto, 1987 – 1997.
Fairley, William B.: Public Policy and Statistics. Intern. Enc. of Statistics, vol. 2.
Edited by William H. Kruskal and Judith M.Tanur. Free Press and Collier
Macmillan: New York – London, 1978, pp. 789 – 801.
Gaither, Carl C.; Cavazos-Gaither, Alina E.: Statistically Speaking. A Dictionary of
Quotations. Institute of Physics: Bristol, 1996.
John, V. The term statistics. J. Roy. Stat. Soc., 46 (1883), pp. 656 – 679.
Quetelet, Adolphe; Heuschling, Xav. Statistique internationale (population).
Commission centrale de statistique de Belgique: Bruxelles, 1865.

19



Saenger, K.: Das Preussische statistische Landesamt 1805 – 1934. Allg. stat. Archiv
24 (1935), pp. 445 – 460.
Seldes, George: The Great Quotations. Lyle Stuart: New York, 1966.
Twain, Mark, Autobiography (1906 – 1907). Harper & Brothers: New York, 1959.
Weintraub, Stanley: Disraeli. A Biography. Truman Talley-Dutton: New York,
1993.
White, Arthur W: Disraeli, Benjamin. The Mark Twain Enc., edited by J. R. Le
Master and James D. Wilson. Garland: New York –London, 1993, pp. 222 – 223.
[In 2005 P. M. Lee stated, in the Newsletter of the Roy. Stat. Soc., that the real

author was Lord L. H. Courtney and referred to Baines (1896). There, on p. 87, both
Lord C. and the saying itself (treated as generally known) were indeed mentioned,
but no definite source was cited.]
Baines J. A., Parliamentary registration in England etc. J. Roy. Stat. Soc., 59, 1896,
38 – 118.

20



V

Oscar Sheynin

Sampling without replacement: history and applications

Intern. Z. f. Geschichte u. Ethik der Naturwissenschaften,
Technik u. Medizin, Bd. 10, 2002, pp. 181 – 187

I dwell on the appearance, in the mid-19th century, of a formula
describing random sampling without replacement under incomplete
knowledge and discuss the statistical aspect of this formula and its
applications. I also provide illustrations showing that the fairness of
sampling without replacement was being questioned.

1. An Explanation and the initial problem
Sampling without replacement is essentially connected with opinion

surveys as well as with the statistical inspection of mass manufactured
commodities. Suppose that an electorate consists of two different
parties which will support either of the two candidates for presidency.
By collecting information on the preferences shown by a reasonably
chosen random sample of the electorate, it is possible to forecast the
outcome of the elections.

The study of the sample is tantamount to drawing a series of balls,
all at once, from an um with an appropriate number of white and black
balls contained in there in an unknown ratio. Nothing changes if we
imagine that the balls are extracted without replacement, one by one.

It was Laplace who initiated scientific sample studies of the
population; and Ostrogradsky, 1801 – 1862 (1848), studied statistical
inspection of commodities. More precisely, he examined the sample
inspection of foodstuffs supplied to the armed forces.

If not stated otherwise, I discuss random sampling without
replacement from an urn containing a white balls and b black ones
(a + b = c) and m and n balls, respectively (m < a, n < b, m + n = s),
are supposed to be extracted.1 When describing the reasoning of
various authors, I do not distinguish between balls, tickets, etc., nor do
I preserve their notation.

It is easy to verify that the probability of extracting the sample
(m; n) is

P1 = C C Cm n s
a b c (1)

and the probability of drawing a white ball anew will then obviously
be

P2 = (a – m) (c – s). (2)

When m and n remain unknown, P2 will however remain as it was
from the very beginning, see § 2:

P1 = a/c (3)
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The expected value of the random variable n is

En = bs/c. (4)

Below in this section, I recall the first appearance of a related
problem; in § 2 I consider my main case of m and n remaining
unknown and continue, in § 3, by discussing its statistical aspect.
Finally, in§ 4 I provide some illustrations of this case.

In 1657, Christian Huygens, 1629 – 1695 [1888 – 1950,
t. 14, Additional Problem No. 4] was the first to formulate a problem
concerning sampling without replacement, and he himself solved it in
a manuscript dated 1665 [Ibid., pp. 96 – 101; Sheynin 1977, p. 245]. It
was required to determine the chances for m = 3, s = 7 when a = 4 and
b = 8. His Additional Problem No. 2 was concerned with sampling
with replacements, but, also in 1665, his correspondent Jonan van
Waveren Hudde, 1628 – 1704 [Huygens 1888 – 1950, t. 5, p. 306]
solved it believing that the extractions were done without replacement.

Here is this Problem No. 2: Once more, a = 4 and b = 8; calculate
the chances of three gamblers who draw the balls in turn, one by one,
until someone extracts a white ball and wins the game. Jakob
Bemoulli, 1654 – 1705 [1713‚ T1. 1, pp. 63 – 66], and then
De Moivre, 1667 – 1754 [1756, pp. 56 – 58] also solved this problem.
They considered sampling both with and without replacement and
obtained identical answers, in the latter instant the chances were as
77:53:35.2

2. Its Main specification
I am now concerned with the case in which m and n remain

unknown. From among the contributions here discussed, Luchterhandt
[1842] is forgotten, and Mondésir [1837] was only briefly mentioned
by Jongmans and Seneta [1994]3.

2.1. Mondésir [1837]
Mondésir proved the following proposition. The probability of

extracting q white or black balls (in succession and without
replacement) out of the urn was the same, whether or not s balls were
drawn out of it previously (with m and n remaining unknown).

Mondésir considered three cases: a) s < a, s < b; b) a < s < b; and c)
s > a, s > b. In each of these, he calculated the probabilities of all the
possible hypotheses on the composition of the sample, and of drawing
the q balls under each hypothesis. He then multiplied these
probabilities in pairs and summed up the products. In each case the
obtained probability was indeed equal to

a(a – 1) [a – (q – 1)]/{c(c – 1)[c – (q – l)]}.

Mondésir did not fail to note that Poisson had tacitly applied
formula (3); he himself had not, strictly speaking, proved it.

2.2. Poisson
In a few cases, Poisson [1825—1826] tacitly issued from formula

(3). He considered a game of chance in which two series of cards were
extracted without replacement from the same set of six decks, and in
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one such case he treated the second series as though its cards were
drawn from the initial untouched set.

Later Poisson [1837, pp. 231 – 234] returned to his assumption.
Denote the probability of the sample (m; n) by f(a; b; m; n) and
suppose that it was obtained after a preliminary sample had provided g
white and h black balls, g + h = j. Then

f(a; b; m; n) = ∑f(a – g; b – h; m; n) f(a; b; g; h)

where the summation extends over g, h = 0, 1, 2, ..., g + h = j. Poisson
proved that the right side was independent of j so that it was possible
to take j = 0. This meant that the preliminary sample, whose results
remained unknown, did not influence the probability of obtaining the
sample specified beforehand.

On the same p. 231, Poisson appropriately corrected his negligence
made on p. 61. There he remarked that Mondésir, in a still
unpublished memoir, had proved formula (3), see however my § 2.1.
Poisson apparently thought it worthwhile to dwell on this point. He
checked this formula against a simple numerical example; noted that
the case a = b obeyed it because then there was no reason to prefer
either colour4; and referred to his own limit theorem for sampling
without replacement. True, for large a, b, see formula (2),
(a – m)/(b – n) = a/b.

Here, on p. 61, he did not cite either his earlier paper, nor his
(perhaps not yet printed) pp. 231 – 234.

2.3. Luchterhandt [1842]
Having been unable to get hold of Mondésir’s paper, Luchterhandt

[1842] provided an independent (and direct) proof of formula (3).
Issuing from formula (l), he multiplied its right side by (a – m)/(c – s),
see formula (2). The product thus obtained was the probability of the
appropriate compound event, viz., of drawing a white ball after
obtaining the sample (m; n). Luchterhandt then derived the sum of
such products for m = 0, 1, ..., s, taking also account of the respective
number of possible cases for each product. This was necessary
because of the ignorance of m, and he thus arrived at formula (3).

During this last step he properly applied Poisson’s calculations
[1837, pp. 60 – 63]. For that matter, Poisson could have well derived
there the same formula, and he possibly restrained himself because of
Mondésir’s manuscript.

2.4. Catalan
It was Eugene C. Catalan [Dale 1991; Jongmans and Seneta 1994]

who directed his attention to the unexpected result discovered by
Poisson and Mondésir; I shall only remark that at first he [1877]
formulated an extremely general (and therefore, I would say, extra-
mathematical) theorem; then [1884], without changing a single word,
he promoted it to the rank of principle:

La probabilité d’un événement futur ne change pas 1orsque les
causes dont il depend subsistent des modifications inconnues.

At about the same time, Bertrand [1888, p. xx], while dwelling on
the regularity of mass random events, formulated a lucid, but not at all
binding remark:
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Le hasard, à tout jeu, corrige ses caprices. Les irrégularités même
ont leur loi.

I would say that formulas (3) and (4) provide an especially
remarkable quantitative illustration of Bertrand’s idea (which, of
course, goes back to the law of large numbers). Nowadays, however,
at least the latter formula appears in the literature without any
comment [Brownlee 1965, § 3.5]5.

3. The statistical point of view
Suppose that the extractions from an um provided the series white,

black, black, … It is required to state whether the drawings were made
with replacement or otherwise. Even a more general problem became
topical after Wilhelm Lexis, 1837—1914, at the end of the 19th

century, began his studies of the stability of statistical series [Bauer
1955; Sheynin 2011, § 14]. In my present context, it is sufficient to
say that he attempted to distinguish whether a statistical series was, or
was not composed of outcomes of independent Bernoulli trials.

One of the leading statisticians who developed (and finally largely
refuted the Lexian criterion, but certainly not his influence on the
development of statistics), was Tschuprow, or Chuprov, 1874 – 1926.
Here is a passage from his letter of 1921 to his student Chetverikov,
1885 – 1973:

Not knowing the prior data it is impossible to distinguish a series of
numbers obtained when extracting the tickets without replacement
from a series obtained according to the usual way of replacing … the
ticket. It sounds like a paradox, but it is so! [Sheynin 2011, p. 145].

In a few years, he publicly repeated his statement [Tschuprow 1923,
pp. 666 – 667; 1924, p. 490] concluding,‘ m the latter case, that So
paradox dies auf den ersten Blick erscheint, ist die Aufgabe unlösbar.6

Seneta [1987] linked Chuprov’s and his student Mordukh’s [1923]7,
studies with later important investigations of dependent random
variables. According to my present viewpoint, Seneta should have
also stressed that, almost from the beginning, Chuprov had indicated
the relevance of his studies to sampling without replacement. Neither
Chuprov nor Seneta mentioned formula (3).

4. Illustrations
I provide a few examples which show that the fairness of drawings

without replacement was being questioned (Items 1, and, likely, 3);
that formula (3) can be advantageously applied by a gambler (Item 4);
and I also describe a very special case of such drawings (Item 2).

1. Redemption of the first-born [Jerusalem Talmud, Sanhedrin l4;
French translation: Paris 1960; Sheynin 1998, pp. 192—193]. Moses
intended to fill an urn with 22,000 white balls, and 273 black ones,
and have 22,273 people to draw these without replacement. Those and
only those who extracted a black ball would have had to pay five
shekels each.

The Talmud implies that the proposed procedure was, however,
(unduly) suspected.8 Corroborating my earlier demonstration of the
fairness of even the initial set-up, I remark now that, before the
drawings were to begin, the expected losses were the same for each
participant.
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This episode was also mentioned, though only m a few words, in
Numbers 3:46. Lots were also drawn, evidently again without
replacement, in order to apportion the land among the tribes of Israel
(Numbers 26:55 – 56 and 33:54), but details were not provided here
either.

2. I left out of my earlier paper [1998] a curious statement which
had appeared in the Rabbinic literature. Indeed, I thought that it was
unworthy of discussion; now, I can at least link it with my present
subject.

I bear in mind the opinion of Rabbi Shlomo ben Adret [Rabinovitch
1973, p. 40]9 about several pieces of meat all but one of them being
kosher: When he (when somebody) eats the (first) one, I say This is
not the forbidden one, and similarly for each piece. When he eats the
last piece, I say The forbidden one was among those already
consumed and this one is permitted since by Biblical law, one in two is
nullified.10

Suppose that four out of five pieces of meat were kosher. Then a =
4, b = 1 and a/c = 4/5 so that after eating only three pieces of meat, the
man would have consumed the forbidden piece with probability 0.6.
The Rabbi likely had a clear idea about the chance of eating the

forbidden piece at the very beginning, and a notion that the chances of
the same event occurring later on were (at the time) impossible to
calculate. And he hardly failed to notice that his conclusion was
wrong the more so since the Talmud had set forth certain allowed
ratios of forbidden/kosher food for various cases.

3. Draft lotteries. Several times during 1917 – 1970, young
Americans were conscripted into the armed force by lot [Fienberg
1971]. At each locality, eligible men had to draw lots, and those who
extracted numbers 1, 2, … (M – 1), M out of the first N (N > M)
natural numbers were inducted.11 Now, such lotteries are tantamount
to drawings without replacement with a = M and c = N.

At least in some of the cases an (unnecessary) double
randomization was achieved by previously assigning a different
number to each eligible man. It seems that the numbers in the urns
were not sufficiently shuffled, but I leave this issue aside. Instead, I
note that

The 1970 draft lottery has not helped to mitigate the doubts of many
regarding the equity and fairness of random drawings [Fienberg].

Some of the doubts were possibly unconnected with the shuffling of
the numbers.

4. Consider a game of blackjack with several decks of cards going
on at a casino. When dealing out the cards for himself, the banker has
to stop at 17 points; indeed, during the first game the probability of
scoring more than 21 points then becomes 7/13 > 0.5, and for him it
remains constant because he is unable to memorize the casted aside
cards. However, a gambler endowed with an extra sharp memory will
be able to apply advantageously the formula (2), and it seems that
such instances did happen.

Acknowledgement. Prof. Dr. K. Dietz (Tübingen) offered useful
methodological advice.
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Notes
1 Already Emile Mondésir [1837, p. 10] remarked that a generalization onto balls

of several colours in a related problem was possible by mentally combining all the
colours but one. The case in which each of the c balls has its own colour leads to the
celebrated Genoise lottery (beginning of the 17th century). It served as a point of
departure for interesting stochastic studies, suffice it to mention Leonhard Euler.

2 Hudde, who had not provided any calculations, obtained a slightly different
result, 232:159:104.

3 I cite the last-mentioned article once more in § 2.4. Its authors also discuss some
related modern issues.

4 On p. 47 of the same source, Poisson even attempted to prove that the
probability of drawing a white ball from an urn containing n balls, white and black,
was 1/2, again because there was no reason to assume anything else (because of the
same principle of insufficient reason, as it is called nowadays). If, in such a case, a
probability might be thought to exist, it should indeed be equal to 1/2 so as to
provide minimal information (in the sense of the theory of information) about the
unknown contents of the urn. No other justification of such a result seems possible.

It is not amiss to quote Ellis, 1817 – 1859, [1850, p. 57]: mere ignorance is no
ground for any inference whatever, Ex nihilo nihil.

5 Formula (4) is equivalent to En/s = b/c. This means that drawings without
replacement, whether or not m and n remained unknown, indeed corrige ses
caprices. Cf. § 3 below.

6 In 1925, Chuprov published a Russian version of his paper of 1924, and on
p. 209 of its reprint [1960], he added a remark which I do not understand.
Distinguishing between the two patterns, he stated, would be easy in the particular
case of a = b.
7 Mordukh apparently left Russia without completing his education. He graduated
from Uppsala University in 1921, and nothing is known about his further life. The
only archival information which I have is that Jakob Mordukh was born in 1895 and
graduated as Bachelor of Arts.
8 Those who would have begun the drawings were apparently thought to be luckier
than the last ones; in our time, as I noted in the same article, such a misgiving was
being directly voiced. In any case, Moses placed 273 additional white balls in the
urn (which certainly did not meet the (imagined) issue and could have, with low
probability, deprived him of some money).

9 Rabinovitch mentions the Rabbi seven times. On p. 5 he lists Rabbi Shlomo
(ben Abraham) ben Adret (1235 – 1310) along with several other scholars as a
Talmudic commentator, and his p. 40, from which I have just quoted, belonged to a
section entitled Talmudic Acceptance Rules. To my mind, however, the Rabbi’s
reasoning is a specimen of a hardly known stochastic variety of sophisms.

10 These last words likely mean that probability 0.5 is nullified.
11 This is at least my understanding; for my purpose, the authorities could have

just as well chosen the alternative. The author likely believed that the rules were
generally known and did not sufficiently explain them.
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VI

Oscar Sheynin

Kepler as a statistician

Silesian Stat. Rev., No. 15/21, 2017, pp. 227 – 232

Summary: Drawing on my previous publications (see Bibliography), I describe
Kepler’s work on the mathematical treatment of observations and astrology. In
particular, I investigate how he rejected the Ptolemaic system of the world and note
that his astrology had the features of qualitative correlation.

Key words: reformation of astronomy, astrology, qualitative correlation, minimax
method, Monte Carlo method

1. Mathematical treatment of observations
This is my main subject. Modern astronomers are not anymore

interested in it, and even historians of astronomy are ignorant of it.
William H. Donahue, who translated Kepler’s great work (1609) into
English and thus made an excellent contribution to the history of
astronomy, did not comment on Kepler’s treatment of observations.
This, however, is just what I will do in this section; and I quote Kepler
(1609) by only mentioning the page numbers of its translation.

1.1. The arithmetic mean. Kepler (p. 200) collected four
astronomical observations of the right ascension of Mars and, without
any explanation, remarked: The mean, treating the observations
impartially (medium ex aequo et bono), is …

Actually (Eisenhart 1976, p. 356) Kepler had chosen a weighted
arithmetic mean (and had to assign subjectively the weights). But the
main point here is that his Latin expression had occurred in Cicero
(Pro A. Caecina oratio, § 65) whom Kepler likely read. It connoted
rather than according to the letter of the law. (I have found this
connotation in a Russian textbook of the Latin language for student
lawyers.)

So now we know that at the very beginning of the 17th century or
somewhat earlier the arithmetic mean became the letter of the law.

1.2. The Monte Carlo method. When adjusting observations,
Kepler sometimes corrupted them by small arbitrary magnitudes. Thus
(p. 334), One might hold suspect such license since then we will be
able to change whatever we don’t like in the observations. He
reasonably added that the changes ought to remain within the limits of
observational precision. And he certainly had to take into account the
properties of usual random errors: an approximate equality of those
changes of both signs and a larger number of changes smaller in
absolute value.

Actually, Kepler applied elements of the Monte Carlo method.
1.3. Reformation of astronomy. And now the main point, Kepler’s

rejection of the Ptolemaic system of the world (p. 286):
Since the divine benevolence has vouchsafed us Tycho Brahe, a

most diligent observer, from whose observations the 8′ error in this
Ptolemaic computations is shown, it is fitting that we … acknowledge
and honour this benefit of God … They could not be ignored, these
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eight minutes alone will have led the way to the reformation of all the
astronomy.

This passage has been quoted a thousand times, but no one thought
of investigating it. Two questions have to be answered: why Kepler
was sure that the error of Tycho’s observations was less than 8′; and
how did he arrive at that estimate?

Kepler gave an indirect answer to the first question by stating that
the error of his own observations was of the order of two or three
minutes (pp. 215, 621 and 611). But the main question is the second
one, and I ought to go into details about the adjustment of
observations.

Given, a system of n equations with k unknowns, n > k

aix + biy + … + wi = 0, i = 1, 2, …, n (1)

Here, the coefficients are provided by the appropriate theory and the
free terms are the observations or their functions. The observations,
and therefore the equations are mutually physically independent
(linear independence was not yet known) and systems (1) had no
solutions. Astronomers (and geodesists) had to be satisfied by any set
of numbers ˆ ˆ, ,...x y approximately satisfying (1), i. e. such that the
residual free terms, call them vi, were small enough and more or less
satisfying the properties of usual random errors, cf. § 1.2. In other
words, an additional restriction had to be imposed on those residuals.
One of those restrictions was the condition of least squares

v1
2 + v2

2 + …+ vn
2 = min.

Petrov (1954) is apparently still the best investigation of the optimal
properties of the method of least squares.

Other methods had been earlier introduced, and, among them, the
minimax method or rather its elements since only Laplace offered an
algorithm for applying it properly. This method meant that the vi,
maximal in absolute value, is minimal among all the possible
“solutions” of system (1); in the period before Laplace, minimal only
among some reasonable “solutions”.

The method of minimax is not optimal in any sense, but it answers
an important question: if the derived maximal vi is unacceptably large,
then either the theory justifying the system (1) was wrong, or the
observations (the wi) were too bad.

And I believe that Kepler had indeed applied elements of the
minimax method to a system corresponding to the Ptolemaic picture
of the world and decided as stated above. This, however, was not
enough! I also believe that Kepler had then repeated such calculations
for the Copernican system and likely arrived at a maximal vi of the
order of 3′, see above the estimation of the precision of his own
observations. He had not regrettably said anything about that likely
second calculation, but in principle it can be repeated now.

Interestingly, the minimax method is tantamount to generalized
least squares:
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lim (v1
2k + v2

2k + …+ vn
k) = min, k → ∞.

An important circumstance here is that in astronomy systems of
equations are not linear and not even algebraic, but they can be
linearized. Suppose that such a system involves x2 (a similar
conclusion will apply, for example, to sinx). It is then possible to solve
any subsystem with an equal number of unknowns and equations. The
value x0 will be calculated and

x = x0 + ∆x

with a comparatively small ǀ∆xǀ. Then

ax2 = a(x0 + ∆x)2 ≈ ax0
2 +2 x0∆x

and the system will be linear in ∆x.

Kepler had to linearize his systems, otherwise he would have been
obliged to obtain reasonable solutions by solving non-algebraic
systems many times over.

1.4. Systematic influences. Kepler (1634/1967, p. 142) formulated
recommendations for observers of solar eclipses. Actually, he insisted
that systematic influences ought to be excluded (as far as possible).

2. Other topics
2.1. Randomness. Kepler (1606/2006, p. 163) rejected it: What is

chance? An idol … Nevertheless, he had to find room for randomness,
see Sheynin (2014, § 2). There also, in § 3, I have followed the
subsequent views of Kant and Laplace likely borrowed from Kepler.
See also § 3 below.

2.2. An embryo of the law of large numbers. Kepler (1627) stated
that the total weight of many coins (more precisely, the mean weight
of a coin selected from them) is constant.

3. Astrology
From a modern point of view, astrology is a pseudoscience. There

were, however, astrologers, scholars of the highest calibre included,
who strove to discover connections between heaven and earth. They
sincerely believed in the existence of such connections the more so
since heaven does influence earth; thus, ocean tides are occasioned by
the sun and the moon.

Astrologers singled out the aspects, i. e., remarkable mutual
positions of the sun, the moon and the planets visible by the naked
eye. Without any criteria they somehow separated randomness and
regularity, a problem which is still remaining a fundamental challenge
for modern mathematics. Kepler (1601/1979, p. 97) added three
aspects to those recognized by ancient astrologers, so he also
participated in the solution of that perennial problem.

Ptolemy (1956, I 2 and I 3) believed that the influence of heaven
was a tendency rather than a fatal drive, and I understand his astrology
as qualitative correlation. Indeed, ancient science was qualitative,
witness Hippocrates (1952, vol. 10, No. 44):
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Persons who are naturally very fat, are apt (!) to die earlier than
those who are slender.

Kepler contributed to this direction of astrology. He stated that the
influence of heaven at the moment of his birth was only a tendency,
and, what is more interesting, he (1610/1941, p. 217; 1619/1939, pp.
256, 263) introduced intermediate causes (climate, geographical
location, political structure of the land etc.) which were able to corrupt
the influence of heaven. This was another step towards qualitative
correlation since correlation analysis involves the isolation of the
essential factors and a decision about the other influences (to disregard
them, or to take them somehow into consideration). On the other hand,
such intermediate causes pave the way for deception by quacks.

Kepler (1619/1997, book 4, chapter 6) considered himself the
founder of a scientific astrology based on tendencies, but, even
disregarding ancient scholars, Tycho Brahe had forestalled him
(Hellman 1970, p. 410).

Now, Kepler was mostly interested in studying the general destiny
of nations according to the tendency of the prevailing aspects. As a
Landschaftsmathematiker, he also had to compile yearly astrological
almanacs, see M. Casper, p. 22* of his commentary on Kepler’s Welt-
Harmonik (1619/1939). He was dissatisfied by them since, as he
(1610/1941, p. 253) stated, ordinary men were only interested in
impossible precise predictions about their lives, and he decided to quit
those compilations (but had to continue owing to financial
difficulties).
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Oscar Sheynin

The inverse law of large numbers

Math. Scientist, vol. 35, 2010, pp. 132 – 133

Denote the probability of a studied event by p, and the statistical
probability of its occurring in ν independent trials by p̂ . Jakob
Bernoulli (1713, pt. 4) proved, although without introducing
probabilities, that

lim P(| p̂ – p| < ε) = 1, ν → ∞, ε > 0. (1)

He also studied the rapidity of the limiting process with less success,
largely because Stirling’s theorem was still unknown to him. Several
authors improved his estimate; one of them, Pearson (1925, p. 202),
considered Bernoulli’s result too crude and rejected it altogether,
obviously disregarding existence theorems.

Bernoulli (chapter 4 of pt. 4), however, sought to prove that p̂ can
replace an unknown p, so that (1) was not really what he needed, but,
he nevertheless claimed to have proved that induction was not worse
than deduction. Even more: in his examples he described cases in
which no probability was known to exist including that of being taken
ill with a certain disease. Graunt (1662) made use of such statistical
probabilities for compiling his life table, certainly faulty and not
deserving attention from the present viewpoint but extremely
important at the time.

Mathematicians have been dealing with entities not existing in
nature (e. g., imaginary numbers) and natural scientists (and
statisticians) deal with entities of the same kind including true values
of estimated measures of precision. Fourier (1826/1890, p. 533)
defined such objects as the limit of the appropriate arithmetic means
[viii].

De Moivre (1733) proved the first version of the central limit
theorem and, in an extended version of his memoir, he (1756, p. 251)
stated that “conversely”, if p̂ tends to some magnitude, that “ratio”
will express p. It was Bayes [xi] who investigated that converse case,
the inverse law of large numbers, as I am now calling it, and for this
reason I think that he can be credited with completing the first version
of the theory of probability and that Mises, when introducing his
frequentist definition of probability, could have been (but apparently
was not) inspired by Bayes.
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The true value of a measured constant
and the theory of errors

Hist scientiarum 17, 2007, pp. 38 – 48

Abstract
The theory of errors is a discipline indispensable to experimental

science at large, and true value of a measured constant is one of its
main notions. I reject a modern statement which claims that the true
value “syndrome” is left behind. I dwell on the history of that notion,
– on its heuristic use, informal connection with the arithmetic mean of
the pertinent observations, and on its formula (Laplace, Fourier),
forgotten perhaps up to the mid-20th century. Mises, although not
really interested in the theory of errors, effectively connected true
value with his frequentist definition of probability as the limit of the
corresponding statistical frequency. Mathematical statistics largely but
not completely moved from the true value to the estimation of
parameters of functions. Condorcet hesitatingly introduced an
intermediate theory of means which studied the determination of both
true values and abstract mean values but which became divided
between statistics and the theory of errors.

Key words: Experimental science; Frequentist theory of
probability; Theory of errors; Theory of means; True value of constant

1. Introduction
From the most ancient times astronomers have been measuring the

coordinates of the fixed stars, i.e., of presumably constant magnitudes.
Actually, however, this supposition, as will be seen in the sequence, is
not really true.

The concept of true value of a measured constant had always been
inseparably linked with the measurements themselves; only
mathematical statistics (almost) changed this situation. Thus, Al-
Biruni (1967, p. 83): “Now all the testimonies that we have adduced
point out collectively that the [obliquity of the ecliptic] is …” And
here is Cotes (1722/1768, p. 22), also without using the term true
value: “The place of some object defined by observation[s] …”

My second concept is theory of errors which I define as the
statistical method (statistics) applied to the treatment of observations
in experimental science. I only deal with its stochastic branch; its
determinate branch might be related to experimental design.

2. The Arithmetic mean and the true value
The first to connect directly these two notions was possibly Picard

(1693, pp. 330, 335, 343) who called the arithmetic mean the true
(véritable) value (of the angle measured in triangulation). The next,
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and much more outspoken author was Lambert. First, he (1760, § 286)
stated:

Da nun Fehler um so häufiger auftreten, je kleiner sie sind, folgt
daraus, das in einem beliebigen gegebenen Fall nach wiederholten
Versuchen die häufiger auftretenden Größen dem Mittelwert oder
auch dem wahren Wert näher liegen.

[Since errors happen the oftener, the smaller they are, it follows
that in any given case of repeated experiments the more frequently
occurring quantities are situated nearer to the mean value, or, also, to
the true value.]

And in § 290 he added that the error of the arithmetic mean was
much smaller than that of a single observation and that consequently
the mean was nearer to the true value. Then, Lambert (1765, § 3)
argued that, if, in modern terms, the density curve of the observational
errors was even,

Das Mittel aus mehrern Versuchen dem wahren desto näher
kommen müsse, je mehr der Versuch ist wiederholt worden. Denn
unter allen Fällen, die man sich dabey gedenken kann, ist derjenige
am möglichsten, wobey gleich große Abweichungen auf beyden Seiten
gleich ofte vorkommen.

[The mean of a large number of experiments ought to move the
nearer to the truth, the more is the experiment repeated. Because,
among all the cases which might be imagined, the most possible is
that in which equally large deviations to both sides occur equally
often.]

He, as well as some later authors, see below, tacitly (but almost
directly in his previous case) assumed that the density was unimodal
and not bad (cf. for example the Cauchy distribution under which a
single observation is not worse than the mean) and he certainly had
not proved his statements. Thus, only Thomas Simpson, in 1756,
proved the essence of Lambert’s § 290, and, for that matter, only for
two distributions.

That the mean tends to the appropriate theoretical parameter is now
called, in statistics, the limit property of consistency which holds for
linear estimators in general. In my context, however, this remark is
hardly of consequence.

My next author here is Laplace. He (1795/1912, p. 161) stated that
with an unrestricted increase in the number of observations their mean
converged to a certain number, so that

Si l’on multiplie indéfiniment les observations ou les expériences,
leur résultat moyen converge vers un terme fixe, de manière qu’en
prenant de part et d’autre de ce terme un intervalle aussi petit que
l’on voudra, la probabilité que le résultat moyen tombera dans cet
intervalle finira par ne différer de la certitude que d’une quantité
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moindre que toute grandeur assignable. Ce terme est la vérité même si
les erreurs positives et négatives sont également faciles …

[If we multiply observations or experiments indefinitely, their mean
result will tend to a fixed term, so that, taking on both its sides an
interval as small as you wish, the probability that the mean result
finds itself there will finally differ from certitude by a quantity less
than any assigned magnitude. This term is the truth itself provided
that positive and negative errors are equally likely ]

He repeated this statement word for word (1810a/1898, p. 303), and
he also repeated it elsewhere, either a bit later, or a bit earlier
(1810b/1979, p. 110/272), writing se confond avec le vérité [merges
with the truth] instead of est la vérité même [is the truth itself].

And in his Essai philosophique (1814/1886, p. LVI) which
originated from the Leçons of 1795, we find:

Plus les observations sont nombreuses et moins elles s’écartent
entre elles, plus leurs résultats approchent de la vérité.

[The more observations there are and the less they deviate from one
another, the more their results approach the truth. From the
translation of 1995, p. 43.]

He added that the optimal mean results were determined by
probability theory. Now, it is generally known that he strongly
advocated (and furthered) the method of least squares; hence, when
discussing the case of one unknown, as above, he certainly meant the
arithmetic mean. In the fifth edition of the Essai (1825) Laplace also
left a similar pronouncement concerning the general case (p. 44 of the
English translation (1995) of that edition).

I hasten to add that Gauss had not left anything comparable. When
providing his first justification of the method of least squares, he
(1809/1887, §177) issued from the hypothesis that the arithmetic mean
was the most probable value of the constant sought, or very close to it.

Understandably, Poisson (1811, p. 136; 1824, p. 297; 1829, pp. 12
and 19) followed his predecessors in that he used the term vraie valeur
and indirectly stated that this value was the mean of infinitely many
observations.

3. The definition
Fourier (1826/1890, pp. 533 – 534) provided the still lacking formal

definition:

Supposons donc que l’on ait ajouté ensemble un grand nombre m
de valeurs observées, et que l’on ait divisé la somme par le nombre m,
ce qui donne la quantité A pour la valeur moyenne; nous avons déjà
remarqué que l’on trouverait presque exactement cette même valeur
A, en employant un très grand nombre d’autres observations. En
général, si l’on excepte des cas particuliers et abstraits que nous
n’avons point à considérer, la valeur moyenne ainsi déduite d’un
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nombre immense d’observations ne change point; elle a une grandeur
déterminée H, et l’on peut dire que le résultat moyen d’un nombre
infini d’observations est une quantité fixe, où il n’entre plus rien de
contingent, et qui a un rapport certain avec la nature des faits
observés. C’est cette quantité fixe H que nous avons en vue comme le
véritable objet de la recherche.

[Suppose therefore that a large number of observations are added
together, and their sum is divided by [their] number, m, which
provides the quantity A for the mean value. We have already remarked
that almost exactly the same value A will be found when taking a very
large number of other observations. In general, excepting particular
and abstract cases which we will not consider at all, the mean value
thus derived from an immense number of observations does not
change at all. It has a certain magnitude H, and it is possible to say
that the mean result of an infinite number of observations is a fixed
quantity which never contains anything accidental anymore, and
which is in a certain relation to the nature of the observed events.

It is this fixed magnitude H that we have in mind as the veritable
object of research.]

I doubt that his formula was widely noticed and in any case I was
unable to find even a single reference to it; perhaps it was thought to
be hardly needed. Nevertheless, a number of later authors repeated the
same definition independently one from another, and likely, from him,
see below. First, however, I turn to Markov (1924, p. 323) who
cautiously, as was his wont, began the chapter on the method of least
squares of his treatise by remarking that

It is necessary in the first place to presume the existence of the
numbers whose approximate values are provided by observations.

A similar statement concerning an unknown probability is on p.
352; his first pronouncement was inserted in the edition of 1908
(perhaps even in the first edition of 1900), the second one appeared in
the edition of 1913. Several remarks are in order.

1) Before and after Markov many scholars either expressly
mentioned, or indirectly referred to the true value without bothering to
define it (Gauss, in all of his writings pertaining to the treatment of
observations; Markov himself 1899/1951, p. 250; Poincaré 1912, p.
176; Kolmogorov 1946, title of § 7).

2) Probability (Markov, p. 352) is not an entity of the real world, at
least not in the usual sense. This generalization of the concept under
my study is an important point for a natural scientist, although not for
Markov the mathematician. Incidentally, already Gauss (1816/1887,
§§ 3 and 4), a mathematician and natural scientist, repeatedly
considered the true value of a measure of precision of observations.
See also Fisher’s relevant statement in my § 4.

3) I also note Markov’s reluctance to step out of the field of
mathematics: he had not mentioned true values at all which was
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hardly accidental. Recall that he never provided any applications of
his chains to natural sciences.

Fourier’s definition heuristically resembles Mises’ celebrated
formula for probability; strangely enough, no one saw fit to mention
this fact except Mises himself. Here is what he (1919/1964, pp. 40 and
46) actually stated, largely repeating Fourier:

Der “wahre” Wert der Beobachtung (d. i. derjenige, der sich als
Durchschnitt bei einer ins Unendliche fortgesetzten Beobachtungs-
reihe ergeben müsste) … Der “wahre” Mittelwert ist nicht anderes als
die Größe, die nach der Definition des Wahrscheinlichkeitsbegriffes
als arithmetisches Mittel einer ins Unendliche fortgesetzten
Ziehungsserie sich ergeben müsste.

[The “real” value of the observation (that is, such that ought to
occur as the mean value when the series of observations continues to
infinity). … The “real” mean value is nothing but the magnitude that
ought to occur by the definition of the concept of probability as the
arithmetic mean when the series of drawings continues to infinity.]

In 1919, the corresponding page numbers were 80 and 87, and it
was in that contribution that Mises first introduced his frequentist
theory. In other words, the concept of probability
[Wahrscheinlichkeitsbegriff] could have only been his frequentist
definition of probability. But to explain the drawings. Suppose that an
urn contains white and black balls and that m white balls and n black
ones are extracted and returned back one by one. Then, as Mises
stated, the ratio m/n approached the unknown ratio of the balls
contained in the urn. This was his illustration of the connection of the
true value and frequentist probability but he had not directly offered it
as a formula.

My next author is also interesting because he (Eisenhart 1963/1969,
pp. 30 – 31) deals with metrology, an important scientific discipline
which statisticians hardly ever discuss when they (also on rare
occasions) recall the theory of errors:

The “true value” of the magnitude of a quantity … is the limiting
mean of a conceptual exemplar process … The mass of a mass
standard is … specified … to be the mass of the metallic substance of
the standard plus the mass of the average volume of air adsorbed
upon its surface under standard conditions. I hope that the traditional
term “true value” will be discarded in measurement theory and
practice, and replaced by some more appropriate term such as
“target value”

And so, first, Eisenhart largely repeated Fourier. Second, here, as
had always implicitly been the case before, he clearly stated that the
residual systematic error was inevitably included in the true value.
Third and last, Eisenhart’s hope had not materialized, see below, but
he was quite right when stating, in addition, that it was impossible to
obtain any true value.
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To conclude, I mention that Whittaker & Robinson (1924/1958, p.
215n) largely repeated the Fourier definition:

True mean is expectation although different values of a random
variable reflect its intrinsic property of change whereas different
values of observations of a measured constant are in the first place the
result of our helplessness.

4. Mathematical statistics and the theory of errors
Purportedly, mathematical statistics had done away with true values

and introduced instead parameters of densities (or of distribution
functions). Fisher (1922, pp. 309 – 310) was mainly responsible for
this change; indeed, he introduced there the notions of consistency,
efficiency and sufficiency of statistical estimators without any
reference to the theory of errors or to true values. But then, on p. 311
we read that a

Purely verbal confusion has hindered the distinct formulation of
statistical problems; for it is customary [for the Biometric school] to
apply the same name, mean, standard deviation, correlation
coefficient, etc., both to the true value which we should like to know,
but can only estimate, and to the particular value at which we happen
to arrive by our methods of estimation.

So the true value was still alive even in mathematical statistics. A
few other examples. The Dictionary (Aleksandrov 1962) cites true
correlation; mean; and value. Bolshev (1964, p. 566) dwells on the
“true value of a parameter”. His was a commentary on Bernstein
(1941/1964) who mentioned a “true probability” of an inequality (in §
5, p. 390 in 1964). Then, Smirnov & Dunin-Barkowski (1959/1973,
pp. 16 and 17) had chosen to say true value.

But what about our contemporaries? Here is an opinion which I
oppose (Chatterjee 2003, p. 264): the methods of the theory of errors
“were rarely applied outside these narrow fields” [of astronomy and
geodesy] and “the true value syndrome” “was ultimately left behind”.

First, I object to the narrow fields and note the author’s failure to
recognize metrology. And how about measurements in geophysics (of
magnetism, or of the acceleration of gravity), or in physics (of the
velocity of light in vacuum, or of the mass of electron), etc.?

Then, syndrome is usually connected with some abnormal
condition. Second, since Chatterjee (pp. 248 – 249) still believes in the
existence of the mysterious “well-known” Gauss-Markov theorem, I
doubt that he is proficient in the history of statistics (and especially of
the treatment of observations).

I am also dissatisfied with Chatterjee’s statement (p. 273) that
Quetelet was “mentally bound by … the true-value syndrome” and
that, implicitly, for Quetelet variations were “of secondary
importance”. Even excluding meteorology, his important field of
research beyond social statistics, Quetelet (Sheynin 1986) studied the
change of the probability of conviction for differing groups of
defendants (my § 4.4 there), held that the tables de criminalité pour
les différents ages [tables of criminality for different ages] merited full
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attention (p. 304n 45) and declared that the normal law was une les
plus générale de la nature animée [one of the most general of the
animate nature] (p. 313), – especially in anthropometry. More about
Quetelet in § 5 where I also dwell on the study of mean values
(conditions).

Third, I cite Hald (1998) who described the History of
mathematical statistics from 1750 (when it did not yet exist) to 1930
on the present-day level. Thus, when discussing the work of Gauss he
(p. 353) introduced without explanation the recent notation for a
function with an unspecified argument: f(∙). He mentions the true
value many times, for example in Chapters 5 and 6, and here is how
he begins this latter chapter (p. 91): “ … we have discussed … the
estimation of the true value, the location parameter, in the … model”.

I conclude that the term itself, and the notion of true value are still
applied to a certain extent even in mathematical statistics.

I defined the theory of errors in § 1. According to its “official”
mathematical definition (Bolshev 1984/1989), it is a branch of
mathematical statistics beyond whose confines is the processing of
observations (Bolshev (1982/1991) which studies systematic errors. I
do not agree. First, the theory of errors is just unable to divorce itself
from such studies. Second, systematic errors are a feature of the
structure of statistical data, and their absence or presence should
therefore be verified by exploratory data analysis, an important
chapter of theoretical, even if not mathematical statistics (Sheynin
1999/2006). Third and last, Bolshev’s description of the processing of
observations is somewhat indefinite and does not mention data
analysis at all.

5. The intermediate stage
It is usual to credit Galton with breaking away from true value (and

the theory of errors in general). In 1908 he (Eisenhart 1978, p. 382)
wrote:

The primary objects of the Gaussian Law of Error were exactly
opposed, in one sense, to those to which I applied them. They were to
get rid of, or to provide a just allowance for errors. But these errors
or deviations were the very things I wanted to preserve and to know
about.

Deviations together with their respective probabilities, i. e., their
densities.

But the intermediate stage between the theory of errors and
mathematical statistics began much earlier with Condorcet
(1805/1986, p. 604) who introduced

Théorie des valeurs moyennes … un préliminaire de la
mathématique sociale … dans toutes les sciences physico-
mathématiques, il est également utile d’avoir des valeurs moyennes
des observations ou du résultat d’expériences.
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[The theory of mean values … a preliminary to social mathematics
… in every physical and mathematical science is equally useful to
have mean values of observations or of the results of experiments.]

On the same page he definitely separated this proposed theory from
the “théorie du calcul des probabilités”. Nevertheless, he had not
elaborated, had not offered a formula of the theory of means. On pp.
555 – 559 Condorcet reasoned on the connection between the
arithmetic mean (only in the case of a finite number of observations)
and the vraie valeur inconnue [true unknown value], noted, on p. 555,
that On peut distinguer deux espèces de valeurs moyennes [It is
possible to distinguish two kinds of mean values], but still had not
explained himself clearly enough, cf. Quetelet’s statement below.

Anyway, the emerged theory of means (hardly separated from
probability!) was more general than the theory of errors in that it also
dealt with mean states; for example, with the mean stature of draftees
(Quetelet, his celebrated study). It was Lambert (Sheynin 1971, pp.
254 – 255), who, in 1765, introduced the term theory of errors
(Theorie der Fehler), but it had not taken root until the mid-19th

century; Gauss and Laplace, for example, had not applied it.
I repeat now my quotation (Sheynin 1986, p. 311) from Quetelet

(1846, p. 65):

En prenant une moyenne, on peut avoir en vue deux choses bien
différentes: on peut chercher à déterminer un nombre qui existe
véritablement; ou bien à calculer un nombre qui donne l’idée la plus
rapprochée possible de plusieurs quantités différentes, exprimant des
choses homogènes, mais variables de grandeur.

[When taking a mean, it is possible to bear in mind two quite
different things. We can attempt to determine a number that really
exists; or, we can indeed calculate a number that provides the nearest
possible idea of many differing quantities expressing uniform objects
varying however in magnitude.]

In the same article I have also cited or mentioned several other
pertinent sources from 1830 to 1874.

The study of mean values or states rather than laws of distribution
(Galton, see above) had been a necessary stage in the development of
natural sciences. Humboldt (Sheynin 1984b, p. 68, n 36), in 1850,
mentioned die einzig entscheidende Methode, die der Mittelzahlen
[the only decisive method, that of the mean numbers], and Buys Ballot
(Ibidem, p. 55), also in 1850, stated that the study of the mean state of
the atmosphere had begun with Humboldt and constituted the first
period of the new history of meteorology.

Finally, I refer to Hilbert (1901/1935, § 6) who was perhaps one of
the last scholars to mention the Methode der mittleren Werte [method
of mean values]. That the theory of means does not exist anymore is
understandable: being an intermediate entity, it became divided
between statistics (to which already Quetelet, see the quotation above,
had attributed it) and the theory of errors.
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Without turning to meteorology anymore, I am giving word to the
astronomer, who, in that branch of natural sciences, originated the
change from means to frequencies (Kapteyn 1906, p. 397):

Just as the physicist … cannot hope to follow any one molecule in
its motion, but is still enabled to draw important conclusions as soon
as he has determined the mean of the velocities of all the molecules
and the frequency of determined deviations of the individual velocities
from this mean, so … our main hope will be in the determination of
means and of frequencies.

6. Conclusion
It is generally known that the development of mathematics has

always been connected with its moving ever away from Nature (for
example, from natural numbers to real numbers in general to
imaginaries) and that the more abstract it was becoming, the more
benefit accrued to natural sciences. In particular, the general transition
from the true value to estimating parameters of functions in
mathematical statistics was also very useful.

I stress however that the science of measuring real objects and
treating the collected data does not at all abandon the true value. That
Mises (§ 3) also saw fit to define (not formally) the true value and to
link it (indirectly) to his theory certainly lends it some additional
support. Of course, in spite of his own opinion, his frequentist theory
of probability belongs to natural sciences [xiii], but, after all, the
theory of errors does not belong entirely to mathematics either. The
statements of Chatterjee (§ 4) and possibly other likeminded
statisticians ought to be modified accordingly and the theory of errors
must remain to be seen as a worthy scientific discipline. Together with
its true value, alive and kicking, it continues to service experimental
sciences at large.

To a certain extent, the ideas and methods of mathematical statistics
ought to be applied there. Primarily I bear in mind the estimation of
precision, which, after all, is not inseparably connected with true
values. I ought to mention correlation theory and analysis of variance
as well, but these subjects are beyond my scope now. Nevertheless, it
is opportune to note that Kapteyn (1912), who was dissatisfied with
that theory as having been developed then, introduced his own
astronomical version of correlation. Without knowing it, he thus
quantified Gauss’ pertinent ideas and, although his contribution had
never been cited (perhaps because of this very fact), geodesists have
always kept to his (to Gauss’) concepts of dependence and correlation,
see Sheynin (1984a, pp. 187 – 189). This does not, however, mean
that the “statistical” correlation has no place in the theory of errors.

Acknowledgement. It is a pleasant duty to thank the reviewers who
indicated some shortcomings both in my own exposition and in my
translations from French and German sources.
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IX

Oscar Sheynin

Poisson and statistics

S.-D. Poisson. Les mathématiques au service de la science.
Palaiseau, 2013. Editor Yvette Kosmann-Schwarzbach

Poisson et la statistique, pp. 357 – 366
Translated from English by Editor

1. General information
Poisson introduced the concepts of random variable and distribution

function. He contributed to limit theorems and brought into use the
law of large numbers proving it for the case of Poisson trials. He
devoted much attention to the study of juridical statistics and
systematically determined the significance of empirical discrepancies
which proved essential for the development of statistics. Poisson
stressed the difference between subjective and objective probabilities.
Cournot (1843) kept to the same attitude and even introduced non-
numerical probabilities. They as well as the subjective probabilities
are being applied as expert estimates.

Arago (1854) discussed Poisson’s work in various branches of
natural science including important issues concerning our Solar
system. Some of those investigations had to be based on statistical
data and their treatment which I did not study.

From my viewpoint, Poisson (1837a) is his main contribution.
Below, I am repeatedly applying the findings of my previous paper
(1978).

2. Statistics
The statistical method is usually understood as applied statistics,

and mostly narrower, as applied to natural sciences rather than to
human populations or activities. Juridical statistics does not therefore
belong to the statistical method, but I am separating it because of its
importance for my subject. Some branches of the statistical method
have specific names, for example, stellar statistics.

Poisson left several statements concerning statistics and its essential
need for the theory of probability. Thus, Quetelet (1869, t. 1, p. 103)
testified that Poisson had parfois derisively expressed himself pour les
statisticiens qui prétendaient subsister leurs fantaisies aux véritables
principes de la science. Somewhat more definite was the
pronouncement (Libri Carruci et al 1834, p. 535): The most sublime
problems of the arithmétique sociale can be only resolved with the
help of the theory of probability.

(les questions les plus élevées d’arithmétique sociale ne pouvaient
être résolues d’une manière complète qu’ù l’aide du calcul des
probabilités.) I only left the French text.

Social arithmetic was a short lived term possibly coined by him that
denoted demography, medical statistics and actuarial science. And,
finally (Double et al 1835, p. 174) with Poisson as co-author:
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La statistique mise en pratique, qui est toujours en définitive le
mécanisme fonctionnant du calcul des probabilités, appelle
nécessairement des masses infinies, un nombre illimité de faits ...

This was likely one of the first pronouncements linking statistics
with a large amount of data.

Since he (1837a) consistently demanded to check the significance
of empirical discrepancies, for example between results of different
series of observations, Poisson, along with Bienaymé, can be called
the Godfather of the Continental direction of statistics (Lexis,
Bortkiewicz, Chuprov, Markov, Bohlmann) that studied population
and social statistics. True, his approach was definitely restricted as it
became apparent in medicine.

His generally known formula (1837a, p. 206)

ω 2e (1 ω ω / 2! ... ω / !)nP n , ω = μp

for an event having probability q = 1 – p ≈ 0 to occur not more than n
times in a large number μ of Bernoulli trials. This formula had been
all but ignored until Bortkiewicz (1898) introduced his law of small
numbers, allegedly a breakthrough extremely important for statistics.
However, in 1954 Kolmogorov had identified it as the Poisson
formula. He did not justify that statement, and I (2008) proved it.

Poisson’s law of large numbers (LLN) is his best known
innovation. The first version of the LLN was due to Jakob Bernoulli
who proved that, given a series of (independent) trials with a constant
probability p of the occurrence of the studied event (of success), the
frequency υ of that success tended to p, and he also estimated the
rapidity of that process. In 1733, De Moivre discovered a new and
much better form of the LLN by proving the first version of the
central limit theorem.

Poisson (1837a) generalized the LLN on the case of variable
probabilities pi of success in different trials although many authors
have reasonably noted that his proof was not rigorous.

There is a lesser known aspect of the LLN. All three scholars,
Bernoulli, De Moivre and Poisson, alleged that their findings were just
as applicable for the inverse case, in which the probability p (or
probabilities pi) was (were) unknown and had to be estimated by the
observed frequency. Even more: Bernoulli and Poisson (1836; 1837a)
thought that even the existence of p (or pi) was not necessary. The
former provided an example of an individual being taken ill by an
infectious disease, Poisson mentioned several such cases such as
stability of the mean sea level, of the mean interval between molecules
of a body, and (1837a, § 59) of the sex ratio at birth.

Nevertheless, it was Bayes (1765) who investigated the inverse
case. In both the direct and inverse cases the behaviour of a centred
and normed random variable was studied, of (υ Eυ)/var υ and
(p Ep)/var p, for any pi, respectively. The concept of variance was
unknown to Bayes, but he proved that var p > var υ which was
reasonable since in the inverse case we have less information. In other
words, for achieving the same precision, the inverse case demanded
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more observations. Bayes had thus completed the first version of the
theory of probability but his finding was only noted by the Editor of
the German translation (1908) of his memoir. Earlier, Chebyshev
(1879/1880, pp. 186 – 192), see also Sheynin (1994, p. 333) repeated
Bayes’ finding but did not cite anyone.

Many authors have stated that statisticians had been happily
justifying their investigations by the LLN. Actually, they only
recognized the LLN for the case of Bernoulli trials, and only when the
probability of the studied event existed and (was constant), otherwise
they refused to turn to the theory of probability at all. Even worse, as a
rule, they only understood the LLN in a loose sense. Thus,
Maciejewski (1911, p. 96) introduced la loi des grands nombres des
statisticiens which only stated that the fluctuations of statistical
numbers decreased as the number of observations increased.

Poisson published a memoir (1830) on the sex ratio m:f at birth. He
noted that it was roughly the same over the whole country and stated
that that ratio was lower for births out of wedlock.

His programme of probability calculus and social arithmetic
(1837b) devoted serious attention to that subject. I quote the
appropriate part of the programme:

Des tables de population et de mortalité. De la durée de la vie
moyenne dans diverses contrées. Partage de la population suivant les
âges et les sexes. De l’influence de la petite vérole, de l’inoculation et
de la vaccine sur la population, et la durée de la vie moyenne.

Inoculation of smallpox meant communicating (a mild form of) the
disease from an ill to a healthy person, not quite safe but very
beneficial when considered for a large number of people. The most
celebrated pertinent statistical study was due to Daniel Bernoulli.
Inoculation was practised before (and somewhat longer than)
vaccination became available.

Statistics of financial institutions can be dealt with separately. It
was also prominently present in the same programme:

Des bénéfices et des charges des établissements qui dépendent de la
probabilité des événements. Des rentes viagères, des tontines, des
caisses d’épargne, des assurances, des annuités, des fonds
d’amortissement, des emprunts.

Tontines were groups of annuitants of about the same age
considered by the entrepreneurs (usually by the appropriate state) as
single entities. A tontine distributed yearly payments among still
living members, and those living long enough came to enjoy quite
considerable moneys. The term stemmed from the name of the Italian
banker Lorenzo Tonti (1630 – 1695).

Many scholars contributed to this subject, suffice it to mention De
Moivre, Euler and Markov. Poisson, however, apparently only
participated in reviewing the desirability of establishing a tontine
(Fourier 1826). The reviewers opposed that proposal and mentioned
the negative properties of tontines.
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2.1. Theory of errors
The stochastic theory of errors is the particular case of the statistical

method as applied to the treatment of observations. From the mid-18th

century to ca. 1930 it remained the main field of application of
probability theory whereas statistics borrowed its principles of
maximum likelihood and least variance.

In 1805, Legendre introduced without justification the principle of
least squares (known to Gauss from 1795) which belongs to the theory
of errors. Gauss provided two substantiations of the method of least
squares, in 1809 and 1823, the second one based on the principle of
least variance, and suited for adjusting a finite (and even small)
number of observations and never publicly acknowledged Legendre’s
priority.

Laplace offered his own version of the method which demanded a
large number of observations and least absolute expectation of error.
The second condition meant that calculations were only possible for
the case of normal distribution, and both demands taken together led
to practical uselessness.

Poisson followed Laplace and never mentioned the Gauss version
partly since French mathematicians had been reasonably angered by
Gauss’ attitude towards Legendre. Here is what he (1833, p. 361)
stated at the funeral of Legendre:

Notre confrère est auteur d’une méthode pour le calcul des orbites
des comètes. [...] C’est à lui qui les sciences d’observation sont
redevables d’une règle de calcul qu’il a nommée Méthode des
moindres carrés des erreurs, et dont Laplace à montré tout avantage
probable sous le rapport de la précision des résultats ...

A wrong and harmful attitude! These words did not appear in the
French translation.

I do not consider the determinate error theory which now ought to
be included in experimental design and with which Poisson did not
deal.

One additional point is interesting. When discussing the precision
of firing, Poisson (1837c, p. 73) stated that the less was the scatter (the
appropriate variance) of hit-points, the better was the gun. He thus
made a step towards recognizing Gauss’ choice of least variance as the
main criterion for adjusting observations according to his mature
version of the method of least squares.

2.2. Juridical statistics
Laplace and Poisson studied the ideal case of independent decisions

reached by jurors; Laplace (1812/1886, p. 523) mentioned this
restriction only in passing, Poisson did not say anything about it.
Unlike Laplace, Poisson introduced the prior probability of the
defendant’s guilt, a magnitude certainly not to be applied in individual
cases. Poisson desired to test the stability of the rate of conviction and
to compare different legal proceedings with a view to minimize the
number of possible unjust verdicts. The issue of independence of the
votes  was here hardly important.
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One of Poisson’s statements (1837a, pp. 375 – 376) is debatable: he
thought that the rate of conviction should increase with crime. At the
same time he (p. 21) recognized that such numbers represented l’état
moral de notre pays. Concerning convictions, Poisson (p. 6) likely
followed Laplace who had stated that accusing an innocent person
should remain more dangerous than that of acquitting a guilty man.
The pertinent findings could have been guiding the establishment of
the proper number of witnesses and jurors etc. That was Gauss’s
statement as reported by W. E. Weber in a letter of 1841 and
published since then (Gauss 1929, pp. 201 – 204).

Quetelet devoted much attention to the same subject; his first
pertinent contributions were published even before those of Poisson,
but in the long run he undoubtedly profited from the very fact that that
outstanding géomètre (like Laplace before him) linked his name with
juridical statistics. Although he did not pursue his work on a
mathematical level, Quetelet was able to make a valuable
contribution.

Nevertheless, the application of probability theory to jurisprudence
had been criticized time and time again. Poinsot, who participated in
the discussion of Poisson (1836), called it, on p. 380, une fausse
application de la science mathématique and unwisely quoted Laplace
(1814/1886, p. XI) who had remarked that the theory of probability
was very delicate.

I say unwisely, because the same Essai philosophique contains a
page (p. LXXVIII) entitled Application du calcul des probabilités aux
sciences morales where Laplace declared that such applications are
the effets inévitables du progrès des lumières. Moreover, the same
Essai contained three chapters devoted to such applications to say
nothing of Laplace’s own work on juridical statistics.

Then, Mill (1843/1886, p. 353) had called the application of
probability to jurisprudence an opprobrium [disgrace] of mathematics.
In 1899, Poincaré (Sheynin 1991, p. 167) appraisingly cited him in
connection with the notorious Dreyfus case. Later he (1896/1912, p.
20) stated that people régissent les uns sur les autres and act like the
moutons de Panurge.

Heyde & Seneta (1977, pp. 28 – 34) devoted some attention to
juridical statistics and noticed, on p. 31, that there was a surge of
activity stimulated by Poisson. Regrettably omitting Cournot and
Quetelet, they described the relevant work of Bienaymé,
Ostrogradsky, Buniakovsky and put on record the recent resurgence of
interest in the application of probability and statistics to jurisprudence
coupled with an increased understanding of the importance of
interpreting background information. True, many authors (Leibniz, in
his letters to Jakob Bernoulli in the very beginning of the 18th century,
Mill, see below) always kept to the same viewpoint concerning the
pertinent circumstances.

Gelfand & Solomon (1973) reviewed Poisson’s study and included
information about the French legal system of his time. They (p. 273)
somewhat softened the issue of the interdependence of jurors:
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There is much evidence [a reference to a source published in 1966 is
provided] to show that immediate voting by jurors before any
deliberation produces essentially the same result as after deliberation.

And they add that the jurors can possibly submit their verdicts by
secret ballot. At the very best, however, there still remains the
interdependence of jurors caused by their likely similar upbringing
and social standing.

2.3. Statistical physics
Poisson qualitatively connected his law of large numbers with the

existence of a stable mean interval between molecules (Gillispie 1963,
p. 438; Sheynin 1978, p. 271). Clausius, Maxwell and Boltzmann
could have well mentioned this opinion as also his important related
considerations, but nothing of the sort actually happened.

2.4. Medical statistics
Is it possible to reconcile the individual approach to a given patient

with an abstract statistical point of view? This question is the same
here as in juridical statistics, and the answer is the same. When
reviewing a contribution at the Paris Academy of Sciences Double et
al (1835, p. 173, 174 and 176) with Poisson as co-author stated:

En matière de statistique, c’est-à-dire dans les divers essais
d’appréciation numérique des faits, le premier soin avant tout c’est de
perdre de vue l’homme pris isolément pour ne le considérer que le
comme une fraction de l’espèce. [...]

En médecine appliquée au contraire, le problème est toujours
individuel [...]

La condition des sciences médicales, à cet égard n’est pas pire,
n’est pas autre que la condition de toutes les sciences physiques et
naturelles, de la jurisprudence, des sciences morales et politiques. etc.

Anyway, the statistical method did gnaw its way into medicine.
First, population statistics was closely connected with medical
problems as it happened in the pioneer work of Graunt. Leibniz busied
himself with demography (Sheynin 1977, p. 225). He did not collect
statistical data but he urged practitioners to record their observations
and he also proposed to compile an encyclopaedia of medical science
and to establish a special Collegium Sanitatis. Halley compiled the
first (after Graunt’s not really reliable finding) mortality table for a
closed population and estimated populations from data on births and
deaths. Daniel Bernoulli, Lambert and Euler studied mortality, birth
rates and sicknesses and their work belongs to the history of
probability and of medicine.

Second, the range of application of the statistical method greatly
widened after the emergence, in the mid-19th century, of public
hygiene (largely a forerunner of ecology) and epidemiology. Third,
about the same time surgery and obstetrics, branches of medicine
proper, yielded to the statistical method.

Fourth and last, in 1825 a French physician P. Louis introduced the
so-called numerical method (actually applied much earlier in various
branches of science) of studying symptoms of various diseases. His
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proposal amounted to the use of the statistical method without
involving stochastic considerations. Discussions about that method
lasted at least a few decades. Thus, d’Amador (1837) attacked Louis
wrongly attributing to him a recommendation to use the theory of
probability.

Gavarret (1840) definitely noted the shortcomings of the numerical
method and introduced two formulas necessary for the application of
probability theory, the formulas for the normal approximation of the
binomial distribution and for the Poisson estimate of the permissible
difference between frequencies of the occurrence of an event in two
series of binomial trials with variable probabilities.

He adduced examples on the use of the second formula and, in
particular, on the comparison of competing methods of medical
treatment as also an advice on the check of the null hypothesis (as it is
now called), see p. 194:

Le premier travail d’un observateur qui constate une différence dans
les résultats de deux longues séries d’observations, consiste donc à
chercher si l’anomalie n’est qu’apparente, ou si elle est réelle et
accuse l’intervention d’une cause perturbatrice; il devra ensuite [...]
chercher à déterminer cette cause.

Thus, apart from popularizing probability theory, Gavarret’s main
achievement was the introduction of the principle of the null
hypothesis and of its check into medicine (actually, in natural science
in general). His contribution became generally known and many
authors repeated his recommendations. The time for mathematical
statistics or for its application in medicine was not yet ripe, but at least
the Poisson – Gavarret tradition led to the existence, in medicine, of a
lasting drive towards the use of probability based on numerous
observations (and the skill of the physician).

Before taking to medicine, Gavarret had graduated from the Ecole
Polytechnique where he studied under Poisson. He (1840, p. XIII)
sincerely acknowledged Poisson’s influence:

Ce n’est qu’après avoir long-temps médité les leçons et les écrits de
l’illustre géomètre, que nous sommes parvenu à saisir toute l’étendue
de cette question [...] de régulariser l’application de la méthode
expérimentale (!) à l’art de guérir.

A large number of observations! However, at least from the mid-
18th century (Bull 1959, p. 227) valuable medical conclusions had
been based on very small numbers of them, but it was Liebermeister
(ca. 1877) who vigorously opposed Gavarret and Poisson. He argued
that it was impossible, in therapeutics, to collect vast observations
and, anyway, recommendations based on several (reliable)
observations should be adopted as well. Statisticians have only quite
recently discovered his paper written as though by a specialist in
mathematical statistics.
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X

Oscar Sheynin

Where are Kolmogorov’s posthumous papers?

Math. Intelligencer, vol. 39, No. 4, 2017, p. 46

In a worthwhile tradition, the Archive of the Russian Academy of
Sciences (RAN) collects and keeps the posthumous papers of the late
Russian academicians. Kolmogorov died in 1987, so I asked the Academy
for permission to look at his papers. I found that the RAN did not have
Kolmogorov’s papers. Staff at their Archive advised me to inquire at the
Archive of Moscow University where Kolmogorov had been a staff
professor.

I twice asked Moscow University for information but did not receive an
answer. So I asked the Presidium of the RAN. An anonymous representative
from the Class of Mathematical Sciences answered that nothing was known
about Komogorov’s papers. Period! As though they were not interested at all
...

A colleague told me that Albert Shiriaev, professor at Moscow University,
perhaps kept those papers. I wrote to Shiriaev but he did not answer. I hope
that some members of the scientific community will write to their Russian
colleagues and ask them to help remedy the situation by providing any
available information regarding Kolmogorov’s papers.
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XI

Oscar Sheynin

On the history of Bayes’s theorem

Math. Scientist, vol. 28, 2003, pp. 37 – 42

Abstract
This paper reconsiders the history of Bayes’s theorem, and analyses

several possibilities with regard to its authorship. The conclusion
reached is that Bayes was the author of the results in the memoir on
the doctrine of chances presented to the Royal Society of London by
his friend Richard Price in 1763 – 1764.

_ 1. Introduction
A few years after Thomas Bayes (1702 – 1761) had died, the Royal

Society of London published his memoir on the doctrine of chances
with additions compiled by Richard Price (in two parts, Bayes (1763)
and Bayes (1764)). This paper considers the recently expressed doubts
about the priority for that theorem, for which, at least for the sake of
convenience, I retain the traditional term Bayes’s theorem. For
biographical information about Bayes and Price, see Pearson (1978,
pp. 355 – 362, 370 – 377), Edwards (1993) and Kruskal (1978).

The memoir is still a source of endless debate. One of the issues is
why Bayes had apparently never attempted to publish it. Being a
perspicacious mathematician, he could well have understood that his
work was not quite perfect (but even so, extremely important). Indeed,
Hald (1998, p. 135) suggests that Bayes was too modest; could it be,
however, that he made known his discovery privately but did not dare
publish it (see § 6)? Two relevant facts are the presumption of prior
ignorance (as in the celebrated problem inserted by Price on the
probability of the next sunrise) and the need for a better estimation of
the integral in the formula (l) below, cf. Hald (1998, pp. 135, 144).

I am unable to answer this question. Note, however, that De Moivre
had for some reason postponed for twelve years the appearance of his
De Moivre – Laplace limit theorem. He mentioned this delay in the
original 1733 Latin text of De Moivre (1756), although he had carried
out all the main algebraic deductions needed for deriving his theorem
in 1730; see [ii, § 3.1].

The debate to which I am now contributing began when Stigler
(1983) quoted a curious statement, see Hartley (1749, pp. 338—339)
and interpreted it as a testimony against Bayes’s priority. After
referring to De Moivre, Hartley wrote, in part:

An ingenious friend has communicated to me a solution of the
inverse problem of determining the probability of an event given the
number of times it happened and failed.

He then specifically mentioned the case of a large number of trials.
Later, Stigler (1986, pp. 98, 132) recalled Hartley (1749) and a

paper of his own, Stigler (1983), but did not definitively repeat his
previous inference. Strangely enough, Stigler (1999) reprinted the
above paper and added a tiny footnote brushing aside any criticism. I
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now begin the main story by describing some findings made by Bayes
and earlier scholars; see also Sheynin (1968; 1971).

2. Bayes’s theorem
Hald (1998, p. 141) noted that John William Lubbock and John

Elliot Drinkwater-Bethune used (1), see below, in 1830 to express the
probability P(b ≤ r ≤ c), which is about to be specified.

Here is Bayes’s reasoning; for a detailed description, see Hald (pp.
133 – 154). Roughly speaking, Bayes considered the fall of an object
on some point r, belonging to a square ABCD, on either side of some
straight line MN parallel to AB and CD and situated between them.
Without loss of generality, assume that AB = 1. All the positions of
MN as well as of the points of fall with respect to AB and CD are
equally probable. Let bc be a segment situated inside AD and suppose
that, after n = p + q trials, the point r occurred p times to the right of
MN and q times to the left of it. Then

P(b ≤ r ≤ c) = 1

0

(1 )
.

(1 )

c
p q

b

p q

x x dx

x x dx
(1)

For the denominator of (1) Bayes obtained

B(p + 1; q + 1) =
1

1
( 1) p

p qq C

and exerted considerable efforts in estimating its numerator. The right-
hand side of (1) is, in modern terms, the difference of two values of
the incomplete beta function:

P(b ≤ r ≤ c) = Ic (p+l; q+l) – Ib(p+l; q+l).

Bayes did not study the case of n →∞ whereas Price, in his
covering letter (see Bayes (1763, p. 135))‚ indicated that De Moivre’s
rules are not pretended to be rigorously exact in the case of a finite n.
Nevertheless, by applying a clever nick, H. T. Timerding, the editor of
the German translation of the Bayes memoir, inserted the limiting
case. He proved that, when estimating the probability that point r is to
the right of MN, then, as n →∞,

limP(b ≤ r ≤ c) = 2 / 2
3/ 2 1/ 2

0

ˆ 1( ) ,
[ / ] 2π

z
xp az z e dx

pq n
(2)

a = p/n = E p̂ , pq/n3/2 = var p̂ , (3)

where the interpretation (3) is my own.
The term Bayes’s theorem is, however, usually understood

otherwise, namely as
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P(A|B) =

1

( ) ( | ) .
( ) ( | )

i i
n

j j
j

P A P B A

P A P B A
(4)

Both the conditions for this formula and the notation used are
generally known. Bayes himself only proved that

P(A|B) = ( ) ,
( )

P AB
P B

a formula known to De Moivre (1756, p. 7).
In this second sense, the term Bayes’s theorem’ originated with

Cournot (1843), who, nevertheless, felt some doubts about its
attribution; see his § 88.

Thus, the term Bayes’s theorem is ambiguous, at least historically
speaking. For me, however, Bayes’s main results are (1) and (2).

3. Jakob Bernoulli, De Moivre and Bayes
3.1. Jakob Bernoulli

Jakob (or Jacob or Jacques) Bernoulli established the
correspondence between the theoretical (p) and the estimated ( p̂ )
probabilities in the limiting case (as the number of Bernoulli trials
increased). The last lines of his unfinished classic Bernoulli (1713, p
265) hinted at a solution of the inverse problem, namely determining p
given p̂ . If all the events are (I would say, if the studied event is)
observed forever, he wrote, probability will become certainty.
Elsewhere (p. 248), Bernoulli expressed a similar opinion concerning
the case of a large finite number of observations. The ratio of the
appropriate chances, he maintained, would then be probably
(wahrscheinlicher Weise) determined.

3.2. De Moivre
De Moivre (1756) determined the probability of the frequency of

the random number μ of successes in n Bernoulli trials. His De Moivre
– Laplace limit theorem might be written as

limP 2 / 2μ 1( ) ,
2π

b
x

a

npa b e dx
npq

as n →∞ (5)

with q = 1 – p, np = Eμ, npq = varμ and where p is the probability of
success in each trial. De Moivre (1756) studied the particular case of p
= 1/2 but he concluded (p. 250) that the general case will be solved
with the same facility. Indeed, the title of his memoir refers
to the binomial (a + b)n, rather than to the binomial (1/2 + 1/2)n.

Laplace (1812, pp. 280 – 286) improved its derivation and, in
addition, considered the case of a large finite n. Neither De Moivre nor
Laplace knew about uniform convergence or variance (introduced by
Gauss in 1823), nor did they distinguish between strict and non-strict
inequalities.
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De Moivre also thought about inverting his theorem. Enlarging on
his memoir of 1733, he (1756, p. 251) mentioned the inverse problem
although did not study it:

Conversely, if from numberless observations we find the Ratio of
the Events to converge to a determinate quantity, … then we conclude
that this Ratio expresses the determinate law according to which the
Event is to happen …

To clarify, instead of Ratio of Events read frequency of the studied
event. De Moivre thus called the implied binomial distribution
determinate; only the empirical deviations from it remained random.
He then went on to discuss natural laws from such a viewpoint.

The same source (De Moivre 1756) contains an Advertisement
(p. xi) inserted by the anonymous editor who stated that the whole
book was finally compiled according to the plan concerted with the
Author, above a year before his death (in 1754).

But when did De Moivre approve the final text of his book? Late in
life, his eyesight failed him (as the anonymous editor testified),
although possibly not completely, and, in general, he withdrew from
scientific work. However, it is still possible that he read Hartley’s
remarkable statement or came to know about it from someone else. If
so, he would have had a personal reason for mentioning the inverse
problem.

3.3. Bayes (addendum to § 2)
The functions on the left-hand sides of both (2) and (5) might at

present be written in the same way as

ξ Eξ
var ξ

where ξ is a random variable. It is remarkable that Bayes apparently
understood that (5) did not adequately describe the inverse problem.
In any case, here again is Price, in Bayes (1763, p. 135)):

I know of no person who has shewn how to deduce the solution of
the converse problem … What Mr De Moivre has done … cannot be
thought sufficient to make the consideration of this point unnecessary.

4. Bayes’s priority is doubted
After drawing on various sources, Stigler (1983) concluded that
1. Hartley had in essence completed the text of his book (Hartley

1749) in 1739;
2. He was well acquainted with Nicholas Saunderson (1682 –

1739), a broad-minded blind mathematician;
3. Both Roger Cotes and De Moivre held a high opinion of

Saunderson, who, in particular, was acquainted with De Moivre’s
1733 memoir;

4. Nothing is known about the possible acquaintance of Bayes with
De Moivre or Hartley.

Stigler inferred that Saunderson was the author of Bayes’s theorem
and, by applying (4), he even found that his conclusion was three
times more probable than the former opinion.

59



However, the prior probabilities of the two hypotheses cannot be
equal, as Stigler assumed. Not only a honest personality like
Saunderson, but almost any pretender will be able to claim equal prior
rights with an established author (or a politician of the past).

It followed that the posterior probabilities of the identity of the
anonymous friend, as assigned by him, are doubtful. For example,
items 2 and 4 led, in his opinion, to favouring Saunderson in the ratio
3:1. Three such posterior considerations provided a single probability
(accidentally) equal, again, to 3:1, and the equality of the prior
probabilities meant that the same ratio in favour of Saunderson
persisted in Stigler’s final answer.

Stigler admits that Bayes could have been, after all, the real author
if only he had read Hartley (1749), but then Bayes would probably
have referred to him. Granted, the circumstances are somewhat
confusing since the introduction to the Bayes memoir is lost; Price
presumably disregarded it and provided instead his own covering
letter. The quotation from it in § 3.3 seems to show, however, that the
notion of the existence of a Bayes’s predecessor, as implied by Stigler,
is hardly justified. [This means that the extra-mathematical arguments
(for example, the evidence of Price, a close friend of Bayes) are not
considered at all. And it is opportune to recall the opinion of Gauss:
applications of the theory of probability can be greatly mistaken if the
essence of the studied object is disregarded.]

5. The ensuing debate
1. Edwards ( 1986) believed that Bayes was indeed acquainted with

Hartley’s statement and that the latter had described de Moivre’s
finding. His conclusion is probably wrong because Hartley mentioned
both De Moivre and somebody else. Recall also (§ 3.2) that De
Moivre only declared that he solved the inverse problem, whereas the
comparison of (5) and (2) is evidence against him.

2. Gillies (1987, p. 329) considered it essential that, after the Bayes
memoir was published, no one complained about loss of priority.
However, both Saunderson and Hartley died before 1764. Gillies also
supposed that Bayes could have been finally prompted to compile (or
conclude?) his work in 1748 by David Hume’s reasoning on the
method of induction in his Enquiry Concerning Human
Understanding. Bayes, as Gillies is prepared to believe, had indicated
his finding to Hartley, who was then able, at the last minute, to
supplement his manuscript accordingly.

3. Dale (1988, p. 358) thinks that the Hartley statement could quite
possibly have influenced Bayes. It seems that he also believes, as
Edwards did, that Hartley bore De Moivre in mind.

4. Hald (1990, p. 400) described the discussion but did not
formulate his own opinion.

5. Dale (1991) described a manuscript and a notebook that,
according to the handwriting, had formerly belonged to one and the
same person (p. 313). He provided arguments (pp. 313, 322) showing
that that person was Bayes, and, on p. 322, he remarked that the
notebook contained the proof of ‘Rule 2’ from the Bayes memoir. For
me, the essential point here is that Bayes had apparently not dated that
proof.

60



6. Hald (1998, p. 132) again referred to the previous authors, and,
without presenting any arguments, concluded that Bayes himself was
the author of the Bayes theorem.

7. Dale (1999, p. 8) repeated (cf. items 1 and 3 above) that Hartley
had thought about de Moivre, but he said nothing about the
authorship;

[Zabell (1975, p. 316) concluded that Stigler’s opinion cannot be
seriously credited. His paper, as I see now, is extremely important and
includes much material unconnected with Bayes.]

6. Conclusion
It remains unknown when Bayes completed his work, but it is

perhaps relevant that he effectively retired from his ministry in 1749,
not later than when Hartley’s book was published. It is possible that
Bayes, being excessively modest (see § 1), then chose to convey (2)
(here and below, I mean the Bayes version of the formula) privately to
Hartley who, as Gillies believes (see item 2 of § 5), was able to insert
a few appropriate lines in his still unpublished book.

In any case, the existence of some predecessor of Bayes seems
unlikely (and, anyway, the proof of (2) is in the Bayes memoir). Bayes
understood that (5) did not properly estimate the studied event, given a
large number of Bernoulli trials; on the other hand, he hardly thought
about deriving (4), and it follows that in this sense the term Bayes’s
theorem is a misnomer.

For Bayes, the importance of (2) could have been evident because,
taken together with the then known elements of the new mathematical
discipline (certainly including (5 )) it amounted to a complete
contemporary doctrine of chances; Even had Bayes proved (4), it
provided nothing comparable.

Acknowledgement. The referee noticed a serious non-mathematical
mistake in a previous version of this paper. His further work was also
helpful.
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Mises on mathematics in Nazi Germany

Historia Scientiarum, vol. 13, No. 2, 2003, pp. 134 – 146

Abstract
I am publishing a manuscript on mathematics in Nazi Germany

surely written by Mises. It is interesting in itself and the more so since
Mises’ political and social activities seem to be completely forgotten.

1. Introduction
1.1 The Source. I am making public a manuscript from the Richard

von Mises (1883 – 1953) papers kept at Harvard University Archives
(Cambridge, Mass.). It is listed in Frank et al (1964, p. 566) as
consisting of 11 typed pages and written in 1934. What follows below,
in § 2, was handwritten on nine pages, undated and signed R. S. Upon
obtaining the manuscript (code HUG 4574.22.5), I asked for an
explanation of the discrepancy, and here, in part, is the answer written
Febr. 14, 2002, by Kyle Carey, Assistant at the Archives:

A search of Mr Mises’ papers did not identify a typed manuscript …
some of the unpublished manuscripts listed [by Frank et al, see above]
are not in the same form as described [by them].

It is difficult to name any appropriate person (a mathematician as
witnessed by the nature of the manuscript, and apparently Mises’
likeminded colleague) who would have thus initialed his note. My
conclusion is that R. S. is not a signature, but stands for Roh Stoff1.
The year, 1934, as stated by Frank et al, seems correct as all the events
described in the manuscript occurred either in 1933 or early in ‘1934.
And its author is Mises himself. I have compared the handwriting of
the manuscript with that of Mises’ handwritten materials, a letter to
Einstein, of 1919 (Bernhardt 1993, pp. 61 – 62), and two notes from
the same Archives (code HUG 4574. 8). Although not an expert in
graphology, I feel that my conclusion is correct2.

I also indicate that Mises remained in Germany at least until the
very end of 1933 (with possible short visits back m 1934). He
renounced his position at Berlin University in October 1933 (see a
photocopy of Mises’ letter of resignation published by Bernhardt
(1993, p. 60). On Dec. 21 of the same year he appealed to the
Kulturministerium for a pension and asked for a speedy decision so
that he die mir [him] angebotene Stelle in der Turkei entgültig
annehmen kann. Siegmund-Schültze (1998, p. 72), who quoted that
document, did not say, however, whether Mises had written it in
Germany or in Turkey.

Then, Begehr (1998, p. 227) states that am 1.1.1934 tritt er [Mises]
seine neue Stelle in Istanbul, a fact confirmed by a private
communication to him (Celebi 2002).

1.2 Gumbel. Since I firmly believe that Mises is indeed the author
of the manuscript in question (of a political pamphlet, as I would say),
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it is not amiss to add a few words about his previous attempts to help
Emil Julius Gumbel (1891 – 1966), a German (later, American)
statistician and active fighter against the rightist movement in his
native country3.

On Jan. 2 1932 Einstein, in a letter to an unknown person (code
50110) wrote that nicht nur seine [Gumbel’s] Position, sondern auch
sein Leben bedroht ist. Gumbel had indeed made many attempts to
find a job outside Germany, both before and after 1932. On May 12
1928 he informed Karl Pearson (Pearson Papers, code 709) that Mises
as proposer will apply for a fellowship for him at the European office
of the then existing International Educational Board so as to secure a
position at the Galton Laboratory. Both Einstein and another German
statistician of Polish ancestry, born and educated in Russia, Ladislaus
von Bortkiewicz (1868 – 1931), also helped Gumbel, but the plan
failed.

Later, on Apr. 22, 1931, a Professor Holde, in a letter to Einstein
(Code 46545), listed several individuals including Mises who were
prepared to support Gumbel by a public Erklärung.

1.3 Differing approaches to mathematics. Hamel (1933; 1934)5,
whom Mises extensively quoted in his manuscript, had attempted to
define the subject of mathematics and to stress its special role in the
Third Reich. When considering his first point, he (1934, p. 12) stated
that Mathematik handelt vornehmlich vom Raum und von der Zahl but
at the same time he (p. 15) emphasized its connection with the spirit:
Mathematik als Lehre vom Geiste, vom Geiste als Tat and declared, on
p. 14, that die Mathematik an sich rein ideell ist ...

It is interesting to compare these statements with the thoughts
formulated by Engels (1877 – 1878, p. 93) and certainly adopted in
the Soviet Union:

Die reine Mathematik hat zum Gegenstand die Raumformen und
Quantitätsverhältnisse der wirklichen Welt dieser Stoff in einer höchst
abstrakten Form erscheint.

Kolmogorov (1977) quoted that definition and enlarged on, and
actually moved away from it by describing how mathematics was
becoming ever more abstract. Definitely lacking in Soviet
mathematics was however the notion of Geist als Tat and the history
of mathematics conclusively proves that quite abstract notions without
any visible applications might well acquire practical importance.

Recent authors tend to underscore ever more the abstract, Platonic
nature of mathematics. Thus, Bochner (1987, p. 522) stated that this
science is a realm of knowledge entirely unto itself. Even Soviet
authors had begun to differ from Engels. Almost agreeing with
Bourbaki in that mathematics is a system of hierarchy or structures,
Youshkevich & Rosenfeld (1972, pp. 475 – 476) diplomatically
concluded:

After all, is it possible or necessary to offer a rigid and frozen
definition of a science that is in a state of permanent lively
development and dialectical interrelation with the entire complex of
other areas of knowledge?6
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It is instructive to note that already Cournot (1847, p. 355), as
noticed by Bru (1991, p. 6), considered mathematics as a science of
the abstract:

Sous le nom collectif de Mathématiques, on désigne un systéme de
connaissances scientifiques, étroitement liées les unes aux autres,
fondées sur des notions qui se trouvent dans tous les esprits, portant
sur des vérités rigoureuses que la raison est capable de découvrir
sans les secours de l’expérience, et qui néanmoins peuvent toujours se
confirmer par l’expérience, dans les limites d’approximation que
1’expérience comporte.

For his part, Hamel stressed the practical importance of the science:
Geist als Tat, see above; and, as Mises saw it (see my § 2), his main
definition of mathematics: In der Mathematik ist Denken und Handeln
eins (p. 12). This meant that applied mathematics (on which Hamel
had indeed mostly dwelt) was much more important than its pure
branch.

1.4 Conditions in Germany. It is hardly known whether Hamel
really believed in his own words. But what was the real situation
concerning pure mathematics in Germany? Gumbel (1937b) did not
say that it had been forgotten. He reviewed the first two issues of
Deutsche Mathematik published in 1936 and edited by Bieberbach and
noted ideological attempts to govern mathematics made by an ewiger
Student as well as postulates of eine neue rassische Geschichte der
Mathematik and an attack against Einstein von einem Heidelberger
Studenten [!]. The work of the great scholar had allegedly been eine
Kampfansage mit dem Ziel der Vernichtung des nordisch-
germanischen Naturgefühls. At the same time, however, Gumbel
remarked that jüdische, sogar emigrierte Mathematiker werden in
Gemütsruhe zitiert, und vielfach wird auf ihren Arbeiten weiter
gebaut7.

Two other authors (Pinl & Fortmüller 1973, p. 138) testified that,
apparently in 1938, there existed an opposition between pure and
applied mathematicians:

Modern algebra was suspect and so was modern quantum
mechanics. At the same time the racialist mathematicians headed by
Bieberbach were pained to see that some of their friends and allies
among the Nordic experimental physicists would have liked to do
away with mathematics altogether.

It is extremely difficult, however, to describe the situation
comprehensively. First, the boundaries between pure and applied
mathematics are fuzzy and change in time. Second (Mehrtens 1986),
from the end of the 19th century onward, the climate of opinion in
Germany had been varying and the emphasis on applied mathematics
was not put for the first time in 1933; for example (Mehrtens 1987, p.
166), in 1926 Bieberbach, as a partisan of a down-to-earth
mathematics, attacked Hilbert. Moreover (Mehrtens 1986, p. 324;
1987, p. 162), even in Nazi Germany much depended on local
conditions and on the power struggle going on between different
branches of the Establishment. One general and hardly original
conclusion is nevertheless possible: under the new regime, science in
general and mathematics in particular had essentially weakened;
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however, Mises’ opinion (see end of his manuscript) proved too
pessimistic. Here are some figures illustrating the first part of my
statement. Up to the end of 1936, 1145 professors and 539 assistants
and others were dismissed from the universities, new wholly
uneducated staff had been installed and students were being admitted
in accord with non-intellectual criteria (Hartshorne 1937 as
reviewed by Gumbel 1938b). Siegmund-Schültze (1998, p. 15)
provided other figures: during 1933 – 1945, there were 980 natural
scientists and technologists among the emigrés, 130 of them
mathematicians. Also see Gumbel (1936; 1937a; 1938a). More to the
point was that (Mehrtens 1987, p. 177) the social system of
mathematics was able to survive with the loss of some 20 – 30% of its
members”. These figures were not, however, substantiated. Hanshorne
(1937, p. 170) provided another estimate, also without justification:
the sheer loss of the scientific manpower amounted to 15 – 20%.

1.5 Conditions in the Soviet Union. There was much in common
in the conditions of life and work for mathematicians in Nazi
Germany and Soviet scientists during the Stalinist period. Litten
(1996) provided an example of a scholar’s tragic life in Germany9 and
Rozhanskaia, in her Foreword to the translation of that paper,
described the situation in her country:

Total shadowing, … especially of those suspected of non-
conformism, the Party spirit in science, … a permanent yoke of the
Party organs, the striking community of tragic fates … fright, leading
to meanness and treachery.

Already in 1921, 15 academics (including Markov) from the
Petrograd University declared that students should be admitted on the
strength of their knowledge rather than in accord with political
considerations (Grodsensky 1987, p. 137). The condemned practice
persisted, however, perhaps not continuously, until the break-up of the
Soviet Union. In the 1920s, vicious attacks against non-complying
mathematicians were successfully launched (Ford 1999). And the
notorious Luzin case is now generally known (Demidov et al 1996).

Way back, an Appeal (Anonymous 1923) protested against the
Soviet murderous and shameful system, the total lack of personal
immunity, and against the execution, or, rather, the murder of
scientists.

I also note that the Soviet regime had for a long time been hostile to
the theory of relativity. A certain Vislobokov (1952) denied it, and a
high ranking Party official (and a petty mathematician) Kolman
(1939) stated that velocities can exceed 300,000 km/sec since the
contrary would have contradicted dialectical materialism. Both these
authors published their papers in leading Party periodicals. About ten
years later, Einstein was denounced as a Zionist. Novikov (1995)
testified that in the 1970s the same attitude had persisted and reflected
the directives of the highest organ of the Communist party; for that
matter, all this could not have happened without the party’s relevant
decisions. The attitude with respect to Einstein, as Novikov states (see
end of Note 9), was shaped in accordance with official antisemitism.

2. The Manuscript
Die Mathematik und das dritte Reich
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Vielfach ist die Ansicht verbreitet, als müsste der
Totalitätsanspruch des national-sozialistischen Geistes doch irgendwo
seine Schranken finden, wenn nicht früher, so doch vor den Pforten
der abstraktesten und objektivsten aller Wissenschaften, die
wahrhaftig keinen Spielraum für politische Extratouren zu bieten
scheint. Aber wer so denkt, rechnet nicht mit dem deutschen
Urphänomen der Maßlosigkeit, die keinerlei Grenzen anerkennt, keine
aber mit solcher Wollust überspringt wie eine, die vom guten
Geschmack gezogen zu sein scheint.

Es soll im folgenden nicht etwa von personellen Maßnahmen im
Sinne des famosen Beamtengesetzes10 die Rede sein, durch die
mindestens ein Drittel der mathematischen Produktivität Deutschlands
über die Reichsgrenzen hinausgeschafft wurde. Hier ist ja nur ein
gewisser Starrsinn wirksam, der zwingt, einen einmal zum Prinzip
erhobenen Akt der Rohheit und Unvernunft auch dort durchzuführen,
wo niemand daran zweifelt, dass er ins eigene Fleisch schneidet.

Auch die Unterordnung der Mathematik durch Rassenkunde
neudeutscher Prägung interessiert uns hier weniger. Es war immerhin
ein Glück, dass es dem Berliner Ordinarius Ludwig Bieberbach noch
gelang, den Titel einer für das Wintersemester angekündigten
Vorlesung über Große deutsche Mathematiker durch den Zusatz vom
Standpunkt der Rassenkunde rechtzeitig (für den Nachtrag des
Vorlesungsverzeichnisses) zu ergänzen.

Aber ganz ungetrübt blieb die Freude nicht, als er sich genötigt sah,
um die Überlegenheit der arischen Rasse zu dokumentieren, mehr als
hundert germanische Leistungen anzuführen, die der Schöpfung der
Mengenlehre durch Georg Cantor gleichwertig sind, oder mehr als
dreihundert einwandfreie Namen zu nennen, die sich mit denen
Jacobis, Kroneckers, Minkowskis messen können. Dass er etwa den
leichteren Ausweg gewählt haben sollte, einiges von den nicht-
arischen Leistungen zu unterschlagen, wird man bei einem Mann nicht
voraussetzen, der sich bis zum 30. Januar11 nicht genug tun konnte,
seine Ablehnung des Nationalsozialismus zu betonen, jetzt aber im
braunen Hemdchen herumläuft, dass es nur so eine Freude ist. Doch
das alles gehört ja heute zu dem rein Menschlichen in Deutschland
und man müsste eher die Ausnahmen – die es immerhin gibt –
registrieren, wenn man damit nicht die wenigen Anständigen ins
Verderben brächte.

Nun aber zu dem eigentlichen Greuelmärchen, das wir heute
erzählen wollen, dem von der Geistesverbundenheit der Mathematik
mit dem Dritten Reich. Am 17. Oktober 1933, 20 Uhr, im Auditorium
Maximum der von Humboldt begründeten Berliner Universität, gab
der frühere Vorsitzende, jetzt Führer des mathematischen
Reichsverbanden, der ordentlicher Professor der Mathematik Georg
Hamel die Parole aus. Seine Ausführungen liegen seit kurzem in einer
von ihm selbst redigierten Veröffentlichung in den Unterrichtsblättern
für Mathematik und Naturwissenschaften vor12. Die Vossische Zeitung
[Anonymous (1933)] hatte in einem unmittelbaren Bericht über die
denkwürdige Versammlung unter dem Titel Mathematik des
faustischen Menschen u.a. erwähnt13, dass die typischen
Unendlichkeitsbegriffe der Mathematik besonders hervorragende
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schöpferisch-faustische Leistungen seien. Das ist nun in der
endgültigen Formulierung für alle Fälle beiseite gelassen, da sich
inzwischen herausgestellt hat, dass der Schöpfer der transfiniten
Zahlen mindestens zwei nicht-arische Großeltern hatte14 dass also
dieser Teil der Unendlichkeitsbegriffe vermutlich zur logisch-
semitischen Seite der Mathematik gehört, die der intuitiv-arischen
diametral gegenübersteht. Hamel gibt sich die größte Mühe, klar zu
machen, was Mathematik eigentlich sei und leisten könne. Keine
Definition könnte treffender sein als diese: In der Mathematik ist
Denken und Handeln eins15. Aber man darf nichts übertreiben:

Der kritische strenge Geist der Mathematik muss und kann sich
selbst die Grenzen setzen. Was einmalig ist, ist außer der Ordnung
und damit frei. Und trägt selbst die Verantwortung vor sich und Gott.

Daraus folgt offenbar, dass man dem Einmaligen, das der
Nationalsozialismus und sein oberster Führer darstellt, nicht
mathematisch beikommen kann.

Aber das weitaus wichtigere ist der Erziehungswert, der aus der
Geistesverbundenheit der Mathematik mit dem Dritten Reiche folgt.
Die Grundhaltung beider ist die Heroische … beide verlangen den
Dienst; ... Beide sind antimaterialistisch … Beide wollen Ordnung,
Disziplin, beide bekämpfen das Chaos, die Willkür … Beide sind
streng, aber nicht kalt.

Offenbar ist die Strenge der semitische, die Wärme der arische
Einschlag. Schließlich mündet des Ganze in den leidenschaftlichen
Appell:

Neben die Lehre vom Blut und vom Boden16 gehört deshalb als
allgemein verbindlich bis ans Ende der Erziehung die Mathematik als
Lehre vom Geiste, vom Geiste als Tat.

Diese hochtönende Schluss reuet dem Kundigen viel. Der
Reichsverband kämpft seit Jahren gegen die Herabsetzung der
Mathematikstunden in den Oberklassen der höheren Schulen.
Während der schmachvollen vierzehn Jahre17 hatte man andere
Argumente, jetzt entdeckt man die Verwandtschaft mit Blubo18, um
die Stundenzahl bis ans Ende der Erziehung, nämlich bis Oberprima,
zu bewahren. Dass ein Mann von wissenschaftlichen Bildung und
einigem persönlichen Anstandsgefühl sich zu solchen Auftreten
hergibt, ist nur aus der grotesken Überspannung der deutschen
Sachlichkeit zu erklären. Wo man sich für ein als nützlich erkanntes,
unpersönliches Ziel einsetzt, ist jedes Kampfmittel, folglich auch das
der tiefsten geistigen Prostitution, erlaubt.

Keinen Anspruch erhebt der Geist des dritten Reiches mit solch
unerschütterlicher Beharrlichkeit wie den, schöpferisch und
schaffend19 in bisher nie geahntem Maße zu sein. Er vermag es,
mindestens sieben Welten an einem Tage zu erschaffen, so den
semitischen Gott weit übertrumpfend, der, offenbar in logisch-
formalistische Fesseln verstrickt, zu einer Welt sieben Tage brauchte.
Da veröffentlicht ein Professor in Darmstadt, Hugo Dingler20‚
Direktor des wissenschaftstheoretischen Instituts der technischen
Hochschule, ein Buch über eines der abstraktesten Gebiete der
Mathematik, die Grundlagen der Geometrie [Dingler 1933]. Der
Verleger (F. Enke in Stuttgart) muss ihn gegen den Verdacht in Schutz

68



nehmen, etwa ein unfruchtbarer Bolschewist von der Art Einsteins zu
sein21. Das sieht so aus:

Das rein formalistisch-rechnerische Denken, welches den Kalkul
nicht als vielfach nützliches Hilfsinstrument, sondern als die Sache
selbst, als das Absolutum betrachtet (Einstein u. a.), und das eine so
starke Analogie zur sinnlosen Verabsolutierung von
Organisationsformen im politischen Bolschewismus (auch in
soziologischer und personeller Richtung) zeigt, wird hier in seiner
vollen Unfruchtbarkeit und Hohlheit nachgewiesen und ihm
gegenüber dem wirklich schaffenden Tun und schöpferischen Denken
des Menschen in der Idee wieder sein volles Recht gegeben.

Diese Verteidigung wird nicht viel helfen; die einzig zugelassene,
parteiamtliche Auffassung über neue schöpferische Werte und über
die Grundlagen der Geometrie ist inzwischen in anderer Weise
festgelegt worden.

Da erfindet ein armer Musiklehrer, dem einige unverdaute Brocken
von mathematischen Schulstoff Beschwerden machen, zum 999000
male eine Quadratur des Kreises. So etwas gibt es immer und überall
und in den Zeiten der Weimarer Republik hatte der oben erwähnte
Professor Bieberbach als Leiter des mathematischen Seminars der
Berliner Universität eine Postkarte drucken lassen, die solche
unglückliche Dilettanten schonend über die Sachlage unterrichtete.
Jetzt aber lebt ein anderer Geist in Deutschland. Der schöpferische
Erfinder hat es überhaupt nicht mehr nötig, für seine Anerkennung
selbst zu kämpfen, die Mühe wird ihm von der zuständigen Stelle
abgenommen. Wir lesen am 7. März in der Kurhessischen
Landeszeitung die folgende, auch sprachlich wertvolle
Verlautbarung22:

Durch die Kurhessische Landeszeitung, gibt der Leiter des
Kampfbundes für deutsche Kultur, Max Köhler, der Öffentlichkeit
folgendes Forschungsergebnis von Willi Oberle, Kassel-
Niederzwehren, bekannt, das besagt, dass dieser durch die
Musikgeometrie zur Lösung der Quadratur des Kreises gelangt ist:

Dem Musikforscher, … Mitarbeiter des Kampfbundes für deutsche
Kultur, Landesleitung Kurhessen, ist es gelungen, aus den
Ergebnissen seiner Forschungen auf dem Gebiete der Musikgeometrie
die Quadratur des Kreises aufzudecken. Außerdem ...

Nun folgt ein langer Bericht, unterbrochen von schreienden
Zwischentiteln wie Forschungserfolg von unaussprechlicher
Bedeutung u. ähnl.

Aber selbst im dritten Reich finden sich noch Leute, die den Mut
aufbringen, gegen den äußersten Unfug, den der Schandbund der
deutschen Kultur hervorbringt, aufzutreten. Ein Einsender, der sich
einen Rest von Studienkenntnissen bewahrt hat, klärt in bescheidener
Form darüber auf, dass zum mindesten seit den Arbeiten des
Mathematikers [Ferdinand] Lindemann vom Jahre 1882 jeder Zweifel
an der Unmöglichkeit einer Quadratur des Kreises mittels Zirkel und
Lineal geschwunden ist. Er weist nach, dass die Oberlesche
Lösung darauf hinauskommt, den Kreisumfang dem dreifachen
Durchmesser des Kreises gleichzusetzen. Um seine Zuschrift
aufnahmefähig zu machen, fügt er hinzu, dass die schlechteste
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Näherungslösung des Problems von den Juden herrührt: in einer
Beschreibung des Salomonischen Tempels wird nämlich erwähnt,
dass ein Becken 10 Ellen Durchmesser und 30 Ellen Umfang habe23,
also das, was zweitausend Jahre später den höchsten Triumph
nationalsozialistischer Forschung begründet. Doch mit dem
Kampfbund ist nicht zu spaßen.

Schon am 10. März wird der vorlaute Einsender vernichtend
geschlagen; die parteiamtlich zuständige, maßgebende Stelle spricht:

Der Landesleiter … hat die Verurteilung der Oberleschen
Erkenntnisse wahrgenommen, um sich grundsätzlich … wie folgt
auszusprechen: … Jedes Gesetz ist stets auf intuitivem Wege, d. h. auf
dem Wege einer seelisch-geistigen Schau entdeckt worden niemals,
aber niemals errechnet oder konstruiert. …

Zu Sache selbst sei kurz bemerkt, dass die noch herrschende exakte
Wissenschaft liberalistischer Herkunft24 am allerletzten dazu berufen
ist, ausschlaggebende Stellung zu nehmen zu neuen schöpferischen
Werten, die heute in umgeahnter Fälle im Schoße des jungen Dritten
Reiches der Auferstehung harren, weil der schöpferische Begriff
nationalsozialistischer Weltanschauung die Polarität von Seele und
Vernunft bedeutet, was aber bekanntlich die exakte Wissenschaft
liberalistischer Prägung ablehnt, und damit sehr richtig und
konsequent durch Professor Lindemann 1882 die Unmöglichkeit
erklärte, durch Errechnung der Quadratur des Kreises beizukommen
und damit die Lösung des Problems aus dem Aufgabenkreis der
Wissenschaft liberalistischer Prägung endgültig ausstieß. Der
Bankerott der liberalistischen Wissenschaft ist hiermit schon damals
ganz exakt ausgesprochen worden … Max Kohler25 , Leiter des
Kampfbundes für deutsche Kultur, Gau Kurhessen.

Noch gibt es in Deutschland viele Gelehrte, selbst unter den
Anhängern des Dritten Reiches, denen dieses offizielle Dokument der
Geistverbundenheit die Schamröte ins Gesicht treibt. Vielleicht wird
sogar den Führer des Reichsverbandes26 ein Zweifel darüber
beschleichen, ob es ganz das Richtige war, öffentlich zu verkünden,
dass die vollkommene Logisierung der Mathematik nicht möglich ist,
und unter Berufung auf Blut und Boden den frei-schöpferischen
Menschengeist zur Tat aufzurufen. Aber die, die heute Professoren der
Mathematik sind, haben alle noch im Zeitalter der liberalistischen
Wissenschaft ihre Ausbildung erhalten und daraus eine Geisteshaltung
bezogen, die sich nicht ganz verleugnen lässt. Vom kommenden
Herbst an wird kaum noch ein Student die Universität betreten, der
nicht sichere Gewähr dafür bietet, dass er den geistigen
Anforderungen des Kampfbundes für deutsche Kultur genügt. Die
Ausfüllung der Studienzeit durch Wehrsport, die Ausschaltung eines
großen Teiles der besten Universitätslehrer werden das übrige tun. So
kann man sicher sein, dass die Nation, die zur Zeit ihrer
liberalistischen Verirrung in Carl Friedrich Gauss den princeps
mathematicorum hervorgebracht hat, recht bald keine anderen
Mathematiker besitzen wird als solche, die Mathematik in enger
Geistverbundenheit mit dem Dritten Reich betreiben und noch ganz
andere Blamagen als die Quadratur des Kreises mittels der
Musikgeometrie in die Welt herausschreien werden”. R. S.
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Notes
1. Although the correct spelling is of course Rohstoff, a single word. Then, I can
hardly rule out that the letters R and S indicated Richard Mises.
2. These notes are undated; one is in English, the other one, entitled R. Carnap.
Logische Syntax der Sprache. [Springer,] Wien, 1934, is in German and English.
The only difference in the way of writing between the document of 1919 and the
manuscript concerns the capital a, but the same difference exists also between the
former and the German text of the note on Carnap’s book.
3. I published a booklet (Sheynin 2003) on Gumbel’s impressions of the Soviet
Union and based on archival sources kept at the Albert Einstein Archives, Hebrew
University of Jerusalem, and on the Pearson Papers from the University College
London. I quote several passages from my booklet and, as before, provide the
appropriate codes.
4. Bortkiewicz was also instrumental in securing Gumbel, in 1924, a position at
Heidelberg (letter of an eminent economist Lederer to Einstein of 27.1 1.1930, Code
46522).
5. Georg Hamel (1877 – 1954). Sisma (2002) described his previous sympathetic
attitude towards Mises. Below, Ludwig Bieberbach (1886 – 1982) and Erhard
Tornier (l894 – l982) are also mentioned. The latter was a card- carrying Nazi. In
1939 he was relieved of his post because of unbecoming behaviour (possibly caused
by bad psychological health), see Hochkirchen (1998).
6. Youshkevitch (1994, p. 13) repeated that he was unable to define mathematics. He
also noted that Kolmogorov had understood the insufficiency of the Engels formula
and attempted to stretch it. In a milder form, the last-mentioned statement appeared
much earlier (Youshkevitch 1983, p. 387).
7. I adduce the exact references lacking in Gumbel’s note; their order follows my
exposition. The Heidelberg student, Kubach (1936); Türing (1936), who also
opposed Einstein to Kepler and Newton; Schönhardt (1936), who referred to Jewish
mathematicians. In Note 23 I mention Tornier from the same source.
8. David Hilbert stated, in 1934, that, after that, the Mathematical Institute at
Göttingen became non-existent, see for example Fraenkel ( 1967, p. 159). I did not
find a reference to a witness of Hilbert’s oral utterance.
9. She had not mentioned the official antisemitism in the Soviet Union, never openly
acknowledged by the authorities. Describing the situation there after 1945, Novikov
(1995) testified:

With stealing [of state property] and corruption occupying the leading role in the
basic Party line, antisemitism had advanced to the second place there.
10. This is a reference to the law of 7.4.1933 called Zur Wiederherstellung des
Berufsbearntentums (Hattenhauer 1993, p. 408) . On his next page the same author
says that with some exceptions the law stipulate the Versetzung in den Ruhestand für
solche Beamten von die nicht arischer Abstammung waren. Then, however, he (p.
410) added: Eine Ausnahmeregelung für hervorragende jüdische Wissenschaftler
kam dagegen entgegen ursprünglichen Plänen nicht zustande.

The professorial staff, and, from 6.5.1933, even the Privatdozenten, die nicht
beamtet waren (Siegmund-Schültze 1998, p. 57), was thus included in the
Beamtentum and the number of scholars relieved of their position was indeed great
(§ 1.3). Being a Jew, Mises, however, was not (yet) involved (he participated-in the
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world war), but he reasonably chose to renounce his position and emigrate to
Turkey.

A tiny episode (Sheynin 2001, p. 228, based on archival sources), as though
crowning the general picture, might be described. Bortkiewicz, Professor at Berlin
University (cf. § 1.2), doubled at the Berlin Handelshochschule. In 1938 his portrait
disappeared from the School’s Hörsaal. The Secretariat suspected that it von einem
Unbefugten in der irrtümlichen Annahme, Herr von Bortkiewicz sei nicht
deutschblutig gewesen, entfernt worden ist. A lame explanation!
11. On Jan. 30 1933 Hitler came to power.
12. Hamel (1933). Hamel (1934), without reference to 1933, is its somewhat
expanded version, an ausführliche Wiedergabe des Vortrags … auf der Berliner
Kundgebung des Deutschen Vereins zur Förderung des mathematischen und
naturwissenschaftlichen Unterrichts, as stated in a note on its p. 10. The essence of
the changes made in the previous version becomes obvious when comparing the
titles of both papers with each other.
13. Both Hamel (1934, p. 11) and the anonymous author mentioned Spengler’ s
Mathematik des Faustischen Menschen. Oswald Spengler (1880 – 1936) enumerated
eight cultures, and among them the Faustian, or Western European culture. He was
close to Nazism, and the new regime adopted his ideas, but he refused to collaborate
with it (Averintsev 1982). Petropoulus (2000, p. 4) stated that a Faustian bargain
was something immoral or amoral leading to self-advancement.
14. The first grandfather was obviously Georg Cantor. Later appropriate scientists
of the 19th century were perhaps E. Borel (in 1895) and R. L. Blaire (in 1898), see
Medvedev (1965, p. 127).
15. This quotation as well as a few others below are from Hamel (1933). I mention
some passages from the same source in § 1.3.
16. The Nazi regime inaugurated a new farm program accompanied by much
sentimental propaganda about Blut und Boden (Blood and Soil) and the peasant’s
being the salt of the earth and the chief hope of the Third Reich (Shirer 1990, p.
257). The slogan Blut und Boden first appeared in 1930 (Eidenbenz 1993, p. 3).
17. The years of the Weimar Republic: after World War I and until 1933.
18. Blubo was apparently an abbreviation of Blut und Boden, see Note 16.
19. Unlike the previous underscored expressions, this one is not in inverted commas,
and neither had it, or the frei-schöpferischen Menschengeist (below), occurred in
Hamel (1933).
20. Incidentally, he was the author of a study of the history of Jewish culture (1919).
Already in 1911 he published his Grundlagen der angewandten Geometrie
(mentioned on p. 144 in 1919).
21. For a Nazi follower (real or sham), Bolshevism, twice mentioned, being a
dictatorship of a single party, and even of its leaders, should not have been at all
meaningless. On the contrary, for such authors the adjective fruitless, when applied
to Einstein, was quite proper.
22. Mises had not provided the appropriate year. Its knowledge is important for
dating his manuscript and I have attempted to ascertain it. Here are my findings.
a) Until November 1933 the newspaper Kurhessische Landeszeitung was called
Hessische Volkswacht.
b) Its issues for 7 – 10 March 1933 do not carry the materials described by Mises.
c) The issues for the same dates (7 – 10 March) of 1934 are not extant in any library.
d) Again, the appropriate dates of the Kurhessische Landeszei tung (subtitle:
Hessische Volkswacht) for 1935 do not contain the pertinent materials.

I conclude that Mises had in mind the year 1934. For items a) and c) I am
indebted to Frau Dr. Bärbel Schäfer, Universitätsbibliothek Marburg (her letter of
21.10.2002). I also note that, since Mises had mentioned only the year 1933 (in the
beginning of his manuscript), he thus mistakenly led his readers to believe that all
the events he described had occurred during that year.
23. Loewy (1935, p. 224) provided the exact references (3Kings 7:23 and 2Chr 4:2).
He (pp. 224 – 225) argued that what was actually meant there was the ratio of the
diameter to the side of an inscribed regular hexagon.
24. Wissenschaft liberalistischer Herkunft or Prägung, or (below) liberalistische
Wissenschaft: I note that Tornier (1936) denounced the jüdisch-liberalistische
Vernebelung of mathematics. He applied the same adjective three times more
connecting it with Denken, These, and Illusionstechnik.
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25. Above, Mises called him Köhler.
26. That is, Hamel, see above.
27. A similar episode occurred in the Soviet Union about 1928. Groman, a leading
official, attempted to predict the yield of cereals, which he assumed random, given
its previous values. This was not better than squaring the circle, but in 1929 his
prediction somehow came true. Then, in 1930, it failed, and, unlike the
Musiklehrer, he perished after being arrested. See Sheynin (1998, p. 533, Note 4).
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XIII

A.Ya. Khinchin

R. Mises’ frequentist theory
and the modern concepts of the theory of probability1

Voprosy Filosopfii, No. 1, 1961, pp. 92 – 102, No. 23, pp. 77 – 89
Posthumous paper published by B. V. Gnedenko

Translated by Oscar Sheynin, notes by R. Siegmund-Schültze

Foreword by B. V. Gnedenko
The paper presented here was written as early as sometime between

1939 and 19442 by the eminent mathematician Aleksandr Yakovlevich
Khinchin, who is well known for his contributions to the theory of
probability, statistical physics, number theory, and theory of functions.
For reasons unknown to me, it remained unpublished, although I
remember that Khinchin had submitted it to the periodical Uspekhi
matematicheskikh nauk.3 After he died, while I was putting in order
his scientific and literary heritage, I recalled this work and began
looking for it. Regrettably, I was unable to find any copies of a final
version and the editorial office of Uspekhi did not have any record of
the article. So I decided to make use of a copy that had been retyped in
1946 by my students, E. L. Rvacheva and D. G. Meyzler,4 even
though it had some lacunae. I am convinced that even in this state,
Khinchin’s work is of considerable interest.

Indeed, year after year, methods relating to the theory of probability
are gaining importance in various fields of knowledge. Therefore,
ascertaining the nature of random events, and discovering an approach
for defining the fundamental concept, the probability of a random
event, is an important matter. The concepts of Mises, outwardly
attractive and convincing at first sight, continue to find many
supporters, especially among members of schools of thought outside
mathematical research.

Therefore, a logical and philosophical analysis of these ideas should
still be considered topical today. This is especially true since Mises’
original methodological viewpoints are all retained without
modification in the comparatively recent (already posthumous)
English edition of his well-known book, Probability, Statistics, and
Truth (London 1957).

The publication of Khinchin’s paper shows once again the need for
Soviet mathematicians and philosophers to work out and develop their
opinions on the nature of probability, and on the interrelation between
the theory of probability and the world of real phenomena. The time
for this is ripe, and Khinchin’s paper can serve as an appropriate
starting point for such a debate. In fact, when it was read aloud and
discussed at two joint meetings of the philosophical seminar and the
seminar on the history of mathematics at Moscow State University, it
was decided unanimously that the paper should be published. I have
just added a few notes in order to facilitate its reading; in addition, I
adduce a short description of Khinchin’s work in the field of the
modern theory of probability.
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Aleksandr Yakovlevich Khinchin (1894 – 1959) is deservedly
considered one of the founders of modern probability theory. His
name is connected with the important period when the set-theoretic
approach to constructing the foundations of probability theory was
developed. He is also remembered for establishing the basis for the
general theory of stationary random processes5. These subjects were
part of a wider programme that he conceived for ascertaining the role
of statistical regularities in various fields of mathematics and the
natural sciences. This methodological viewpoint stimulated his
research in the metric theory of numbers, in statistical physics, in the
summing of independent random variables and queueing theory (in
these [two] last-mentioned fields he was directly connected with
practical telephony) and, during the last period of his life, in problems
concerning the transmission of information.

It was of course impossible to carry out this program without
discussing problems of a philosophical nature; the logic of the
development of science inevitably compelled this great scientist to
investigate them. And, indeed, Khinchin invariably turned to the
philosophical interpretation of the central problems of probability
theory and its applications to the natural sciences. He discussed this
subject in special philosophical articles and in monographs devoted to
solving concrete mathematical problems, as well as in his lectures to
students and his talks in seminars on methodology.

Khinchin was among those Soviet scientists who take a systematic
interest in the methodology of their science and stand firmly on the
ground of dialectical materialism while solving burning philosophical
problems of modern natural science. He repeatedly expounded his
viewpoint in print and also in talks and in seminars on methodology.
L. E. Maistrov6 reminded me of one of these talks, which Khinchin
gave in 1951 at the methodological seminar of the V. A. Steklov
Mathematical Institute, where he sharply criticized idealistic
conceptions in the modern theory of probability. In Khinchin’s papers
a notebook is preserved with the handwritten title On some idealistic
tendencies in probability theory, where he registered his fragmentary
ideas on that topic.

For more than forty years, Khinchin was connected with Moscow
University as a student, post-graduate, and professor. In 1939 he was
elected Corresponding Member of the Academy of Sciences of the
USSR. Since 1944, when the Academy of Pedagogic Sciences of the
Russian Federation was established, he was a full member and acted
as a member of its presidium.

The main text7

Introduction
About twenty years ago, the German scholar Richard von Mises

began criticizing the generally accepted foundations of the theory of
probability.8 His sharp criticism appeared consistently in the pages of
mathematical and philosophical periodicals. At the same time he
offered his own, new basis for this science, which he still tirelessly
continues to advocate in mathematical and philosophical articles, in
popular monographs,9 and in his well-known course on the theory of
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probability.10 His so-called frequentist theory of probability found a
large number of followers among mathematicians and especially
among representatives of natural and applied sciences, in particular,
physicists.

The literature devoted to the problems of probability theory is
immense and discussions are heated; in a word, the frequentist theory
became so essential for the life of the modern doctrine of probability
that every representative of our science feels obliged to adopt some
definite stand with respect to it. It is already becoming impossible to
ignore or disregard the frequentist theory, or brush it aside.

Nevertheless, we still do not know of any attempt to analyse
critically and exhaustively the role of his theory in the historical
development of our science and its place within an array of different
attempts at founding the theory of probability.11

It is typical that the most authoritative proponents of the modern
probabilistic ideas (Bernstein and Kolmogorov in the USSR, Borel,
Lévy and Fréchet in France, Cantelli and Finetti in Italy, Cramér in
Sweden, and others) have hardly ever expressed their views on this
problem.12 The overwhelming majority of the relevant statements are
made either by second-rate specialists13 or by philosophers and
physicists. In addition, these statements are almost always of a rather
particular kind: they discuss this or that isolated feature, criticize a
specific proposition, and suggest this or that change or improvement.
A scornful, and almost ironic attitude prevails among mathematicians
with respect to the frequentist theory. In private talks you will almost
always hear that, undoubtedly, not everything is in order with it, that it
suffers from incurable logical flaws, and that, from the mathematical
point of view, it therefore cannot even be seriously approached. A
physicist will usually object by stating that, even if this were true, it is
the business and the duty of mathematicians to remove these formal
defects; and that it is inadmissible to reject on principle, because of its
inherent temporary and purely formal imperfections, this theory which
so brilliantly conforms to the essence and requirements of scientific
practice.

However, the broader questions, such as, whether the frequentist
theory truly meets the requirements of the applied sciences better than
all the other theories? and if so, why? or what are the theory’s formal
imperfections? These wider questions have never been considered in
sufficient generality and completeness. Almost always the discussion
has been restricted in a polemical way to some isolated features. It is
interesting to note that in this polemic, the so-called classical theory of
probability based on considering equally possible cases, against which
the main accusations made by the adepts of the frequentist theory and
Mises himself were and are directed, was hardly defended by
anybody. Were it not that the classical conception still occupies a
prominent place in textbook literature lagging considerably behind
modern science, it could have been said that Mises, who even in 1936
continued his vigorous attacks against it,14 had in essence been forcing
an open door.

We must concede that in the current fight between the partisans of
the frequentist theory and its opponents, the former have one obvious
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advantage: they at least are proposing something positive,15 whereas
their opponents, while pouncing on these proposals and noting the
single shortcomings thereof, are as a rule unable to put forth
suggestions of their own. How did this situation arise? We believe that
until now the cause was that the development of the theory of
probability has been considerably lagging behind other mathematical
sciences. As a rule, a mathematical discipline begins an analysis of its
foundations only after it has reached a certain scientific maturity. For
probability theory, this moment occurred only in the most recent
years; only lately has the theory firmly realized its place among the
other disciplines of mathematics, its specific features, and its own
scientific procedure. And only from the summit that it has presently
attained can the broad and distinct picture of the development and the
modern state of the theory of probability be grasped. Only now within
this picture can the status of the frequentist theory be perceived with
full clarity. Thus it becomes understandable why ten, or even five
years ago, the most thoughtful representatives of our science had
abstained from expounding in detail their views on the problems
posed around the frequentist theory, and why the opponents of this
doctrine were unable to counterbalance it with some sufficiently
substantiated positive suggestions.

In particular, the author of these lines has to admit that in the light
of our present-day level of the doctrine of probability, his critical
paper written several years ago16 and devoted to the frequentist theory,
should be judged as unsatisfactory17 even though some of the
propositions defended there remain true.

The considerations put forth above compel us to believe that the
time has come for a comprehensive critical elucidation both of the role
of the frequentist theory and of its place in science. Nowadays the
theory of probability is already shaped to such an extent, and has
assimilated its logical grounds to such a degree, that this critical
interpretation may be undertaken not from the subjective point of view
of some scholar, as it was necessarily done several years ago, but from
the objective and principled position firmly secured by our science
during these last years. Our paper is mostly devoted to this purpose;
our critical analysis is all the more topical since exactly this year the
founder of the firequentist theory, Richard von Mises, has published a
detailed survey18 of the main objections and additions to it along with
an exposition of his own thorough answers to them.

1. The Merits of the frequentist theory
We begin by ascertaining some of the most important merits of the

frequentist theory not in order to follow the traditional maxim, First
the achievements, then the shortcomings, but solely because it is by
way of those merits easiest to acquaint the reader with the historical
situation in which this theory was set up and developed.

In the first of his works, Mises some twenty years ago raised the
alarm in connection with the scandalously unhappy situation
concerning the foundations of the theory of probability. This single
fact already constitutes an historical merit of such importance that one
can forgive much. In those days the old system of principles, adopted
without changes from Laplace, completely dominated all handbooks
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and treatises on probability; there is no doubt that its unfitness, its
incompatibility with the level to which the mathematical science had
arisen since Laplace’s lifetime, were very visible to every thinking
researcher. It was even possible to encounter, now and then, isolated
and incidental pertinent statements; and yet, each author, while
beginning his treatise, invariably spoke about equally possible and
favourable cases, thereafter attempted to leave this annoying subject
as soon as possible and to pass on to the subsequent calm course of the
theory concealing no more reefs. In those days, the theory of
probability instinctively turned its back on and avoided an unbiased
and relentlessly critical revision of its foundations. Such a situation
was conditioned, as it always is, by the theory’s insufficient [logical
perfection].19 On the other hand, however, it became ever less
tolerable in the face of all the other mathematical sciences that
persistently worked on revising and rebuilding their foundations.

Of course, one could nevertheless not content oneself with merely
disclosing the trouble indicated above, even by raising a vigorous and
permanent alarm. And Mises, even in his first articles, did not restrict
himself in this way. In order to establish a firm basis for the theory of
probability, i.e. to lay a foundation that would make it a worthy
member of the family of modern mathematical disciplines, it was first
necessary to describe with absolute clarity all the shortcomings of the
existing system for founding probability, and to show, convincingly,
excluding any doubt, that no satisfactory foundations could be
construed along the old lines. In a series of investigations, Mises
accomplished this task with an exhaustive completeness, and here lies
the second substantial merit of his doctrine. Many authors had
indicated, even before Mises did, that the definition of probability by
means of equally possible (i.e. in essence, equally probable) cases,
amounted to a certain extent to an empty tautology. But, as Mises
absolutely correctly states, this is the most harmless among the sins of
the classical idea; moreover, in a certain sense, it can even be
justified.20 We may consider this definition as a reduction of the
problem of finding a quantitative measure of probability in the general
case, to a preceding notion of equiprobability of events; the vicious
circle thus disappears and the definition itself acquires some scientific
meaning.

Mises was the first to reveal, systematically and convincingly, the
more essential flaws in the classical notion of probability, which are
much more difficult to get rid of. The first, and the main one of these
defects is the extremely restricted sphere of application. Having
originated and been developed due to games of chance and
simplest insurance operations, the old theory of probability had built
for itself a basis fit to a certain degree for treating these simplest
problems; however, once the sphere of its problems had extended in
connection with the requirements of the physical and the social
statistics, and later on, of biology and technology, the initially adopted
foundations became too narrow. In problems reaching beyond the
realm of games of chance, those equally possible cases, without which
the classical concept cannot even speak about probabilities, just do not
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exist. Mises’ celebrated example of an irregular die is unsurpassed in
validity and simplicity of argumentation.

Moreover, Mises was the first to show, systematically and
convincingly, the inaptitude of the classical basis for forecasting the
real course of phenomena. He absolutely correctly indicates that,
without new special assumptions, the conclusions of the theory
of probability, built on the classical definition of its main notions,
offer in essence no grounds for any, even the most unpretentious
opinion about how the pertinent real processes should go on. Imagine
for example twenty throws of a regular coin. For conclusions
concerning the real course of this process, an additional definition of
the concept of equipossibility, connecting it with experiment, is
required, but the classical idea of probability is unable to provide it.
Consequently, new principles, not following with logical rigour from
the definitions of the main concepts, are needed for applying the
classical theory practically. We see thus that the author of the
frequentist theory has the important historical merit of consistently
exposing a number of fundamental defects of, and unsubstantiated
claims made by the classical doctrine of probability. Along with this
negative, so to say, merit, it is necessary to credit him now for his
most important constructive achievement. No matter how we assess
the frequentist theory and its future possibilities, we must admit that
exactly its main principles reflected, for the first time ever, the opinion
playing a basic role in the modern probabilistic outlook: the opinion,
namely, that the theory of probability is a doctrine of mass
phenomena. Of course, it was well known even before Mises that
mass processes constitute the sphere of application of probability; yet,
the demand that this feature of probabilistic teachings be represented
already in their first principles, that all their formalism should be set
forth in this spirit, – this demand was first put forward and carried out
only within the frequentist theory.21

Being abstract, any mathematical theory must of necessity draw
itself away from some properties of the studied objects. However, the
classical conception of the theory of probability attempted to
segregate its main principles not from statistical populations or
recurring processes, which represent the true subject matter of its
study, but from the specific properties of isolated objects participating
in these processes. On the contrary, modern ideas recognize the very
notion of probability as meaningful only in connection with mass
phenomena, and therefore consider it desirable that this feature play
the main part also and already in laying down the foundations of
probability theory. As we have already remarked, this demand was
first distinctly formulated and carried out precisely within the
frequentist theory.

When speaking about probability, the physicist, biologist,
technician or social statistician invariably has in mind some relative
frequency. Furthermore, even a mathematician, during those special
moments of his work when, interrupting the chain of formal
deductions, he is compelled to turn his intuition to the material content
of his concepts, – even he is in most cases apt to imagine each
probability exactly as relative frequency. This does not at all mean

81



that probability as a concept of a mathematical theory should include
in itself all the totality of the properties and features peculiar to real
frequencies; not even the frequentist theory does so. It only means that
the theory of probability ought to be a sufficiently precise, formal
image (hence an image gained by way of abstraction) of that structure,
of those possibilities that take place in the world of real frequencies.

It is precisely this thesis whose necessity is recognized by all
modern probabilistic schools regardless of their specific orientation
that also constitutes the foundation of the frequentist theory. It was
first formulated by this theory and we ought to recognize this fact as
one of the theory’s most important merits. We shall see below that
Mises’ doctrine considerably diverged from the main direction of
development of the modern theory of probability in its opinion on an
expedient realization of the demand contained in that thesis, i.e., on
how and to what extent the abstraction and formalization should be
carried out. This, however, should not obscure the cardinal fact that
the credit both of formulating this demand and of being the first in
attempting to carry it out, doubtless completely belongs to the
frequentist theory.

2. A Natural-scientific or a mathematical discipline?
The fundamental divergent paths that exist between the frequentist

theory and the predominant direction of the modern theory of
probability are very deeply rooted. In the first place, they are caused
by the unremovable paths in the opinions concerning the theory of
probability as a scientific discipline. We must attentively dwell on
these differences because, without completely ascertaining them, the
role or the situation of the frequentist theory in the modern doctrines
of probability cannot at all be determined with sufficient clarity.

For Mises’ school, the theory of probability is a natural-scientific
discipline22 which widely uses mathematical methods. Mises
persistently defends this thesis against two other fundamental
viewpoints that differ absolutely from one another. On the one hand,
being in a philosophical sense a consistent positivist of a Machian23

persuasion, he struggles against the aprioristic, metaphysical approach
of the classical theory. This campaign, no matter how interesting and
instructive it was in itself, cannot be elucidated in our study since it
was directed against the past, whereas we are concerned, first and
foremost, with the distinction between the frequentist theory and
modern progressive ideas. The main antagonism can be formulated
quite simply. Contrary to Mises’ main thesis, according to which the
theory of probability is a discipline of the natural sciences, the modern
theory has defined itself as a branch of mathematics. This basic
discord determines in a decisive and, moreover, in an almost
exhaustive manner all the subsequent concrete discrepancies, which
we discuss below. Let us pay attention to this point.

As we see, the main criterion by which to distinguish a natural-
scientific from a mathematical discipline consists in the typical
manner of defining the respective field of research. Each natural-
scientific discipline is determined by the material specificity of its
subject matter, by the real features of the studied domain of the
existing world. It is in this way only that physics, biology, and
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psychology define their subject matter. One and the same subject
matter can be studied by very different methods, mathematical ones
included; however, when passing from one method to another one, we
always remain within the boundaries of the given (natural-scientific)
discipline since its main specific feature is its subject matter as it
exists in reality rather than the method of its study. (Examples:
phenomenological and statistical thermodynamics [remaining within]
the mechanical theory of heat; the corpuscular and the electromagnetic
theories of light, the quantum theory of light [are all] theories of light.)

In contradistinction, the determining indicator of any mathematical
discipline is always some formal method potentially admitting most
various material realizations and, consequently, also practical
applications. Whether or not some subject matter, some phenomenon
of the world in reality can be studied by means of a given
mathematical method, is determined not by the concrete material
nature of this subject matter or this phenomenon, but exclusively by
their formal structural properties and, above all, by those quantitative
relations and spatial forms (Engels)24 in which they live or proceed.
(One example: the method of differential equations in physics,
chemistry, and biology; because for its applicability it is sufficient that
there exist two continuously changing magnitudes, whose changes
have a definite relative velocity.)

To which class of scientific disciplines should we then ascribe the
theory of probability according to the criterion just described? What
constitutes the basis of the unity of its method – the material, or the
formal structural properties of the subject matter it studies? It suffices
merely to pose the question in this manner in order to perceive with
full clarity the one possible answer. The theory of probability is a
doctrine of mass phenomena. Its methods are applied if, and only if, a
large number of more or less equivalent ingredients participate in an
actual phenomenon; its main concept is the relative number of those
components which possess one or another given attribute. What is the
material content of the studied phenomenon? or the real nature of
these ingredients? or the nature of the attribute applied for classifying
them? None of these questions hear any relation to the judgment about
whether a given process is within the capacity of the theory of
probability.

Defined by the formal features of the aspect of reality being studied,
the theory of probability can be, on the basis of our main criterion
expounded above, only a mathematical theory, but by no means a
natural-scientific one. For all the simplicity and cogency of this
conclusion, we were led to it merely by the considerable
development of the theory of probability during the latest years,
allowing it nowadays to appear as an actually shaped mathematical
discipline. How then does the author of the frequentist theory
substantiate his persistent assertion that the theory is, and must be, a
branch of the natural sciences, an assertion that in this context links
his doctrine to the old metaphysical idea? He often formulates that
view without substantiating it by arguments and apparently does not
even suppose that there exist other points of view.
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On those occasions when he has to defend his outlook against the
opinions described by us, Mises’ arguments become quite primitive,
not to say naive. He argues that each probabilistic problem relates
certainly to some real repetitive process or some real mass
phenomena; that the theory of probability is consequently a science
addressing reality and hence a natural-scientific discipline. He does
not want to notice that, on the basis of such an indicator, any
mathematical discipline, e.g. the theory of differential equations, may
be ascribed to the natural sciences; however, it would not have crossed
anyone’s mind to call into question the proposition that this theory is a
typical branch of mathematics.

The cause of Mises’ delusion is his Machian, and therefore,
idealistic philosophical standpoint that engendered and still nourishes
the foundations of the frequentist theory. An idealist, keeping, as
Mises and his school do, to a positivistic stand, is always in a state of
fear of mathematics25 no matter how he extols its merits in words. For
him, giving away some doctrine to mathematics always means its
alienation from actual contact with reality. He does not want to, and
cannot, admit that mathematics and the natural sciences alike study
the real world, and only it, although mathematics studies its other
aspects, and by means of other methods. This is why he labels as
nihilists26 those who want to perceive a mathematical doctrine in the
theory of probability; this is why, filled with disgust and horror-
stricken, he struggles against the proposition, accepted without
hesitation by all advanced scientists of our day, that the theory of
probability is a part of the general doctrine of functions and sets.

Thus, he says, the theory of probability is by no means a part of set
theory; it is the theory of certain observable phenomena … and
merely makes use of theorems put forth by set theory.27 And in another
passage: To a logical mind this identification of two things belonging
to different categories, this confusion of task and tool is something
quite unbearable.28

From our point of view, the theory of probability as a science of
mass phenomena can be linked only to set theory as doctrine about
totalities of the most general kind. All concrete mathematical facts
constituting the theory of probability retain their significance
irrespective of which of the two viewpoints described above is chosen;
however, with respect to the problem that especially interests us here,
the problem of establishing the foundations of the theory of
probability, the indicated disagreement, as we shall see now, is of
crucial importance.

3. Idealization and formalization
In order to construct the basis of a natural-scientific or of a

mathematical discipline, a certain idealization of the subject matter to
be studied is necessary. Within the boundaries of one and the same
natural-scientific domain, the degrees of idealization can be quite
different, depending on the adopted method of investigation. Thus, in
the theory of turbulent motion of liquids we may idealize the
investigated subject matter in different ways depending on whether we
intend to study it by means of classical or statistical methods.
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In exact conformity with this tradition, Mises, who recognizes the
doctrine of probability as a natural-scientific discipline, distinctly
indicates his proposed idealization of the subject which the theory of
probability is called upon to study; he believes the problem of
establishing the foundation of probability theory thus to be solved.
The idealization he proposes is well known and extremely simple.
Keeping to it, we ought to imagine the entire totality of the ingredients
of a mass phenomenon or of a repetitive process as some infinite
sequence of trials or observations called collective.29 Then, two main
properties are ascribed to each of these:

1) The existence of the limits of relative frequencies of those
elements of the collective that possess one or another of some definite
group of attributes.

2) The so-called irregularity, i.e., the invariance of the just
mentioned limits with respect to the selection, according to any
definite law, of some subsequence from a given collective; the law of
selection, furthermore, should not rest upon the distinction between
the elements of the collective concerning their relation to the studied
attribute.30 The limits of the relative frequencies are called
probabilities of the respective attributes.

Thus, in this case, the idealization consists in that we have, first, to
replace a real statistical population, of necessity finite, by some
infinite series. Second, we have to attribute to this series two
properties that a real population cannot possess, because, anyway,
they have a definite meaning only for infinite series. The construction
of the foundations for the frequentist theory is now concluded, and it
is now possible to begin posing and solving concrete problems and
establishing general regularities.

If, however, one considers the theory of probability to be a
mathematical discipline, as we have done, then the construction of its
foundations cannot come to a stop here. A modern mathematical
discipline requires for its basis more than a mere idealization of a real
subject matter. It demands complete formalization, or, what amounts
to the same thing, an axiomatization of its domain. This means
establishing some group of principal initial propositions, the so-called
axioms, that are destined to describe precisely all the relations holding
between the basic concepts of the given discipline, while both
concepts and relations are considered to be defined by exactly the list
of axioms. All the subsequent concepts required by the given theory
must be consecutively determined in a formal way in terms of these
basic concepts; and all the subsequent propositions (theorems) have to
be formally proved issuing from the axioms. The arguments that insist
on this sort of establishment of the foundations as the only possible
one in modern mathematics are well known. Only when underpinned
in such a manner can it be guaranteed that a theory’s formal backbone
has really been filtered out without any rest left unaccounted for. Only
thus can we perceive with complete distinctness the formal logical
connections and interrelations between the various mathematical
disciplines.

It is hardly necessary to indicate that such a formalization does not
substitute for the real subject-matter a new (speculative) one having
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nothing in common with the former, as idealistic philosophy would
like to imagine.31 Nor is there any doubt that quantitative relations and
spatial forms of the external world32 continue to be the subject matter
of investigation and that the only change concerns the method of
studying them.33

Strictly speaking, Mises nowhere offers such a formalization of his
theory; quite intentionally‚ his collective always remains infinite and,
consequently, becomes an idealized sequence of real trials or
observations preserving all the concrete properties and peculiarities of
natural objects of the given reality.34 In his debate with the nihilists,
the author of the frequentist theory frankly stresses the impossibility
and the undesirability of abstracting the theory from these concrete
properties. And it should be admitted that he acts here quite
consistently: if the theory of probability is considered a natural-
scientific rather than a mathematical discipline, then there are no
grounds for putting higher demands on it than it is necessary to make
with respect to the majority of the natural-scientific disciplines.

In contradistinction, the modern theory of probability, which
considers itself a mathematical discipline, creates its axiomatics (i.e., a
formal scheme of the studied real domain which represents it as
precisely as possible); a scheme where the two opposing tendencies,
the striving for maximal abstraction so as to achieve utmost simplicity
and the aspiration for retaining a maximal number of the essential
concrete properties of the studied subject, should be harmoniously
synthesized.

We assume the existence of some observation or trial that at least
theoretically admits of an unrestricted recurrence. Depending on
chance, an isolated trial can have one or another outcome. The totality
of all these possible outcomes constitutes the basic set E, the first
among the basic notions of our axiomatics. Any of its subsets, i.e.‚ any
totality of possible outcomes, is, as we call it, an event. Mathematical
research shows that it is inexpedient to demand here the introduction
of all possible events. We restrict our description to considering some
field35 of events.36 This we shall henceforth denote by Ф. It determines
the formal structure of the totality of those events to which we, when
considering a given problem, intend to ascribe definite probabilities
(example with the die).

In order to accomplish our next step, we turn to a real phenomenon.
The theory of probability is interested in those repetitive trials where
the frequency of the occurrence of some studied event remains stable.
This gives us an occasion to perceive the most important feature of the
considered phenomenon, that is, that each event included in our
examination is assigned some positive number called its probability. It
is expedient here to abstract from everything that accompanies the real
phenomenon in the shaping of that concept, in particular, its
emergence as a frequency.

Thus: 1) The probability of the event E is unity; and 2) The
probability of the sum of two non-intersecting (incompatible) events is
equal to the sum of their probabilities. It is self-evident that our
segregation from the frequentist picture is by no means its

86



replacement by some other and, especially, by an aprioristic
metaphysical view on the nature of probability; a correct abstraction
never indeed eliminates the subject so that the possibility of returning,
at any moment, from the formal scheme to the real phenomenon is
assured.

Thus, in performing the described series of abstracting acts on the
real phenomena that are studied by the theory of probability, we arrive
at the following system of axioms:
1) Ф is some field of sets.

2) Ф includes the set E.
3) Each set A of field Ф is assigned some non-negative number P(A)
called its probability.
4) P(E) is equal to unity.
5) If sets A and B of field Ф do not intersect, then the probability of
their sum is equal to the sum of their probabilities.37

The subsequent development of the theory proves that the
elementary theory of probability can indeed be completely constructed
on the basis of these five axioms. It goes without saying that, by
means of a reverse transition from the abstract pattern to concrete
reality, all the conclusions of this theory can be interpreted without
any hindrance in terms of that frequentist picture, which served as our
point of departure for constructing our axiomatics. It is also obvious
that the problem of formalization posed by us can be solved in more
than one way, that other systems of axioms satisfying the stated
demands are also possible.

Let us now return to the position held by Mises’ theory. One might
suppose that, since this theory does not recognize the theory of
probability to be a mathematical science, its method of founding the
theory cannot at all rival one or another axiomatic formalization.
Indeed, Mises aims at quite another goal. It seems that he never
established any system of axioms; the basic theoretical propositions
formulated by him cannot by any means be called axioms in the
mathematical acceptance of this term. The presence of such notions as
trial, observation, phenomenon of nature in the initial propositions of
his theory is not a result of carelessness or of an insufficiently distinct
scientific language. On the contrary, Mises is undoubtedly apt to insist
on preserving those terms. For him, they are a pledge of that
indissoluble connection with the actual reality that constitutes the
main pathos of his doctrine. But if this is so, may we not say that the
frequentist theory and the axiomatic theory can by no means be in a
relationship of competition, that their opposition must be the result of
a misunderstanding, and that it is necessary to axiomatize the theory
of probability, thus leaving to the frequentist theory the task of
describing only the connections taking place between the
mathematical theory of probability and those real phenomena to which
it is applicable?38

The frequentist theory itself is not at all inclined to restrict its aims
to that modest task that we have just suggested. Following Mises, it is
called the new theory of probability. It wants to compete on equal
footing with any axiomatic foundation of the theory. Of course, it can
secure this right to compete only by completely formalizing itself, by
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banishing every mention of observations and trials from its
propositions and by appearing in the role of a pure axiomatics. And it
actually is embarking on this path at the hands of a number of Mises’
followers (Dörge, Tornier, and others),39 whose outlook, by the way,
he himself does not always share. The problem consists in that, to
render possible such a full formalization, the frequentist theory will
apparently be obliged to abandon the initial simplicity of its basic
propositions and replace them by other, much more complicated
principles.40 Although Mises’ followers willingly agree with this, he
himself is not yet inclined to such concessions.

What does he say about all this? It should be noted that it is
sometimes difficult to understand this thinker who can be clear to the
utmost in all concrete details, but fails to be as clear when it comes to
general principles. Mises never formulated his opinion on the problem
that interests us now, never offered a complete formalization of his
theory. In addition, it is evident that this simply was not his intention.
At the same time, however, he fights for his theory as though it were
formalized, and when he believes it necessary, he fearlessly opposes it
to other formal theories. By the way, the path along which a complete
formalization of Mises’ theory could have been attempted is fairly
obvious. Thus we hardly run the risk of being accused by its author of
misunderstanding his ideas, when we, in fact, not only attempt to
describe that path, but also discuss it critically.

We must try to solve the two main problems that appear here: Is it
possible to formalize the frequentist theory? And, if the answer is
positive, will the thus constructed formal theory offer any advantages
as compared with the one that was described in this paragraph?

4. Is the formalisation of the frequentist theory possible?
To focus all our attention on the main difficulties of the problem

now facing us, we limit our investigation to the simplest probabilistic
scheme, i.e., to the so-called simple alternative where a trial admits of
only two outcomes. We denote these outcomes by 0 and 1
respectively.

Formalising this pattern in terms of the axiomatics explicated in the
previous paragraph is extremely simple. The field Ф consists here of
only four events:41 E (either 0 or 1); 0; 1; (both 0 and 1) and M. Their
probabilities are P(E) = 1; P(0); P(1); and P(M) = 0. All the axioms
are evidently fulfilled. The formalization of this situation in terms of
the frequentist theory is much more diflicult. This is not surprising
because the theory deliberately does not agree with such a high degree
of abstraction as provided by axiomatics. It wants to preserve more
features of the actual reality, so that its schemes ought naturally to be
more complicated.

In the frequentist theory, a formalized pattern is not abstracted from
the image of a long series of trials, but preserves that image within
itself in an idealized form. The idealization consists here, first, in the
fact that this series, having been finite, becomes infinite. Accordingly,
the formal scheme of the frequentist theory in our simple case looks
like this. Given an infinite sequence, called collective, whose elements
are symbols 0 and 1; it has to possess two properties:
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1) The existence of limits. Denote by φ(n) the number of zeros
among the first n elements of the collective. Then, as n goes to
infinity, the fraction φ(n)/n tends to a definite limit P(0) of event 0,
which is to be called probability of the event 0. This requirement of
course involves the existence of a similarly defined probability P(1) of
event 1.

2) Irregularity. Let us select, in accordance with an arbitrary law,
any subsequence out of the given collective and denote by φ(n) the
number of zeros among the first n terms of this subsequence. Then
lim φ(n)/n = P(0) as n goes to ∞. The mentioned principle for
selecting the subsequence can be absolutely arbitrary, if only the
choice of each of its elements is independent of whether it be 0 or 1.

In providing examples of such selections, Mises usually indicates
purely arithmetical principles, i.e., those for which the choice for an
element to belong to the subsequence is completely determined by its
number [position] in this subsequence (select all the even numbers or
all the absolutely42 prime numbers, etc.). It is obvious that any other
method of choice is here banned because the elements of the collective
differ one from another only in their number within the series, and in
their values (0 or 1), which are not allowed to be made use of. To
avoid complication we shall not dwell here on such rules of choice as,
e.g., each element preceded by a zero … which Mises nevertheless
had to admit during the latest stage of the development of his theory.

Thus, we have here a formal scheme free from any concrete fittings
such as trials or observations. However, before we can compare it
with the pattern offered by the axiomatic theory, we must consider the
problem of its intrinsic consistency. This will bring us, at once, into
the region of the deepest and sharpest points of the modern debates on
the foundations of mathematics; therefore, it demands a thorough
analysis.

It is clear above all that the first property of the collective, the
existence of limits, cannot in itself be doubted; sequences consisting
of symbols 0 and 1, where the relative frequency of the zeros (and,
consequently, of the unities) tends to some definite limit, are the most
usual objects of mathematical research, and any number of them can
be constructed.43 The difficulty, if it exists, should therefore be
contained either in the second property of the collective or in jointly
postulating both properties.

And, indeed, here we at once encounter considerable difficulties.
Every mathematician knows well enough the impediments connected
with the idea of arbitrary law of selection that plays a fundamental
part in formulating the property of irregularity. No matter what kind of
a collective is given, its zeros form one of its subsequences which we
shall denote by φ. The property of irregularity evidently includes in
itself, in particular, the demand that no admissible rule of selection
will lead to φ being the selected subsequence. But, since any law is
acceptable, the sequence φ must be lawless; the zeros in our collective
should be arranged in a manner that will not admit of any, even a very
involved arithmetical description; only in this case can our sequence
be recognized as a collective.
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Hence it follows that it is impossible on principle (as Mises admits)
to construct an individual collective. Indeed, since we are evidently
unable to indicate for each element of the collective whether it is zero
or unity (the infinity of the set of elements prevents this to be done),
we can only define an individual collective by means of a rule
establishing the mutual arrangement of the zeros and the unities. This,
however, would have led to determining the sequence φ by means of a
law; which is, as shown above, ruled out by the demand of
irregularity.

There are mathematicians who, merely because of this fact,
consider the motion of collective as untenable.44 Yet, since their point
of view is not generally accepted, we must nevertheless go further on,
attentively keeping in mind the fact just established.

So, if we are unable, and shall on principle never be able, to
indicate any individual collective, let us ask ourselves: what sense can
the notion of collective have? and can it become a subject of
mathematical investigation? While discussing this problem, Mises
indicates a concept introduced during the last years into mathematics
by the so-called intuitionist school, the concept of the sequence of free
choice.45 Indeed, there is a close connection with the sequences
studied by the theory of probability. Concerning our case, the
intuitionist school regards the sequence of empty places, each
arbitrarily occupied by a zero or a unity, as the sequence of free
choice. The act of filling up the empty space is considered an
engendering (a making) of continuum. That the sequence of free
choice can, and must, be a subject matter of mathematical research46 is
proved to a sufficient degree already by the existence of the theory of
binary fractions and of the theory of probability.

Let us see now where we shall find ourselves when we understand a
collective as a sequence of free choice. Above all we have to be aware
that a sequence of free choice really satisfies the demand of
irregularity.

To return, however, to the first demand, i.e., to the existence of
limits. For anyone who had to deal with the concept sequences of free
choice, this demand now rings extremely strange. It is clear, to begin
with, that there exists only one sequence of free choice. What sense,
then, can there be in separating such sequences into those having, and
those not having, limits?

Moreover, the very notion of limit in its usual understanding is
applicable only to an individual sequence determined by some
regularity. If there are no such regularities, and if they do not exist on
principle, the question about the existence or non-existence of limit
may not even be posed.

What does Mises say in this connection? He admits that if a given
sequence is irregular, the question about the existence or non-
existence of limit cannot actually be answered in any concrete case.
He adds, however, that this does not yet mean that the existence of
limits is a demand contradicting the postulate of irregularity.

We may try to prove the mutual consistency of these two demands
and if our attempt succeeds, the definition of the collective will
become mathematically appropriate, since, in mathematics, any object
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whose definition yields no formal contradiction is recognized as
existing.47

We do not know whether anyone will be able to prove the mutual
consistency of those demands that constitute the definition of the
collective. This, however, is not the point at all; the point, rather, is
that in their substance they are not applicable to the same concept. If
we understand a collective as an individually (and therefore regularly)
defined sequence, then, as we see, it cannot satisfy the demand of
irregularity; if, however, a collective is an irregular (and therefore
lawless) sequence, then the notion of the existence of limit is not
applicable to it. Note that the concepts of non-applicability and
inconsistency are completely different. If some demand contradicts a
given motion, then exactly the opposite statement is true with regard
to this motion. Thus, the demand that a sine of a given angle be
greater than unity contradicts the definition of the concept of sine. It
follows that the sine is either less than, or equal to unity. If, however,
we shall demand that the sine of a given angle should weigh more
than one gram, then it will be impossible to say that this condition
contradicts the notion of sine; the demand is simply inapplicable to it.
It is thus natural that, assuming that the sine of an angle weighs more
than a gram, we cannot encounter any contradiction.

We are absolutely sure that the disjunction between the existence
and non-existence of a limit is inapplicable to the concept of irregular
sequence in the same sense as the disjunction between heavy and light
cannot be applied to the notion of sine. We think that it is evident that
the application of that disjunction is based here on an illusion: in
actual fact, mathematicians always have to do with regularly defined
sequences and apply that disjunction rightfully. Never encountering
other cases, they unwittingly accustom themselves to the rule,
according to which that disjunction is applicable to any sequence; and
thus, having met with an irregular sequence, they suppose that the
appropriate limit either exists or does not exist without noticing that
they behave like someone who intends to weigh sines.

Thus, proving the mutual consistency of the two demands made on
the collective is not the point at all; the point is, to show what it can
mean that the limit exists with respect to irregular sequences. The
entire previous history of our science does not provide us with a
slightest pertinent indication, and, naturally enough, the revealing of
the meaning of the appropriate demand is the duty of the person who
first advances it.

We may understand an irregular sequence only as an uncompleted
object, as an object in the making. We shall not be able to connect it
with any other concept and the demand concerning the existence of
limits may be applicable only with respect to completed, to utterly
fixed sequences. It follows inevitably that the frequentist theory, at
least in that shape in which Mises himself insists, cannot at all be
satisfactorily formalized. In any case, we do not now have a
satisfactory formalization.

5. Is the formalization of the frequentist theory expedient?
While Mises himself did not give up hope of fully including both

main postulates of his theory within a common formal system, his
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followers have apparently already realized the despair of such
attempts at present. At the very least, some partisans are prepared to
formalize the frequentist theory at the cost of abandoning one or
another of its requirements, and many endeavours have been already
made in this direction, viz., replacing infinite collectives by finite
ones, completely abandoning the demand of irregularity (Kamke)48,
partially giving up this condition, i e., requiring the invariance of the
limits with respect not to any choice of the subsequence, but only to
some previously restricted set of such selections (Dörge, Tornier,
Copeland and others).49 Concerning most of these attempts, it is
necessary to note that Mises himself adheres to an uncompromisingly
negative position. In particular, he believes that, once the postulate of
irregularity is even partially abandoned, the formal scheme by
necessity acquires features sharply contradicting reality and that this
approach cannot therefore be admitted.50

From a formal point of view, hardly any of these endeavours of
founding the frequentist theory is objectionable. More: after
modifying Mises’ main postulates in one or another manner, this
theory can undoubtedly be irreproachably formalized. As such, it may
be admitted as a rival of the axiomatic theory, and we ought to
perceive the outcome of this competition.

From the formal point of view, the mutual relations between the
axiomatic and the frequentist theories are characterized above all by
the former’s higher degree of abstraction. Indeed, the foundation of
the frequentist theory (in the simplest case) consists of number
sequences, i.e., collectives. To each event corresponds a definite
sequence of this collective, having a definite limit of the relative
frequency, and this limit is called the probability of the event. Event E
is defined as such to whom the entire collective corresponds as the
chosen subsequence; the equality P(E) = 1 is proved as a theorem. The
relation P(A + B) = P(A) + P(B) for incompatible events A and B is
another theorem. The axiomatic theory abstracts itself from the
number sequences which, in the frequentist theory, define the events
and their probabilities. It retains only a small number of properties of
these concepts necessary for the further development of the theory.
For this theory, events are merely elements of some field; their
probabilities are simply some numbers made to correspond to these
events and to satisfy a small number of simple demands stated in the
axioms. The axiomatic theory results by way of abstraction from all
the rest that is included in the frequentist theory.

Closely linked with this distinguishing feature is the fact that the
theory of probability can be developed on the basis of the axiomatic
theory in an incomparably simpler and easier way than when it is
founded on the frequentist theory. The latter requires, at least initially,
that the unwieldy concept of collective be permanently borne in mind.
Especially when the restricted postulate of irregularity is introduced,
this is indeed a construction of great formal complexity. And it is
natural that in the formal respect the more abstract theory is always
simpler.

When two formal theories are in competition, one of them being an
abstraction of a higher degree than the other, then we ought to
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consider the following points to determine which one is to be
preferred: 1) The more abstract theory is always simpler in the formal
respect. 2) Contrariwise, the more concrete (i.e.‚ the less abstract)
theory is always richer in features which draw it nearer to reality, and
it is therefore able to nourish creative intuition to a larger extent. In
each given case the problem is: which of the two advantages might
play a greater part?

We may consider it established by the entire modern development
of the theory of probability that the high degree of abstraction peculiar
to the founding axiomatic system never actually led to emasculating
the richness or the diversity of creative intuition. Historically
speaking, the comparatively poor equipment of this system with
concrete features, if considered a shortcoming, was in any case
negligible as weighed against those benefits that are provided by its
greater formal simplicity. This is strikingly testified already by the fact
that the entire many-sided building of the modern theory of
probability was created by people thinking axiomatically rather than
in the frequentist way; suffice it to mention M. Fréchet and P. Lévy; F.
Cantelli and B. Finetti; H. Cramér, S. N. Bernstein, A. N.
Kolmogorov, and E. E. Slutskiy.51 But what indeed did Mises’
followers, who were brought up on the frequentist theory, achieve?
Can they boast of at least one considerable' finding, or at least one
essential discovery enriching the theory of probability?

While discussing the scientific value of the act of abstraction, Mises
adduces a vivid and apt example in one passage of his popularizing
book Probability and Statistics.52 He notes that geometry, while
studying the forms of real space by means of an abstract method,
abstracts in particular from the width and the thickness of those
objects that we are inclined to call straight lines. Then he recounts that
attempts were made to construct a geometry that would have treated
stripes of small but differing-from-zero width, instead of straight
lines.53 This lowered the degree of abstraction and, obviously, made
the closeness to reality greater. However, these attempts came to
nothing and were abandoned. The formal complexity necessary for
their realization was not compensated by approximating to reality.
And, strictly speaking, there was no need for such an approximation.
Experience shows that our mind has excellently learned how to work
with the concept of a straight line having no width, and to originate for
itself, on this basis, appropriate visual ideas necessary for the
functioning of creative intuition.

We consider it obvious that the situation in our case is absolutely
similar, and that all attempts at a formalization of the frequentist type
will sooner or later be abandoned, just as the geometrical theories
working with wide straight lines were, and for the same reason: They
introduce an incomparably greater formal complexity without offering
in exchange any practical benefit except for a simple, and so to speak,
unselfish satisfaction from sensing that the formal scheme has come
closer to actual reality.

When moving to a higher degree of abstraction, we narrow down,
in a formal logical way, the content of the concepts in our theory,
depriving them of some of their properties. According to the laws of
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formal logic, this should be accompanied by a certain widening of the
extension of these concepts by making possible the inclusion of
additional objects into our new and more abstract formal scheme.
Practically speaking, in our case it means that, when passing from the
frequentist to the more abstract axiomatic formalization, we may
envisage such new situations whose interpretation in terms of the
collectives was altogether impossible. That this is really true cannot be
doubted at all.

One of the very simple patterns of the axiomatic theory is this. Let
the events be all the Lebesgue-measurable sets of the interval [0, 1].
The probability of each event is then the measure of the corresponding
set. This is a well-known interpretation of the problem concerning a
mass point thrown at random on some unit interval. It is easy to see
that the frequentist theory has no place for such a scheme. Indeed,
here, the collective should have been the sequence of the abscissas of
the fallen point when the series of the throws is unbounded. For any of
these abscissas, their totality M is a countable set, its measure is
therefore zero and, in agreement with the conditions of the scheme,
the probability of the point falling on set M should also be zero. At the
same time, however, all the elements of our collective belong to set M
so that the probability sought, calculated according to the rules of the
frequentist theory, should be equal to unity. The contradiction
encountered shows that this pattern of the axiomatic theory cannot
indeed be realized under the frequentist system as a basis of
probability theory. The representatives of the frequentist theory infer,
however, that the distribution described above cannot on principle be
experimentally revealed since a statistical experiment amounts only to
an empirical determination of frequencies in repeated trials. In accord
with their Machian philosophical outlook, they regard their statement
equivalent to proving that such a distribution cannot exist in reality.

Thus, the partisans of the frequentist theory claim that the axiomatic
system of basing the theory of probability necessarily leads to
considering formal schemes that have no prototypes in the real world
studied by our science. They wish to regard the described fact as an
inherent defect of the axiomatic theory. Several centuries ago the
forefathers of those knights of realism have been battling against the
introduction of negative, and later on, of imaginary numbers. They
believed that these had no real prototypes in the actual world.
Nowadays these battles seem excusable since we take into account the
insufficiently clear understanding, in that early period, of the nature
and the methods of mathematics. What should be said, however, about
a mathematician of today who would insist on the need of
constructing the algebra of polynomials, or the theory of analytic
functions in the real, rather than in the complex field since no real
magnitudes can correspond to complex numbers?

Meanwhile, however, what is the attitude of Tornier, that champion
of the frequentist theory? Striving to avoid the degeneration of
animated essential concepts into lifeless mathematical formalism,54 he
forbids the usage of schemes that are not confined to the fiequentist
interpretation in the theory of probability. For the sake of attaining his
goal he constructs a formal and incomparably bulkier structure and is
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obliged to give up not only the solution, but also the posing of a
number of problems, quite elementary from the viewpoint of the wider
axiomatic theory. The Lebesgue definition of measure is of course
ousted, being replaced by Jordan’s unwieldy and stiff definition.55

6. The frequentist theory and scientific forecasts
As shown in detail in § 1, Mises believes that one of the main flaws

of the classical concept of probability theory is its incapacity to
forecast something about the real course of events without introducing
new special assumptions. We have recognized this critical remark as
absolutely true. In contradistinction, he maintains that the conclusions
reached by the frequentist theory contain explicit forecasts about how
the real world will be proceeding under certain conditions. We ought
to examine now to what extent he is correct.

It is easy to convince ourselves above all that the propositions of the
frequentist theory do not on principle admit of experiential checks
without the introduction of some new particular assumptions.56 This is
due to the special kind of idealization to which that theory resorts.
Consider, indeed, the statement that the probability of throwing a six
with a given die is equal to 1/8. According to the idealized
interpretation, this means that the relative frequency of this outcome
tends to 1/8 as long as the experiment is continuing infinitely. Turning
now from the ideal to the real situation, we ought to understand this in
the following way: no matter how small a positive number δ is, the
relative frequency of the occurrence of a six when the number of
throws is sufficiently large, will be contained between 1/8 – δ and 1/8
+ δ.

Assume now that, wishing to check this proposition by experience,
we made a very large number of throws and that the relative frequency
of “6” occurred to be equal to 1/4. Issuing from the principles of the
frequentist theory, may we now admit, with any justification, that our
proposition was wrong? We believe that we have no cause at all for
such an inference. The established experiential fact (the relative
frequency amounts to 1/4 is evidently quite compatible both with the
frequency tending, or not tending to 1/8 as the number of throws
increases.57

To this argument, which is often put forward, Mises usually objects
by the remark that we have to do with the same situation in any
physical theory since an experiment always provides only an
approximate value of the examined magnitude.58 Let us see to what
extent his opinion is correct. Suppose that our theoretical calculation
shows us that the specific weight of some substance must be 1.5,
whereas an experiment that uses a device yielding specific weights
with a precision of 0.01, furnishes a specific weight of 1.57. It follows
that the theoretical conclusion is refuted as incompatible with the
experiment. But had the specific weight measured in the experiment
been 1.497, we would have been quite justified in assuming that the
theoretical conclusion was corroborated, in the sense, of course, that it
differed from the truth not more than by some small magnitude known
beforehand.

There is nothing similar in the applications of the frequentist theory.
No matter how many times we throw our die (i.e., no matter how
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much we increase the precision of our experiment), the result will
always remain compatible with any assumption concerning the
probability of a six, and no principle of the frequentist theory will tell
us which of the possible values of this probability is preferable. Mises
likes to compare a repeated statistical trial with a physical experiment;
we see that the former is carried out by means of an instrument whose
precision is not only unknown, but cannot on principle be determined.
So how can the indications of such a device have any meaning when
corroborating theoretical conclusions? And may we seriously declare
that, these circumstances being given, the situation is here not worse
than in any physical theory?

If the frequentist theory itself does not admit of experimental
checking of its inferences, is it nevertheless able, as Mises maintains,
to provide some forecasts about the actual course of phenomena? The
law of large numbers is known to be the cornerstone of practically
formulated probabilistic propositions on the proceeding of mass
phenomena. Mises quite correctly indicates that, assuming the
classical notion of probability, this law is never able without
additional assumptions to state anything about the actual course of a
given phenomenon. He believes, however, that in the context of the
frequentist theory the law of large numbers characterizes the real
course of events. Let us see whether this is really so.

Suppose, for example, that the probability that an insured person,
belonging to a given category, dies during a certain period of time, is
0.016. According to the law of large numbers it follows that, with
probability p rather close to unity, from among 10,000 such insured
persons the number of deaths will be close to 160. Following Mises’
incessant appeals, let us understand probability in its scientific (in the
sense of the frequentist theory) rather than in its everyday meaning
and let us ask ourselves what we can infer about the fate of the given
real totality of 10,000 persons when issuing from the law of large
numbers and its conclusion. In the sense of the frequentist theory, the
answer given above by this law literally means that If an experiment
with the fate of the 10,000 persons is repeated infinitely, the relative
frequency of those cases, where the number of deaths is contained
between 155 and 165, will have the given number p as its limit. But
what relevance does this have to our question? Indeed, we do not
intend to repeat the insurance of 10,000 persons a great number of
times. We are only interested in the fate of the given totality. What
can the frequentist theory tell us about it? Strictly nothing. It has made
its conclusion formulated above and it is unable to say a single word
more.59 How does Mises object to this argument? He declares, again
and again, that all this is of course true, but that the situation is exactly
the same in any physical theory as well.

We do not at all believe it compulsory for a mathematical or a
natural-scientific theory to contain in itself all the principles of its
practical application. On the contrary, these are usually formulated
beyond the given theory. In particular, neither the classical concept,
nor the modern axiomatic foundation of probability theory taken in
themselves, are capable without additional assumptions to state
anything about the real course of events. Therefore the frequentist
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theory cannot be blamed for being incapable of such prediction; in this
respect it fares in no way better or worse than the other methods of
founding the theory of probability. The point is, however, that Mises
asserts the contrary and believes that one of the theory’s main
advantages lies exactly in its capability of making such predictions.
We have shown that this claim is entirely based on a
misunderstanding.

In actual fact, whichever system of founding probability we adopt,
the classical, the frequentist, or the axiomatic‚ the situation will
remain invariably the same. To connect the theory with practice,
additional assumptions are needed. For example, if the probability of
an event is very low, you can be sure that, practically speaking, it will
not happen. No matter how simple and clear this principle is, it cannot
at all be derived by issuing from the theory of probability itself.

7. Conclusions
1) It is necessary to admit that Mises’ most important historical

merit is his systematic criticism of the classical foundation of the
theory of probability revealing its most significant defects: the vicious
circle in its definition of probability, the extremely restricted
applicability of this definition, and the unsubstantiated claims of the
classical theory to a direct practical applicability of its conclusions.

2) Mises’ second merit is the systematic and persistent indication
that the theory of probability is a doctrine of mass phenomena and
that, consequently, it is necessary to derive its main notions and
propositions by abstracting60 it from real statistical populations or
repetitive processes rather than to determine them by issuing from
the properties of single objects.

3) Mises recognizes the theory of probability not as a mathematical,
but as a natural-scientific discipline making use of mathematical
methods. This is the reason why, above all, he never and nowhere
carries out a complete formalization of his theory; he does not fashion
it as a purely axiomatic structure restricting his efiorts with idealizing
real processes to a certain degree and leaving intact such notions as
trials, observations, process, etc., when formulating his main
propositions.

4) In contradistinction, the approach that recognizes the theory of
probability as a mathematical science believes that its complete
formalization is necessary and that a system of its axioms should be
constructed just as it is done in geometry, in algebra and in other
mathematical sciences.

5) The foundation of the theory of probability offered by the
frequentist theory is not therefore a logical basis in the sense of
modern mathematics. Nevertheless, the frequentist theory claims to be
a rival of the purely formal foundational schemes. To determine
whether this claim is justified, it is necessary, in the first place, to
examine the possibility of a complete formalization of the frequentist
theory.

6) Within a formalized pattern, the main concept of the frequentist
theory, the collective, is represented by a number sequence satisfying
two main requirements: the existence of the limits of relative
frequencies of the attributes, and the so-called irregularity. The
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possibility of completely formalizing the frequentist theory under both
these demands appears at least dubious. With respect to those notions,
which modern mathematics connects with the concept of an irregular
sequence,61 the existence of limits becomes meaningless.

7) These considerations forced Mises’ followers to drop this or that
element of the two requirements. Most often we encounter a
restriction concerning irregularity. Given this relaxation, a complete
formalization of the frequentist theory is possible without difficulties.

8) It is quite possible to compare the formalized frequentist theory
with the axiomatic theory, which considers the doctrine of probability
a part of the metric theory of sets and functions. Such a comparison
shows that, with respect to the latter, the former possesses a lower
degree of abstraction. Consequently, an inherent feature of the
frequentist theory is its incomparably greater complexity, not at all
compensated by its being more concrete and therefore closer to actual
reality. The axiomatic theory therefore deserves unquestionable
preference, whereas the formalization of the frequentist theory cannot
be recognized as expedient.

9) Some partisans of the frequentist theory (Tornier) advocate the
denial of the more abstract foundations under the pretext that they lead
to patterns that cannot on principle be realized in actual reality. This
approach contradicts the very spirit of modern mathematical science
and ought to be considered as an obscurantist62 survival of the remote
past.

10) The frequentist theory maintains that, among the existing
systems of foundation, it alone enables the theory of probability to
express statements directly depicting the real course of events. An
analysis shows, however, that this claim is based on an illusion and
cannot therefore be recognized as justified. In actual fact, the
frequentist scheme as a basis for probability theory is no more capable
than any other one of attaching to the theory of probability the role of
even approximate direct forecasting of the real course of some
phenomena. Each system of foundation requires additional
assumptions to the same extent, and in this respect the frequentist
theory offers no advantage and does not present any exception.

Supplement. The idea of equipossibility:
its importance and perspectives.63

The logical defects of the idea of equipossibility that prevent it from
becoming the formal basis of the theory of probability should not,
however, give occasion for underestimating its extremely great
methodological importance either for our everyday practice or for the
most subtle problems of modern science. In some (although not in a
formal-logical) sense this idea, especially as shown by a number of
recent investigations,64 is able to offer more to the doctrine of mass
phenomena than any formal foundational scheme. For the sake of
comprehensiveness of the picture we have sketched in our survey, let
us briefly consider this problem.

The point is not to move backwards from the frequentist
interpretation of the idea of probability adopted by the entire modern
science, to its old, metaphysical concept. We shall still understand
probability as a number that is capable of offering some notion of the
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relative frequency of the occurrence of an event under certain,
absolutely definite conditions. However, if science is something more
than a simple, if very economical description of real processes,65 we
obviously should be interested in how to forecast at an earlier point of
time (i.e., before the conclusion of the experiment) the frequencies, or
what is on principle the same, the probabilities of some events.

When we want to determine the probability of a “6” for a given die,
no other means is open to us, as Mises indicated, except throwing it a
sufficient number of times and calculating the appropriate relative
frequency. Theoretically, this is correct; practically speaking,
however, no gambler will act on this method. He knows that the
probability sought is 1/6. How does he know? Perhaps, Mises says,
the gambler had many times experienced similar dice, for whose
overwhelming majority the probability occurred to be 1/6. But the
matter is different. The matter is that the gambler’s life experience
prompts him to this simple conjecture. The six faces of the die have no
distinction between themselves of essential importance for the
frequency of their occurrence since it is natural to assume that the
material of the die is more or less homogeneous. It follows that there
is every reason to expect that all the faces will turn up with roughly
the same frequency.

Such conjectures, hypotheses based on the idea of symmetry, are
encountered at every step, and in each case we forecast the
equiprobability of certain events issuing from ideas prior to the given
phenomenon. It is self-evident that this assumption may never claim
to be more than a working hypothesis demanding an experimental
check.

The role of working hypotheses in science is well known. In the
sense of a working hypothesis, the idea of equipossibility may be, and
actually is, of utmost importance for the theory of mass phenomena.
True, this feature by no means expresses itself in the direction in
which the classical system of founding the theory of probability
wished to apply it. The idea of equiprobability appears not as a formal
logical base of the doctrine of mass phenomena, rather it is in single
concrete situations our sole method of theoretically forecasting the
probabilities of events.

Seemingly, from what was said on the idea of equipossibility in § 1,
its domain of application is very narrow. And, indeed, on the face of
it, it is difficult to imagine such a pattern as going considerably
beyond the province of games of chance. Nevertheless, this is not so.
Investigations dating back to Poincaré, and especially extended in
recent years, show that in a somewhat generalized form this idea is
able to cover a very wide class of phenomena, in mechanics and
physics in the first place. It is about these investigations that we wish
to say a few words now. Imagine a usual roulette game and suppose
that, in the ideal case, friction is eliminated, so that the ball moves
round with a constant velocity.66 The ball’s location at a definite
moment after it is set in motion is therefore uniquely determined by
specifying its initial velocity v. We are now asking ourselves: what
theoretical considerations may be put forward in favour of the natural
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hypothesis that, for a sufficiently high v, all the positions of the ball on
the roulette’s circumference are equally probable?

The probability of the ball’s being in some part of the
circumference evidently depends only on the comparison between the
probabilities of the various values of the initial velocity. Of course, the
assumption that these values are equally probable greatly deviates
from reality since the motive force will have its traditional favourite
values. However, this assumption is not needed. Mathematical
analysis shows that, for whichever distribution Ф(x) of the velocity, if
only it is continuous, the probabilities of all the positions of the ball
become equal as the period of time increases infinitely (ergodicity).
This remarkable result, important as a splendid scientific precedent,
gains a simple and clear interpretation in terms of the idea of
equipossibility. Indeed, what does the demand of continuity of the
function Ф(x) signify in real terms? Its obvious meaning is that the
probabilities of close values of the initial velocity should also be close
to one another. This has to do with some differential, or, as it is now
usually formulated, local equiprobability. It is indeed remarkable that
the relative values of the probabilities of the more or less considerably
differing initial velocities are here absolutely irrelevant. It is only
essential that no exceptional values of the velocity occur, for any
reason, with a frequency much larger than the frequencies of their
closest neighbouring values. It is evident that we have every reason to
assume that this demand is fulfilled in reality. We thus obtain a
scientific theory capable of explaining how and why all the
participants in a roulette game have equal chances. We regard this
explanation especially satisfactory exactly because it does not require
any special assumptions concerning the appropriate distributions.
Local equipossibility is an extremely general demand since it takes
place for most various distributions.

We have chosen the roulette game as an example for applying the
idea of local equipossibility since its mathematical analysis presents
no difficulties. Essentially the same method can be made use of in a
very large number of problems belonging in the first place to
mechanics. In most cases, however, the purely mathematical
difficulties still prove insurmountable.

In particular, consider the now classical example of an irregular die.
Mises incessantly put it forward as a specimen of problems where the
idea of equipossibility is inapplicable; however, from our generalized
viewpoint,67 it can indeed be on principle interpreted by issuing from
this idea. Assume that we know exactly the mass distribution inside
the die and imagine that, in the ideal case, it is thrown in such a
manner that the face that appears is completely determined by the
die’s initial position. The frequencies of the various faces will then
depend on the frequencies of some values of a small number of
parameters determining this initial position. And there is every reason
to believe that, assuming also a local equiprobability of these
parameters, each face of the die will have a definite probability of
turning up depending only on the above-mentioned mass
distribution.68

100



So, we see that the notion of equipossible cases, after being
upgraded to local equiprobability, is able on principle to bear beautiful
fruit for our science. This example shows how many treasures that
might enrich modern science are buried in classical ideas. It is only
necessary to approach them with modern scientific methods that might
provide fertile criticism rather than with servility to age-old traditions.

Translator’s Note
Until 1990, when Vladimir A. Uspenskiy (Uspensky), Aleksey L.
Semenov, and Aleksandr Kh. Shen published an article tacitly
corroborating Khinchin’s opinion, it had seemed impossible to
embody Mises’ intention in a definition of randomess that was
satisfactory from any point of view. The name of their article was Can
an (individual) sequence of zeros and unities be random? and it was
published in Uspekhi matematischeskikh nauk (1990) 45, pp. 105 –
162 (see § 1.3.4). The journal is being translated into English as
Russian Mathematical Surveys.

Notes
1 See also Gnedenko B. V. and Kolmogorov A. N. (1960), A. Ya. Khinchin (1894 –
1959). Russ. Math. Surveys 15, pp. 93 – 106.
2 This assumption is somewhat doubtful as argued below. Probably the paper was
written already around 1936.
3 Khinchin’s paper, as will be seen, was more philosophical than mathematical and
Gnedenko himself decided to publish it in Voprosy Filosofii.
4 We were unable to trace any biographical information about the two
mathematicians.
5 A special class of stochastic processes the distribution of which is independent
(homogeneous) with respect to translation of time. This theory was closely
connected with Khinchin’s work in ergodic theory. Cf. Khinchin, A. Ya. 1934.
“Korrelationstheorie der stationären stochastischen Prozesse.” Math. Annalen 109,
pp. 604 – 615.
6 Maistrov (1920 – 1986) is known especially for his book Probability Theory: A
Historical Sketch. New York: Academic Press, 1974.
7 Not needed.
8 Mises (1919) is the decisive publication, which contains Mises’ axioms for the
collectives. But Mises (1912) has already used the word Kollektivmasslehre in the
title, which was coined by physicist and psychologist Gustav Theodor Fechner
(1801 – 1887), and hints at the frequentist interpretation of probability. One can
therefore assume that Khinchin’s paper was written in 1939 at the latest. See Mises,
R. von 1912. “Über die Grundbegriffe der Kollektivmasslehre.” Jahresbericht der
Deutsch. Mathematiker-Vereinigung 21, pp. 9 – 20, and Mises, R. von 1919.
“Grundlagen der Wahrscheinlichkeits-rechnung.” Math. Z. 5, pp. 52 – 99. See also
Heidelberger, M. 1987. “Fechner’s indeterminism: from freedom to laws of chance.”
In The Probabilistic Revolution: vol. 1: Ideas in History, ed. by L. Krüger, L. J.
Daston and M. Heidelberger, pp. 117 – 156. Cambridge: MIT Press.
9 Obviously referring to Mises (1928) in its various editions, which was translated
into Russian in 1930 under Khinchin’s supervision. See Mises, R. von 1928.
Wahrscheinlichkeit, Statistik und Wahrheit. Wien: Springer. Mises (1936) is the
second German edition with the same publisher.
10 Mises, R. von 1931. Wahrscheinlichkeitsrechnung und ihre Anwendungen in der
Statistik und der theoretischen Physik. Leipzig und Wien: Franz Deuticke.
11 As far as I know, no analysis of this kind exists at present. The article by the
well-known logician Church and the remarks in the book by R. Péter (p. 218) have a
narrower aim. Cf. Church, A., On the concept of a random sequence; Bull. Amer.
Math. Soc. 46 (1940), pp. 130 – 135, and Péter, R., Recursive Functions (Russian
translation of German original which appeared in Budapest 1951); Moscow 1954. B.
G.
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Meanwhile (in 2004) several analyses of von Mises’ notion of probability have
been published. Cf. Martin-Löf, P. 1969. “The literature on von Mises’ kollektivs
revisited." Theoria 35, pp. 12 – 37, and Hochkirchen, Th. 1999. Die
Axiomatisierung der Wahrscheinlichkeitsrechnung und ihre Kontexte. Von Hilberts
sechstem Problem zu Kolmogorovs Grundbegriffen. Göttingen: Vandenhoeck &
Ruprecht. See also the unpublished thesis Bernhardt, H. 1984. Richard von Mises
und sein Beitrag zur Grundlegung der Wahrscheinlichkeitsrechnung im 20.
Jahrhundert. Berlin, 226 pp.
12 In October 1937 a Colloque sur le calcul des probabilités was held in Geneva.
Fréchet’s contribution (1938) in that colloquium deals expressly with Mises’ theory.
Fréchet, M. 1938. “Exposé et discussion de quelques recherches récentes sur les
fondements du calcul des probabilités.” Actualités Scientifiques et Industrielle 735,
pp. 23 – 55. S. N. Bernstein, A. N. Kohnogorov, and E. E. Slutskiy published in the
proceedings. [? O. S.]. The Russians apparently did not attend that meeting, but were
at least aware of it [Such witnesses of the Big Terror were not allowed to go abroad.
O. S.] This gives support to the conjecture that Khinchin’s paper was written before
1937.
13 Wald (1938) and Ville (1939) were hardly second rate specialists, this again hints
at the chronological conjecture above. Cf. Wald, A. 1938. “Die Widerspruchsfreiheit
des Kollektivbegriffs." Actualités Scientifiques et Industrielles 735, pp. 79 – 99‚ and
Ville, J.. 1939. Etude critique de la notion de collectif. Paris: Gauthiers-Villars.
14 Most likely Khinchin is alluding to the second German edition (1936) of Mises
(1928).
15 The word positive is not unambiguous here, given the fact, that Kolmogorov’s
Grundbegriffe of 1933 existed at that point in [of] time and Khinchin calls the latter
the predominant direction of the modern theory of probability (below). Khinchin
seems to allude rather to the problem of application and to the origin of the notion of
probability in nature. As a matter of fact, already in his Grundbegriffe of 1933
Kolmogorov would very clearly point to the positive value of von Mises’ theory for
the connection to application. See Kolmogorov’s, 1933. Grundbegriffe der
Wahrscheinlichkeitsrechnung. Berlin: Springer, p. 3. The English translation of this
book is Foundations of the Theory of Probability. New York: Chelsea, 1950.
16 Discussion here is about the article “Mises’ doctrine on probability and the
principles of physical statistics, Uspekhi fizicheskikh nauk 9 (1929), No. 2, pp. 141 –
166. B. G.
17 By unsatisfactory Khinchin obviously means too positive, because recent results
in ergodic theory, especially in Khinchin’s interpretation, had made outdated von
Mises’ work on Brownian motion from 1920 to which (Khinchin 1929), as quoted
by Gnedenko in the footnote, is referring. See the introduction in the present edition
by R. Siegmund-Schültze.
18 Khinchin mentions neither M. Fréchet, A. Wald, nor J. L. Doob, all of whom
were involved in discussions with Mises in 1937 and 1941. Thus, one may assume
that Khinchin wrote the paper earlier, partly in 1936, and that he is accordingly
referring to Mises (1936), the second German edition of von Mises’ book (1928).
19 In the manuscript version to which I resort, the end of the sentence is missing. I
have added the words in brackets. B. G.
20 See below the Supplement.
21 However one has to be aware of von Mises’ predecessors in the nineteenth
century both in Germany (Fechner, Bruns) and England (Mills, Venn). See
Heidelberger (1987). Elsewhere, in 1928, Khinchin even addressed the frequentists
as the English school. See the introduction by R. Siegmund-Schültze.
22 In fact, Mises’ position was more nuanced and ambiguous. He speaks of the
theory of probability as a natural science in (Mises 1919, 53), and in the English
edition of his book of 1928, Mises, R. 1957, Probability, Statistics, und Truth.
London: George Allan and Unwin, p. 219. However, he means it rather in the
restricted sense of the mathematical (tautological) part of a natural science.
23 Note that Khinchin is approving of that critical part of the Machian philosophy.
But below he does not do justice to Mises’ reception of Mach. Von Mises was,
indeed, impressed by Ernst Mach as a philosopher but critical of the latter’s neglect
of mathematics. See Mises, R. 1938. “Ernst Mach und die empiristische
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Wissenschaftsauffassung‚” p. 517. In Mises 1963/64. Selected Papers, vol. 2, pp.
495 – 523. Providence, Rhode Island: Amer. Math. Soc. (2 volumes = Selecta I und
II).
24 Khinchin alludes to Friedrich Engels’ understanding of mathematics. Engels’
Dialectics of Nature was first published posthumously in 1927, and therefore its
reception was rather new in Khinchin’s time. These unfinished notes, written in
1873 – 1883, played in the past a considerable role in much Marxist philosophical
discussions on mathematics.
25 In Materialism and Empirio-Criticism and elsewhere, Lenin asserts time and
again that the idealist is always in fear of dialectics. In paraphrasing Lenin here, the
mathematician Khinchin is obviously interested in labelling mathematics as
something dialectical. Given von Mises’ reproach against Mach’s lack of
mathematics mentioned above, this commentary is particularly inappropriate. Von
Mises considered himself first and foremost a mathematician. See also the
introduction to this edition by R. Siegmund-Schültze.
26 This remark by Khinchin is particularly careless and at least strongly
exaggerated. In (Mises 1936, pp. 123 – 124) Mises calls nihilists expressly those
who maintain that there is no need at all for a definition or explanation of the notion
of probability. He adds that there are certain intermediate stages (Zwischenstufen)
between the nihilists and his own (uncompromising) view, and names immediately
afterwards the standpoint mathematicians like to withdraw to which was according
to Mises represented by Kolmogorov’s beautiful and very readable booklet, namely
Kolmogorov (1933).
27 This is an English version of the original passage in Mises’ German book (Mises
1936, p. 127), which Khinchin translates correctly into Russian.
28 Von Mises (1936, p. 127) in his quotation juxtaposes Werk (task) and Werkzeug
(tool). He is not directly referring to Kolmogorov but to one of his interpreters. We
follow the English translation of the third German edition (1951) of Mises’ book in
(Mises 1957, p. 100), which is otherwise much less detailed than Mises’ first
reaction to criticism of his theory in the second edition (Mises 1936).
29 Khinchin formulates now the two famous postulates (axioms) on Kollektivs (the
equivalent of probability distributions or random variables), which Mises had
introduced in (Mises 1919, pp. 55 – 57), and defended ever thereafter. Below in § 4,
Khinchin gives another definition for a special case of a collective.
30 Mises stipulated excluding a gambling system, the existence of which would
allow for the selection of a subsequence with a changed limit and thus reveal the
original sequence as not random (irregular). See (Mises 1919, pp. 58).
31 Here the fear of the idealism-reproach is palpable which typically is fended off
actively by attacking idealist philosophy. See also the introduction to this edition by
R. Siegmund-Schültze.
32 As stipulated in Engels’ Dialectics of Nature.
33 Note that the theory of probability built on such a formal axiomatic foundation
admits of a frequentist interpretation. B. G.
34 Mises’ approach, outwardly tempting, is tantamount to positivism, pure and
simple. It restricts the tasks of the researcher to the description and moderate
idealization of direct observations and denies the necessity of the next stage, i.e. that
of working through to the essence of phenomena. B. G.
35 This is the field of probability (Wahrscheinlichkeitsfeld), see Kolmogorov 1950,
p. 2. In the Russian original one finds telo, which is literally body.
36 A set of events is called a field, if besides the events “A" and “B” it also includes
events "A or B" and “both A and B” and furthermore the impossible and the certain
event. B. G.
The sometimes rather careless redaction of Khinchin’s paper by Gnedenko is

demonstrated by this footnote, which in the original does not only have errors in
writing (which may have originated with the printer), but also fails to postulate the
complementary event Ac in the field (algebra) of events as well.
37 It is remarkable that the notion of “sum” is not specified here, especially with
respect to the need to include denumerably infinite sums of events, as usual in
Borelian probability fields. Maybe this was another compromise with respect to the
readership of a philosophical journal. Another interpretation (which was suggested
to me by B. Bru, Paris) is that Khinchin is only interested in showing that the axioms
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of set theory can be related to properties of frequencies where infinite sums do not
originally occur.
38 In a similar, but more positive, non-discriminatory sense argues Kolmogorov
(1933, p. 3), leaving von Mises’ theory the relation to experience.
39 See Dörge, K. 1930. “Zu der von R. von Mises gegebenen Begründung der
Wahrscheinlichkeitsrechnung. Erste Mitteilung: Theorie des Glücksspiels.” Math. Z.
32, pp. 232 – 258, and Tornier, E. 1936. Wahrscheinlichkeitsrechnung und
allgemeine Integrationstheorie. Leipzig und Berlin: Teubner.
40 A review by Khinchin of Tornier (1936) ends with the following words:

It is not understandable why a method was chosen, which uses much more
mathematical formalism, and still leads to an identification with measure theory,
although a rather restricted and less promising one. See Khinchin, 1936. “Review
of E. Tornier: Wahrscheinlichkeitsrechnung und allgemeine Integrationstheorie.”
Zentralbl. Math. und ihre Grenzgebiete 13, p. 359.
41 In fact, the field of events Ф has to include events “0” and “1" but also E =
“either 0 or 1” and M = “both 0 and 1.” B. G.
42 The example of absolutely prime as opposed to just prime numbers which looks a
bit strange and superfluous here may have been motivated by the need to emphasize
that the selection is absolutely independent of the outcome of the trial and shall not
be weakened by the condition that two outcomes have only relative prime positions
in the sequence.
43 Note that cautious reference to constructability which points to Khinchin’s
interest in Brouwer’s intuitionism. See below.
44 This example is mentioned in (Mises 1936, p. 113), without referring to specific
names of mathematicians. Martin-Löf (1969, 27), discussing a slightly different
counterexample concerning the irregularity axiom alone, finds that example very
insensitive to von Mises’s intentions.
45 In the English version of von Mises’ book on positivism, on page 129, appears
the motion as sequences of free formation. Mises, R. 1951. Positivism, a Study in
Human Understanding. Cambridge, Mass, essentially a translation of the German
original from 1939 (The Hague). The concept is mentioned in (Mises 1936, p. 112),
as Folgen freien Werdens. Neither in his original probability book (1928) nor in its
third edition of 1957 does Mises refer to Brouwer’s sequences of free formation,
which were apparently invoked by him as a temporary defence strategy against
criticism of his collectives in the 1930s.
46 Note that Khinchin in the 1920s praised Brouwer’s intuitionism as revolutionary
and as mathematical bolshevism and that Kolmogorov developed an intuitionistic
calculus of assignments. Possible connections between the intuitionistic interests of
Khinchin’s and Kolmogorov’s and their adherence to the Moscow school of
descriptive function theory (N. N. Luzin), which had close relations to E. Borel’s
semi-intuitionism, would be interesting to investigate. See Khinchin 1926. “The
ideas of intuitionism in the struggle for content in modern mathematics.” (Russian)
Vestmk kommunisticheskoy akademii 16, pp. 184 – 192, and Kolmogorov
(Kolmogoroff 1932. “Zur Deutung der intuitionistischen Logik.” Math. Z. 35, pp. 58
– 65.
47 Von Mises’ position with respect to Hilbert’s definition of existence was much
more nuanced than here presented by Khinchin, and it changed over time. See his
original position (Mises 1919, pp. 59 – 60), which is still close to Hilbert’s notion,
but in (Mises 1936, p. 111), under the influence of criticism, von Mises uses
arguments from Bouwer’s neo-intuitionism.
48 Cf. Kamke, E. 1932. Einführung in die Wahrscheinlichkeitstheorie. Leipzig:
Hirzel. This is partly commented upon in (Hochkirchen 1999, pp. 209 – 210). Von
Mises called Kamke’s standpoint to renounce irregularity‘ a curious standpoint
(sonderbarer Standpunkt) (Mises 1936, p. 116).
49 Cf. Dörge (1930), Tornier (1936), and Copeland, A. H. 1936. “Point set theory
applied to the random selection of the digits of an admissible number.” Amer. J.
Math. 58, pp. 181 – 192.
50 It is interesting to note that von Mises welcomed measure-theoretic arguments if
they supported his theory. Mises stressed that in Copeland’s model (1936) of a
special collective the limit of relative frequency remained fixed for almost all
subsequences after place selection. Cf. (Mises 1936, p. 118) and (Mises 1957, p. 92).
Mises was not fully satisfied with Copeland’s admissible numbers (Martin-Löf
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1969, p. 24). His willingness to compromise, however, contradicts somewhat
Khinchin’s remark.
51 Kinchin himself undoubtedly should also be named here. B. G.
52 Khinchin refers here to (Mises 1928) in its Russian translation of 1930, which he
himself organized. This translation indeed omits the word Truth in the title.
Obviously the publishers were wary of unwanted propaganda for the philosophical
content of von Mises’ book. Cf. Mises, R. 1930. Probability and Statistics. (Russian
translation of Mises 1928, under the redaction of Prof. A. Ya. Khinchin). Moscow,
Leningrad: State Publishers (Gosizdat). See the cover illustration and the
introduction by R. Siegmund-Schültze.
53 Mises mentions that example several times and discusses it in more detail in
“Diskussion über Wahrscheinlichkeit,” Erkenntnis 1 (1930/31), pp. 260 – 285. p.
279. He thereby alludes to Felix Klein (1849 – 1925), who had considered such a
kind of geometry to be a part of Approximations-mathematik, as opposed to
Präzisions-mathematik. In that Diskussion which took place in Prague in 1929,
Mises stated that the geometry mentioned was not (!) very successful. He went on to
say that his theory of probability introduced infinite sequence as an idealization (i. e.
as a kind of Präzisions-mathematik) because for practical purposes it was useful to
have such abstractions. It appears rather strange and careless that Khinchin -
Gnedenko would turn of all examples exactly this one against Mises’ probability
theory.
54 This is quoted from (Tornier 1936, p. iii), a book which received a critical review
by Khinchin (1936), as seen above. It has to be mentioned that Tornier was a
proponent of the intrusion of Nazi-ideology in mathematical research in the manner
of the racist pseudo-doctrine Deutsche Mathematik and that Khinchin was certainly
aware of this. Cf. also Hochkirchen, Th. 1998.“Wahrscheinlichkeitsrechnung im
Spannungsfeld von Mass- und Häufigkeitstheorie – Leben und Werk des
‘Deutschen’ Mathematikers Erhard Tornier (1894 – 1982).” NTM-Schriftenreihe (N.
S.) 6, pp. 22 – 41.
55 Camille Jordan’s (1838 – 1922) notion of measure and integral was replaced
around 1900 by the more modern ones by E. Borel (1871 – 1956) and H. Lebesgue
(1875 – 1941).
56 Von Mises was, in fact, aware of the problems connected to infinite collectives
and the availability of only finite sections in practice. In (Mises 1936, p. 107) he
discussed this problem of application for instance with respect to an article by
Hempel, C. G. 1935. “Über den Gehalt von Wahrscheinlichkeitsaussagen.”
Erkenntnis 5, pp. 228 – 260.
57 In fact, in the process of changing, a variable can, prior to approaching
sufficiently a limit (in case it exists), assume values arbitrarily distant from the limit.
Therefore, fiom the fact that the frequency is close to 1/4 after a finite number of
trials, it does not follow at all that it converges to 1/4, if the number of trials goes to
infinity. That limit can be arbitrary. B. G.

This last footnote by Gnedenko, which uses the fundamental but rather trivial
notion of limit in mathematical analysis, is quite obviously intended for non-
mathematicians.
58 Khinchin is obviously referring to Mises (1936, p. 106), where he is, in fact,
discussing measurements of specific weights and compares them with conclusions in
statistics. Gnedenko uses exactly the same example from physics in order to criticize
von Mises’ theory. Cf. Gnedenko, B. V. 1962. The Theory Probability. New York:
Chelsea, p. 51.
59 Mises (1936, p. 105), says: I must defend myself most emphatically against the
recurring misapprehension that in our theory infinite sequences are substituted for
all finite sequences of observations.
60 The modern theory of probability does not abandon altogether the classical
approach to defining probability which issues fiom the principle of symmetry. On
this more in the Supplement B. G.
61 This remark, if maybe justified for the time when the article was written in the
1930s, appears strange given the renaissance of von Mises’ notion of randomness
around 1960. At least some commentary on the part of Gnedenko would have been
appropriate here.
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62 This very wording obscurantist is at the same time an allusion to the Nazi-
ideology involved in Tornier’s arguments as mentioned above (see Hochkirchen
1998).
63 This Supplement is obviously influenced by Khinchin’s turn toward statistical
mechanics in the second half of the 1930s and in particular by the so-called theory of
objective probability in classical systems and the method of arbitrary functions in
the tradition of Henri Poincaré and M. Smoluchowski. In the 1930s, this theory,
which represented one branch of ergodic theory, was particularly pursued by the
German Eberhard Hopf (1902 – 1983). Sec Hopf, E. 1936. “Über die Bedeutung der
willkürlichen Funktionen für die Wahrscheinlichkeitstheorie.” Jahresbericht
Deutsche Mathematiker-Vereinigung 46, II. Abt., pp. 179 – 195. Von Mises
reflected rarely on this kind of investigation which aimed at explaining statistical
regularities, independence of events and other problems which the von Mises theory
largely took as lying outside the proper theory of probability. See Engel (1992) for a
modern revival, and Plato (1983) for the history. Engel, E. 1992. A Road to
Randomness in Physical Systems; Lecture Notes in Statistics 71; Berlin etc.:
Springer. Plato, J. von (1983). “The method of arbitrary functions.” Brit. J. for the
Phil. of Sci. 34, pp. 37 – 47. Also Gnedenko was obviously very impressed by this
theory which seemed to give support for major tenets of Marxist epistemology,
particularly in connection to probability, and enlarged the philosophical explanatory
potential of mathematics as a whole. Khinchin gives a similar philosophical
interpretation as here in Khinchin, 1952. “The Method of Arbitrary Functions and
the Struggle against Idealism in the Theory of Probability" (Russian). In Filosofskiye
voprosy sowremennoy fiziki (Philosophical problems of modern physics), pp. 522 –
538 (German translation in Sowjetwissenschaft. Naturwissenschaftliche Abt. 7
(1954), No. 2, pp. 261 – 273. French translation in Questions Scientifiques 5 (1954),
pp. 7 – 24).
64 See e.g. Hopf (1936, p. 180) [see Note 63], which interestingly alludes to the
results of the Moscow school of descriptive function theory, referring the result that
“measurability is not very different from continuity” to N. N. Luzin, the teacher of
both Khinchin and Kolmogorov. See also Hopf, E. 1937. Ergodentheorie. Berlin:
Springer. (Ergebnisse der Mathematik und ihrer Grenzgebiete V,2).
65 One may think of Mach’s Denkökonomie here, because von Mises was his
adherent.
66 According to Krengel (1990, p. 476), the following result on the roulette based
on the “method of arbitrary functions” is due to Hopf. Cf. Krengel, U. 1990.
"Wahrscheinlichkeitstheorie.” In Ein Jahrhundert Mathematik 1890 – 1990.
Festschrift zum Jubiläum der DMV. ed. by G. Fischer et. al., pp. 457 – 489.
Braunschweig: Vieweg. The same example is also discussed in Khinchin (1952).
67 This means, based on “local equiprobability” instead of equipossibility.
68 The ideas incidentally mentioned here by Khinchin were more fully developed in
his contribution, “The Method of Arbitrary Functions” etc., see Note 63. B. G.

Khinchin was able to send his manuscript to that same periodical, to
Voprosy Filosofii which was established in 1947. Did he? And was it
rejected if he did? We will never know.

Gnedenko had also published an obituary of Khinchin (Teoriya
Veroiatostei i Ee Primenenia, vol. 5, No. 1, 1960, pp. 3 – 6). He
described Khinchin’s capital achievements in various branches of
mathematics and called him an excellent lecturer whose contributions
were literary masterpieces and a citizen in the most elevated sense.

Now, Khinchin’s invasion of statistical physics in 1943 was
unsuccessful (Novikov 2002, p. 334). Then, in 1953 Khinchin
published a Russian Short Course in Mathematical Analysis intended,
as the author’s Foreword stated, as the main manual for students of
mathematical-mechanical and physical-mathematical faculties of
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universities. He had not achieved his aim, the course was too short.
This was the opinion of an eminent professor (whose name I forgot)
expressed about 1957 to us, students of the evening extension of the
mathematical-mechanical faculty at Moscow University.

A very special comment on the Russian booklet Elementary
Introduction to the Theory of Probability by Gnedenko and Khinchin
is warranted. Its Moscow publisher reported that from 1946 to 2013 it
was issued thirteen times (half a million of copies in all) and translated
into fifteen languages. Nevertheless, I say that it is a most detestable
trash which testifies to the greed of the publisher and the ignorance of
the public.

In 2015 I translated it anew into English (S, G, 65) and added a
fitting commentary and many Notes. Gnedenko, who died in 1995,
was mostly responsible, but he certainly followed Khinchin.

And now my main question: why Khinchin was only a
corresponding member of the Academy of Sciences? I have only one
explanation. In 1937, at the peak of the Great Terror, Khinchin
glorified the Soviet regime (Front Nauki i Tekhniki, No. 7, pp. 36 –
46, S,G, 7). At first, I thought that he had somehow become guilty of
most cruel Soviet laws and regulations and atoned for it. Now, I tend
to believe that he indeed acted as a citizen in the most elevated
(official Soviet) sense and thus alienated himself from the scientific
community. A tiny episode confirms my decision.

A second edition of the Russian translation of Jakob Bernoulli’s Ars
Conjectandi appeared in 1986 complete with commentaries, one of
them my own. A subeditor told me to suppress my most proper
reference to Khinchin. He had not elaborated and, regrettably, I did
not ask for an explanation. The editor was Yu. V. Prokhorov, a most
eminent student of Kolmogorov.

When mentioning various fields of application of probability
theory, Khinchin forgot medicine and meteorology. The example of an
irregular die first appeared in a manuscript of Newton (Sheynin 2017,
p. 49).

Novikov S. P. (2002), The second half of the 20th century and its result etc.
Istoriko-Matematicheskie Issledovania, vol. 7 (42), pp. 326 – 356. In Russian.

Sheynin O. (2017), Theory of Probability. Historical Essay. Berlin. S, G, 10.
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XIV

Oscar Sheynin

Pirogov as a statistician

Historia Scientiarum, vol. 10, No. 3, 2001, pp. 213 – 225

1. Introduction
Nikolai Ivanovich Pirogov (1810 – 1881) was the founder of

modern military surgery and cofounder of surgery in general, an
outstanding educationalist, a public figure and, in 1854 – 1855, an
active participant of the Crimean war.1 He published a considerable
part of his writings (and almost all of those which are important for
my subject) both in Russian and German (in one case, in Russian and
French) so that he was undoubtedly well known in Western Europe.
The German spelling of his second name was Pirogoff.

I discuss his works from the point of view of statistics, and,
whenever possible, I quote him in German or French. Before listing
his relevant contributions I note that all of them except [l; 3; 11] are
available in (their original or subsequent) Russian, in the author’s
Sobranie Sochinenii (Coll. Works), vols. 1 – 8. Moscow, 1957 – 1962.
In particular, all my references to the Russian version of [7] are from
vol. 5 (1961) of that source. Here now is a list of his pertinent works.

1. On the application of statistics, physics and pharmacology in surgery during the
last three years (1849). Protokoly i trudy Russk. Khirurgich. Obshch. Pirogova for
1882 – 1883 (1883), pp. 125 – 134. Publ. by N. Zdekauer. In Russian.
2. Rapport d ’une voyage médical au Caucase. St.-Pétersburg, 1849.
3. On the achievements of surgery during the last five years. Zapiski po chasti
vrachebn. nauk Med.–Khirurgich. Akad., year 7, 1849, pt. 4, sect. 1, pp. 1 – 27. In
Russian.
4. Sevastopolskie Pisma (Letters from Sevastopol) (1850 – 1855). Sobr. Soch. 8,
1961, pp. 313 – 403. In Russian.
5. Betrachtungen über die Schwierigkeiten der chirurgischen Diagnose und über das
Glück in der Chirurgie. Klinische Chirurgie No. 1. Leipzig, 1854, pp. 22 – 111.
6. Statistischer Bericht über alle meine im Verlauf eines Jahres, Sept. 52 bis Sept.
53, in Hospitälern, Kliniken und in der Privatpraxis vorgenommenen oder
beobachteten Operationsfälle, this being the author’s booklet Klinische Chirurgie
No. 3. Leipzig, 1854.
7. Grundzüge der allgemeinen Kriegschirurgie. Leipzig 1864.
8. Bericht über die Besichtigung der Militär-Sanitäts-Anstalten in Deutschland,
Lothringen und Elsass im Jahre 1870. Leipzig, 1871.
9. Das Kriegs-Sanitäts-Wesen und die Privat-Hilfe auf dem Kriegsschauplätze in
Bulgarien und im Rücken der operierenden Armee 1877 – 1878. Leipzig, 1882.
10. Tagesbuch eines alten Arztes (orig. Russian version 1884 – 1885). Stuttgart,
1894.
11. Sevastopolskie Pisma i Vospominania (Letters from and reminiscences about
Sevastopol). Moscow, 1950. In Russian.

Only a very short note on the statistical aspect of Pirogov’s work
was published [Belitskaia, 1950], and I myself touched on this subject
in the context of a much more general contribution [Sheynin, 1982]. I
am partly issuing both from it and from another short note [Sheynin,
1981]. For German readers, of special interest are Pirogov’ s relations
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with von Baer which Raikov [1968] described in his monograph on
the latter’ s life and work.

The history of applying the statistical method in natural science
might be separated into three stages. During the first of these,
empirically noticed regularities were put on record; thus, the
Hippocrates aphorisms. The second stage is characterized by the
availability of statistical data. The material at hand was sometimes so
convincing as to lead directly to extremely important discoveries. So it
happened that unpurified drinking water was found, in the mid-l9th c.,
to favour the spread of cholera. Alternatively, elementary stochastic
ideas and methods had to be applied (John Graunt). The third stage
began in earnest at the turn of the same (19th) century with the
introduction of quantitative tests (e. g., for comparing hypotheses).

The statistical method penetrated medicine by several routes. Of
course, it had been applied in population statistics (closely linked with
this science). Then, by the mid-19th c., two new disciplines, public
hygiene and epidemiology, having much in common both with each
other and with demography, have emerged, and the field for applying
the statistical method considerably widened.

The first branch of medicine proper to yield to the statistical method
was surgery; thus, Simpson [1847 – 1848] statistically estimated the
influence of anaesthesia on mortality due to amputations of the limb.
He then [1869 – 1870] proved that the mortality of surgical patients
increased with the size of the hospital (because of the worsening of
hygienic conditions) and coined an appropriate term, hospitalism.
Other physicians expressed similar thoughts [Simon 1887; Virchow
1868 – 1869, p. 21]. The latter even mentioned (but did not offer an
exact reference to) the Patres von Regensburg who preceded him by
about six hundred years. Both these authors as well as Pirogov (§ 2)
left Simpson behind, but they did not confirm their statements by
statistical data.

Louis [1825] introduced the so-called numerical method into
medicine by calculating the frequencies of the symptoms of various
diseases so as to facilitate diagnosing. Gavarret [1840], a physician
and Poisson’s former student at the Ecole Polytechnique, sharply
criticized Louis for the lack of any estimation of reliability of the
results obtained.

Pirogov, however, positively appraised the numerical method [1‚ p.
125; 3, p. 5]. Thus, in the first case, while mentioning syphilis, the
stone disease and amputations, he remarked, although without
adducing any references, that

Surgeons used the statistical method even before [Louis] for the
determination of symptoms of diseases and indications for certain
ways of treatment and operations …

And, according to Davidov [1854], a mathematician and Professor
at Moscow University, Louis actually carried out preliminary
treatment of observations (in medicine). In essence, Louis’s work may
be attributed to the second stage of the statistical method.

The prehistory of the numerical method can be traced back to the
last decades of the 18th c. when Black [1788, pp. 65 – 68] presented a
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catalogue of all the principal diseases and casualties. And, even a
hundred years earlier, Leibniz, acting in the spirit of
Staatswissenschaft (statecraft), advocated compilation of Staatstafeln,
in particular for bringing under control vielen Krankheiten [Sheynin
1982, p. 248n].

Neither was the numerical method restricted to medicine. In
astronomy, for example, Proctor [1873] compiled charts of 324
thousand stars of the first six magnitudes so as to get along without
any theories on the structure of the stellar system. The flaw in such
conclusions consisted exactly in that their authors did not pay due
attention to theory Actually, real statistical studies lead to the
advancement of the appropriate science – and, often, to the
uselessness of the previously compiled statistical data!

By the mid-19th c. statistical writings began to appear in medical
literature (Gavarret, Guy, Farr; Davidov) but as a whole physicians
including hygienists and epidemiologists voluntarily or not restricted
their attention to the numerical method which had also been applied,
for example, for comparing the merits of different ways of treating a
given disease. Simpson [1847], who furthered medical statistics
(above) and referred to Laplace, Gavarret and Quetelet, in point of fact
adhered to the numerical method.

2. The unreliability of statistical data
Pirogov time and time again indicated that medical statistics

provided discordant and unreliable data and described several
pertinent reasons.

1) In an early contribution he [5, pp. 24 – 26] stated that there were
lucky and unlucky physicians and that both lucky and unlucky cases
usually occurred in sequences.2 He hardly repeated this opinion in his
later writings but his belief in the existence of such sequences (runs)
of [random] events might be corroborated by standard stochastic
considerations; alternatively, runs might have been more probable
because of hospitalism (also see below).

In his next work Pirogov [6‚ pp. 4 – 9] mentioned several causes
influencing the course of surgical diseases such as climate, the manner
of managing the hospital in question;3 individual features of the
patients; and the skill of the surgeon. He also noted that a
numerical estimate of the influence of these causes ist auch zur Zeit
noch unmöglich (p. 8), but I doubt that the situation is much better in
this respect even now.

I take up three of these causes.
2) Hospitalism. Pirogov (p, 4) referred to Hospitalmiasmen, stated

that Jedes Hospital hat seine Krankheitskonstitution (p. 5), went into
appropriate explanations but did not provide any statistical data. He
first discussed this topic even earlier [2‚ p. 191], then also without
adducing data:

Je me suis convaincu par expérience, combien les résultats sont
différents entre les opérations faites dans les petits établissements
cliniques, et les opérations exécutées dans les grands hôpitaux; et
même, combien la différence est grande dans les résultats obtenues
par les opérations dans les différents hôpitaux de la même ville,
exécutées dans les conditions exactement semblables en apparence.4
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3) The skill of the surgeon. For separate cases, this was indeed of
paramount importance [6, p. 9]. However,

Die Beobachtung der Fälle en masse macht uns schnell demütig,
indem wir die beschränkten Grenzen unserer Kunst wahrnehmen.

Accordingly, skill was not revealed in der ganzen Masse der Fälle.
In any case, Pirogov [6, p. 9] quite consistently thought that unusually
optimistic reports should mainly be explained by suppression of
unfavourable cases.6 And, in a letter of 1855, he [11, p. 490]
reasonably argued that a proper management of the military medical
service was incomparably more important than the skill of the
physician.

4) Individuality. Pirogov listed two aspects of individuality which I
shall call physical and psychological. The latter [6, pp. 6 – 8]
concerned the patient’s attitude towards his treatment and his relations
with the medical staff. Much more attention Pirogov apparently paid
to the former although it is sometimes difficult to say which aspect he
was discussing.

Individual features, as he [7, pp. 5 – 6] stated, were important not
only in themselves; once they were allowed for, medical statistics will
be able to establish the objective danger of diseases and treatments.7

About thirty years later Pirogov [l0, pp. 452 – 453] put forward a
question which nobody has ever answered either in medicine or
elsewhere. Suppose (in my own words) that treatments A and B fail
with probabilities P(A)= 0.6 and P(B)= 0.5. Should the physician
choose B? Indeed,

Woran soll ich denn erkennen, dass mein Patient gerade zur Zahl
der sechzig vom Hundert gehört, welche sterben müssen, und nicht zu
den vierzig, welche am Leben bleiben?

He then formulated a similar question concerning B.
Pirogov went on to attach too much importance on individuality by

wishing to attribute each man to some definite group.8 And again [3,
p. 5]: individual peculiarities themselves are subject to statistical
inferences, so that

Only statistical considerations can determine the degree of the
influence of the patients’ individualities on the course and the
treatment of their diseases.

I ought to add that Pirogov [3, p. 6] reasonably believed that the
application of statistics in surgery was in complete agreement with the
latter because the diseases included in its province depend
incomparably less on individual influences or modifications.

5) Malpractice. This, of course, is a special cause.
Die Statistik nur dann sicher ist, wenn sie keinen antizipierenden

Zweck hat und die persönlichen Interessen … dabei nicht im Spiele
sind,
he emphasized [7, p. 685]. However, as practised even by the
berühmtesten Hospitalärzte,

Man die Kranken bei zweideutigen Fällen baldmöglichst nach der
Operation aus dem Hospital entfernt, um die Statistik irgend einer
Operationsmethode, die ihnen z. B. eigen war, zu verschönern. Auch
das entgegengesetzte Verfahren gehört hierher, dass man nämlich die
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Aufnahme von Kranken ins Hospital, die sich in verzweifelter Lage
befinden, verweigert.9

Pirogov did not say anything about Russia; anyway, however, his
Russian colleagues considered his honest confession of his own
mistakes as unusual.10

6) Difficulties peculiar to military surgery. Many times Pirogov (e.
g. [7‚ pp 685 – 686]) pointed out that the inevitable displacements and
evacuation of large numbers of wounded (and sick) personnel under
war conditions made surgical statistics unreliable. In one instance
known to him

Manche frühzeitige Amputationen, die in den ersten 24 Stunden
tödlich ablaufen, werden gar nicht notiert, andere wieder zu den
Namen solcher Verwundeten, die gar nicht amputiert sind,
geschrieben, gleiche oder ähnliche Namen der Kranken verwechselt.

Pirogov went on to discuss other causes leading to faulty statistics
and stated (p. 686) that

Sind noch unsicherer die Prinzipien, welche zur Grundlage der
statistisch vergleichenden Beobachtungen dienen.

Explaining this proposition, he mentioned several statistical points,
such as the need to have a sufficient number of observations and
roughly equal numbers of appropriate cases when comparing two
methods of treatment; to allow for important circumstances (for
example, for mortality from complications or tuberculosis); and, when
estimating the danger of some treatment, to take into account
verschiedene lebensgefährliche Zufälle (p. 694).

He specifically dwelt on the advantages and dangers of late versus
early amputations (p. 700). The Russian version of this source11 is
here richer. He argued there [7R, p. 438] that one must understand that
the latter were not always performed early, whereas the former were
really above their reputation: surgeons postponed amputations in the
hope of preserving the limb and in some cases they obviously
achieved their goal.

Pirogov thus implied that the appropriate statistics was not
comprehensive. He returned to the comparison of these amputations
[7, pp. 751 – 753], this time directly maintaining that in both cases
statistics should be essentially improved (and, in particular, should
allow for a number of medical circumstances).

One of Pirogov’s correct conclusions [7, p. 699] concerned the use
of discordant reports:

Da die Resultate der einzelnen statistischen Berichte zu sehr von
einander abweichen, so wird auch die daraus gezogene Mittelzahl zu
einer zu willkürlichen und unsicheren Grundlage der Handlungen.
Etwas sicherer ist es, wenn man sich nur nach den modernen, für die
Verletzungen und Amputationen verschiedener Teile der Extremitäten
ausgefertigten Berichten richtet.

His main advice here may be compared with a wrong opinion on a
similar matter (mortality from amputations under etherisation and
without it during 1794 – 1846 in England).12

The (then still practically unknown) Bienaymé – Chebyshev
inequality that estimates the probability of the deviations of a random
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variable from its expectation shows that heterogeneous data can
hardly be used in a reasonable way.

3. Attitude towards statistics
Around 1849 Pirogov became convinced in the essential importance

of statistics. He indicated that it had been successfully applied in
surgery for several decades [1, p. 123] and that [3, p. 4] its application

For determining the diagnostic importance of the symptoms and the
merits of operations might be … considered as an essential latest gain
of surgery.

Until then, he hardly thought much about statistics. After describing
the previous prevalent attitude of military surgeons in favour of
earliest possible amputations of injured limbs versus their
conservative treatment, Pirogov stated that, both for medical reasons
and durch Einführung einer rationellen Statistik in der Chirurgie [8,
p. 74], this practice was called into question. And he added (p. 75):
folgte ich noch 1847 ohne Zaudern der früheren Doktrin.

However, also in 1847 Pirogov [6, p. 66], after compiling the
appropriate data, first questioned the inevitability of amputations.
Later he [7, p. 690] expressed his views quite definitely:

Bei dieser Unbestimmtheit des Quantums von beiderseitigem Risiko
schwankt man in der komparativen chirurgischen Statistik
fortwährend zwischen zwei Extremen: bald setzt man zu wenig Risiko
auf Rechnung der Amputation, bald auf die der konservativen Kur zu
viel.13 Die alte, nicht statistische Schule überschätzte übrigens den
Wert des Lebens. … Die mit der Amputation selbst verbundene
Lebensgefahr hielt sie für zu geringfügig, um sie in die Wagschale zu
legen. …

Wir leben offenbar in einer Übergangsperiode. Die geheiligten
Grundsätze der alten Schule, deren Ansichten im ersten Dezennium
dieses Jahrhunderts vorherrschten, sind durch die Statistik
erschüttert, dass muss man ihr lassen, mit neuen Grundsätzen hat sie
aber die alten nicht ersetzt, was auch unmöglich ist, so lange die
kriegschirurgischen Statistiker nicht nach einem bestimmten und für
alle Nationen festgestellten Plane handeln.

Pirogov’s common plan was in line with Quetelet’s lifelong efforts
to standardize population statistics, and he expressed thoughts on
compiling statistical data in two more instances. One of his
pronouncements was a pipe-dream, pure and simple;14 his earlier
precept [4, p. 382] was at least more definite:

The main point is, record everything, do not rely on your memory;
compare the successes of lucky and unlucky physicians, if possible in
identical surroundings, and only then estimate the results. Discard old
wives’ gossip, bureaucratic reports, boastful stories of the rapturous,
the quacks and the weak-minded – go on from the operating room to
the hospital ward, from the ward to the gangrenous station, and from
there to the morgue – this is the only way to discover the truth. …

Elsewhere [7] Pirogov called himself ein eifriger und aufrichtiger
Verehrer der medizinischen Statistik (p. 5) and (p. 692) formulated its
essential aim:

Wollte man auch annehmen, dass das Zufällige selbst durch
statistische Untersuchungen in eine bestimmte gesetzliche Form
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gestellt wird und dadurch aufhört ein reiner Zufall zu sein; so besteht
doch die erste Aufgabe der Statistik darin, das häufiger
Vorkommende, das Konstante, herauszukalkulieren und numerisch
festzustellen. Das allein kann auch als Grundlage des praktischen
Handelns dienen.

Then, however, he (p. 698) listed many important demands on
statistical data hardly attainable under war conditions and concluded
that in der gegenwärtig unverkennbaren Übergangsperiode m der
Kriegschirurgie the surgeon was unable to make considerable use of
statistics. It seems that Pirogov had thus set too much store by the
future possibilities of the numerical method (§ 1) and on applying
statistics to individual cases. On the other hand, he was compelled to
make another decision taking into account the actual state of statistics.
Here is his most typical utterance:16

Even a slightest oversight, inaccuracy or arbitrariness makes [the
data] far less reliable than the figures founded only on a general
impression with which one is left after a mere but sensible observation
of cases [7R, p. 20].

In Ermangelung einer sicheren [Statistik] will ich also lieber gar
keine, sondern eben nur die Resultate eines solchen Eindruckes in
dieser Schrift mitteilen [7, p. 6].

I myself did not yet [in 1849] imagine all the blind alleys into which
figures sometimes lead [7R, p. 20].

This mode of action, if understood literally, implied a return to the
first stage of the statistical method (§ 1) and was admissible for such a
gifted physician as Pirogov. By (following) blind alleys Pirogov
possibly meant an unwarranted confidence in the calculated rates of
mortality from various injuries and operations (§ 4).17

4. The rate of mortality
Pirogov’s discussion of late versus early amputations (§ 3) was of

course based on the relevant rates of mortality. So how did he, in
general, regard this indicator? In § 2 I quoted him as saying that, in
particular, for a large number of observations these rates become
stable both for pathological processes and medical treatments if only
the initial data were subjected to scientific analysis.18 Later, however,
Pirogov began adding qualifying remarks. Thus [7, pp. 688 – 689]:

Aber m der Frage über vergleichende Resultate verschiedener
Behandlungsmethoden in der Kriegspraxis handelt es sich nur um
eine mittelgroße Zahl von Beobachtungen, wobei die Schwankungen
in den Endresultaten immer bedeutend genug sein werden, um den
Einfluss der verschiedensten Verhältnisse auf das Endresultat der
Operation oder der Verwundung bemerkbar zu machen, und das wird
desto bemerkbarer, je größer der Komplex dieser Verhältnisse sein
wird. Gerade aber über diese Verhältnisse erfahren wir nichts aus den
statistischen Berichten.19

Pirogov apparently implied here that for a really large number of
observations the rates of mortality will become stable.20 This,
however, would have been hardly true because the Verhältnisse were
too diverse. No wonder that, from a practical point of view, Pirogov
[7, p. 691] admitted that
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Das Mortalitätsverhältnis an und für sich selbst entscheidet gar
nicht über den Wert einer Behandlungsmethode, wenn nicht dabei
folgende Umstände berücksichtigt werden …

He then listed too many Umstände so that his passage could have
well ended even before the word wenn. Two additional points. First,
Pirogov [9, p. 94] concluded that a low rate of mortality in den
Hospitälern während eine Krieges did not yet testify to ein günstiges
Heilresultat. G. Blane, at the beginning of the 19th c., and Florence
Nightingale, in 1859, expressed the same opinion with respect to
hospitals in general [Sheynin 1982, p 265].

Second, before 1879, when the original Russian version of [9]
appeared, Pirogov had likely discussed mean rates of mortality, but
later in life he [9, p 298] mentioned the minimal rate:

Jede traumatische Verletzung, also auch jede chirurgische
Operation ihr wohl mehr oder weniger schwankendes, aber immerhin
bestimmtes Sterblichkeitsminimum hat, welches sich trotz aller
unserer Bemühungen und trotz aller Erfolge unserer Kunst der
Totalsumme der Fälle nicht vermindern lässt.21

Geselevich et al [1960‚ p. 557] rejected Pirogov’s belief in the
existence of such minimal rates but I do not agree with them. Exactly
these rates, corresponding to favourable conditions (and a given
period of time), should be more stable than the mean rates reflecting
most variable circumstances.

Nevertheless, Pirogov did not resolutely turn his attention from
mean to minimal; mortality: even in his last contributions there are
quite a few places [8, p. 80; 9, p. 44, 476 and 524] where he discussed
mortality with no adjective attached to it.

5. “Der Krieg ist eine traumatische Epidemie”
This was Pirogov’s‘ celebrated statement [9, p. 295] and he

understood it in a wide sense. Thus [7, p. 693].
Der Soldat zu Anfang und zu Ende des Kriegs nicht derselbe ist.

Die Sterblichkeit nimmt gradatim mit der Zunahme der Erschöpfung
in Folge der Kriegsstrapazen zu.

Or, in the same vein [7, p. 5],
Daher erwarte ich den wahren Fortschritt der Medizin vielmehr

von dem Aufsuchen solcher Maßregeln, welche den menschlichen
Organismus vor Leiden schützen und dem Leiden vorbeugen können.

The second (the Russian) version of this source is here more
definite and explains his expression traumatische Epidemie [7R, p.
20]: the mortality of the wounded is the result of the degree of various
sufferings and privations rather than of the seriousness of the wounds
and operations. Later Pirogov [9, p. 302] expressed himself in the
same way. It is therefore understandable that he devoted a large part of
two of his books [8; 9] to the organization of military surgery (the
choice of the optimal number of the various types of hospitals and of
their location; the distribution of the medical personnel; etc.).

Such problems, whose solution could have been based only on an
approximately known or even crudely estimated figures, now belong
to operations research. That Pirogov attached great importance to this
aspect of medical activities is also evident from his direct
pronouncements [9, p. 98]23:
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Für unvorgesehene Fälle eine hinreichende Anzahl von
Unterkünften, Hospitalpersonal u. s. w. bereit zu halten, ... und noch
mehr alles vorher zu überlegen und richtig auszuführen, wiewohl der
Überschlag nur annähernd und auf die Gesetze derWahrscheinlichkeit
gestützt sein kann – hierzu gehört Genialität [brilliant intuition] und
Erfahrung.

I doubt that the laws of probability could have helped: Pirogov
himself [9, p. 98] maintained that hospitals should

Immer bereit sein die dreifache Zahl von Kranken und Verwundeten
aufzunehmen, als der Etat der Lagerstellen beträgt.

And it is not out of place to mention here that Pirogov’s
mathematical education was not sufficient [10‚ p. 144]:

Ich in der Schule wohl der beste Schüler in Geschichte und
russischer Literatur, nicht aber in der Mathematik gewesen bin. Dabei
glaube ich aber wohl behaupten zu dürfen, dass in mir etwas von
mathematischer Ader steckte; sie entwickelte sich aber, glaube ich,
nur sehr langsam mit meinem fortschreitenden Alter, und als ich das
sogar sehr lebhafte Verlangen fühlte, etwas von Mathematik zu
verstehen, da war es schon zu spät dazu.

Summary
Pirogov was mainly concerned with the unreliability of statistical

data in surgery, especially under war conditions. He advocated careful
recording of cases and a preliminary study of the pertinent
circumstances, and he believed that this attitude will eventually
ensure the determination of stable mortality rates for various surgical
diseases (and treatments). He was too optimistic just as many other
scientists of the l9th c. were (physicists then thought that their science
was all but completely studied; Darwin and Quetelet believed in a
near softening of the relations between nations; Marx had his own
dreams …).

For the time being, Pirogov preferred to rely on general impression
rather than on discordant figures, and he believed in the regularities
inherent in mass random phenomena. This enabled him to compare
the expediency of the conservative treatment of injured limbs in
contrast to their amputation. Again, the trust in statistical regularities
apparently governed his successful activities in organizing military
surgery, cf. his maxim which I chose as the title of § 5.

In Pirogov’s time, neither probability nor statistics were included in
the curriculums for student physicians, and it was undoubtedly his
practical experience that led him to become statistically inclined.

Pirogov’s main pertinent contributions were published in German
(and in some cases also in Russian) and apparently became widely
known, but, unlike Florence Nightingale (Note 1) or perhaps Simpson
(§ 1), with regard to his statistical ideas he remained a lone figure.
Without additional studies it is impossible to assess the influence of
Pirogov on the subsequent development of medical statistics.

Acknowledgements. This is an essentially revised version of my
earlier Russian paper published in the Izvestia of the Petersburg
University of Economics and Finance, No. 3 – 4 (1995), pp. 144 –
151. Note 1 is written on the recommendation of Prof. R. Diez and I
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am also indebted to the reviewer who suggested that my Summary
should be largely rewritten.

Notes
1. His biography can be found in the Bolshaia Sovetskaia Enziklapedia, in vol. 19 of
its third edition available also in an English translation (Great Sov. Enc., 32 vols.
New York – London 1973 – 1983, see vol. 19, pp. 555 – 556).

Florence Nightingale was another participant in the Crimean war (on the other
side of the front) which occurred almost in the beginning of their professional
careers and profoundly influenced their scientific future. As is shown in the sequel,
and as it was natural for a physician, Pirogov only applied statistics in medicine
(more precisely, in surgery), whereas Nightingale was a versatile statistician. In
addition to important work in hospital statistics, on hygienic conditions in the British
army in India, etc., she engaged in various other issues of public interest (e. g., in
studying the results of the then recently established compulsory education). She was
able to secure help from leading statisticians (Farr); Pirogov however had to remain
a lone figure. On the statistical work of Nightingale see Kopf [1916]; Spiegelhalter
[1999].
2. Glück was also mentioned in the title of [5]; I quote from this source (pp. 25 –
26):

Müssen wir doch gestehen, dass es Leute gibt, die immerfort gute Karte
bekommen, und möge man von der Wahrscheinlichkeitslehre sagen was man will, so
ist es doch keineswegs ausgemacht, dass, wenn man z. B. eine gewisse, sogar
größere Zahl von Kranken in zwei Reihen teilt, sich diese Reihen gleichmäßig
gruppieren werden und dass die Zahl der günstigen Fälle auf beiden Seiten dieselbe
sein wird.
3. A related topic was the administration of prisons. Much earlier it was
convincingly argued that mortality in prisons greatly depended on the general way
of their management and that even a slight slackening of the routine could result in
an immense decrease of the death-rate among the inmates [Villermé 1829, p. 21].
4. An important feature, Pirogov continued, was

La constitution générale d’un hôpital. Cette constitution générale, comme étant la
consequence de l’organisation d’un hôpital, de son installation, de sa situation, et
enfin aussi souvent de certaines maladies que l’on traite particuliérement dans tel
ou tel hôpital.
5. And again [6, p. 2]:
Der Einfluss des Arztes aber, die verschiedenen Kurmethoden und die mechanische

Fertigkeit spielen so sekundäre Rolle, dass sie nur ein in der Masse kaum
bemerkbares Schwanken der Zahlenverhältnisse hervorrufen.

Concerning Kurmethoden Pirogov explained his idea elsewhere [7, p. 5]: each of
these sein eigenes Quantum des Schadens in sich enthält etc. Then, however, he
actually went back on his opinion, or at least qualified it [7, p. 688].
6. Cf. Darwin’s [1887, p. 143] feelings about an unnamed source, later proved to be
based on fabricated facts:

A Belgian author … stated that he had interbred rabbits in the closest manner …
without the least injurious effects. … I could not avoid feeling doubts, I hardly know
why, except that there were no accidents of any kind, and my experience in breeding
animals made me think this improbable.
7. I qoute:

Wenn aber in Resultaten der Forschungen über Letalität eines und desselben
pathologischen Prozesses oder einer und derselben Operation, bei einer
mittelgroßen Zahl von Beobachtungsfällen, bedeutende Schwankungen vorkommen,
so hängt dies offenbar davon ab, dass die Lehre von der Individualität, eine der
wichtigsten, noch so gut wie gar nicht existiert, und dass wir nicht einmal
annäherungsweise im Stande sind, die Verschiedenheit der Verhältnisse und der
subjektiven Eigenschaften verschiedener Beobachter zu taxieren. Wenn es mit der
Zeit gelingen wird, auch diese Momente in medizinisch statistischen Arbeiten einer
wissenschaftlichen Analyse zu unterwerfen und ein großes Beobachtungsmaterial
nach bestimmten Gruppen zu ordnen, dann werden und müssen auch die
Schwankungen in Bezug auf die Resultate immer geringer werden. Dann wird es uns
vielleicht möglich sein, auch das von der Persönlichkeit des Kranken und Arztes
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[did he think about skill or luck? Or about both?] sowie das von andern
Nebenumständen abstrahierte Verhältnis der Letalität jedes pathologischen
Prozesses und der Heilkraft jedes Mittels festzustellen.
8. Indeed:

Wenn das Studium der menschlichen Individuen so weit gefördert sein wird, dass
man jedes Individuum nach verlässlichen Anzeichen zu der einen oder der andern
scharf bestimmten Kategorie rechnen kann und andrerseits die Eigenschaften
bekannt sein werden, die eine jede Kategorie zum Widerstande wider äußere und
organische (innere) Einflüsse befähigen – dann wird auch diese Statistik mit ihren
ziffermäßigen Daten eine ganz andere Bedeutung bekamen.

Elsewhere Pirogov [7, p. 695] mentioned age and der noch völlig unbekannte
Grad der Vulnerabilität der Rassen and he also stated [9, p. 440] that

Außerordentlich verschiedene Ursachen teilen die ganze Masse der Data in zu
unbedeutende, einander sehr unähnliche Gruppen, welche keinen richtigen Schluss
über den Wert einer jeden Amputation zulassen.

This apparently meant that separation of cases into groups was a delicate
procedure.
9. A similar attitude (pp. 26 – 27) was to refer undesirable patients to other
physicians; again [6, p. 9], unsuccessful cases were not always recorded and in some
instances (application of the Listerian antiseptic bandage in the field [9, pp. 427 and
456]) arbitrary combination of data had been possible because of the ill-considered
forms of the record cards. Elsewhere Pirogov [10, p. 453] added:

Während meines Aufenthalts im Auslande hatte ich mich zu Genüge davon
überzeugen können, dass die wissenschaftliche Wahrheit bei weitem nicht der
Hauptzweck selbst berühmter Kliniker und Chirurgen ist. Ich hatte mich hinlänglich
davon überzeugt, dass in berühmten klinischen Anstalten gar oft Maßregeln nicht
zur Enthüllung, sondern zur Verdeckung der wissenschaftlichen Wahrheit getroffen
wurden.
10. I quote Raikov (Note 5, see p. 200) who did not regrettably justify his statement
concerning the beginning of the 1840’s:

Seine Zeitgenossen staunten über die Ehrlichkeit, mit der er selbstgemachte
Fehler nie verschwieg, sondern offen in der Spezialliteratur besprach.
11. Denoted here and below by [7R].
12. Simpson [1847 – 1848, p. 102]:

The data I have adduced … have been objected to [by whom?] on the ground that
they are collected from too many hospitals, and too many different sources. But, on
the contrary, I believe that our highest statistical authorities will hold that this very
circumstance renders them more, instead of less, trustworthy.
13. Not needed.
14. Here it is [9, p. 529]:

Wenn wir gewillt sind alte, sich immer wiederholende Fragen der Kriegschirurgie
mit Hilfe der Statistik zu entscheiden, so ist … ein besonderes Institut von
Spezialisten erforderlich, welche verpflichtet sind auf den Verbandplätzen und in
den Hospitälern … persönlich zugegen zu sein.
15. Here is his final statement.

Nur auf diese Weise [only after fulfilling all of them] könnte, nach meiner
Ansicht, die kriegschirurgische Statistik auf die Stufe der exakten Wissenschaft
erhoben und dann auch zur Bestimmung der das Schicksal von Tausenden von
Verwundeten entscheidenden Indikationen auf dem Verbandplätze benutzt werden.
So lange aber dieser Vorschlag nur eine philanthropische Utopie bleibt, so lange
wird auf gleiche Weise auch das Streben, eine wissenschaftliche Indikation für die
Erhaltung .und die Amputation des Glieds bei komplizierten Knochenschuss-
verletzungen stellen zu wollen nur als Utopie angesehen werden dürfen.
16. I am now quoting from both (non-identical) versions of the same source [7].
17. Thus, he [2, p 191; 3, pp. 7 – 8] previously remarked that in some cases
anaesthesia had increased the rate of mortality (because of subsequent respiratory
complications). True, even then he doubted the accuracy of the data which included
his own records and he had also noted that amputations without anaesthesia had
been partly performed in small clinics, that is, under better hygienic conditions.
Surprisingly, he did not add that the new procedure enabled the surgeon to widen
essentially his possibilities.
18. He said much the same elsewhere [6, p. 2]:
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Jede Krankheit und jede chirurgische Operation in Bezug auf nichtgelingen und
tödlichen Ausgang ihr festes und bestimmtes Verhältnis hat. Dies Verhältnis hängt
ab von der kontinuierlichen Einwirkung der äußeren Bedingungen auf die
verschiedenen Krankheitsformen, von der Natur der Krankheit, von der
Individualität der Kranken, so wie von der Art des traumatischen Eingriffe der mit
jeder Operation verbunden ist.

Here is another early statement [4, p. 382]: mortality is constant for any epidemic
as well as for mass considerable operations. And, again [7‚ p. 5]:

Ich neige zur Ansicht, dass die Letalität jedes pathologischen Prozesses, jeder
Verwundung und jeder Operation, die verschiedensten Verhältnisse ungeachtet,
doch im Ganzen etwas Konstantes und bestimmtes sein muss.
19. And [6‚ p. 8]

Nur in wenigen chirurgischen Krankheiten kann das Sterblichkeitsverhältnis, die
äußeren Bedingungen mögen sein wie sie wollen, durch eine ziemlich konstante
Ziffer ausgedrückt werden …

Later he repeated this opinion with regard to the amputations of the thigh [9‚ p.
440].
2(). He [9‚ p. 442] expressly stated that Widersprüche und Inkonsequenzen remain
unausbleiblich if conclusions were based on a small number of observations.
21. In the same source Pirogov [9‚ p. 525] formulated a test for the advisability of
the conservative method of treating injured limbs:

Ob das Minimum der Mortalität bei konservativer Behandlung der
Schussfrakturen des Oberschenkels und des Knies plus dem bekannten Mortalitäts-
prozent der sekundären Amputationen (als Folgen der konservativen Behandlung)
gleichkommen wird dem Minimum der Mortalität nach primären Oberschenkel-
amputationen bei denselben Verletzungen.
22. A similar statement is in [9‚ p. 297].
23. Also [8, pp. 48 – 49]:

Wovon hängen die Erfolge der Behandlung oder die Mortalitätsverminderung in
den Armeen ab? Doch gewiss nicht von der Therapie und der Chirurgie an und für
sich. … Für die Massen steht von der Therapie und Chirurgie ohne eine tüchtige
Administration auch in Friedenzeiten wenig Nutzen zu erwarten; um so weniger also
noch bei solchen Katastrophen, wie ein Krieg.
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XV

Oscar Sheynin

Social statistics and probability theory in the 19th Century

Historia Scientiarum, vol. 11, No. 1, 2001, pp. 86 – 111

Based on a large number of sources, this paper traces the relation
between statistics (excluding demography) and the theory of
probability in the 19th century and links this subject with the
development of the statistical method in natural sciences. The battle
between the partisans of the Staatswissenschaft and the adherents of
political arithmetic continued well into the mid-19th century, and,
except for some mean indicators, probability hardly entered statistics
before Lexis. The causes of this situation were the contemporaneous
absence of many issues introduced into statistics in the 20th century as
well as the real or imaginary difficulties of applying probability.

1. Introduction
By social statistics I understand statistics in its usual sense but

without population statistics and I depict my subject as it developed
before the 20th century, mainly in the 19th century.1 Medical statistics
is traditionally treated as a discipline in its own right2 and,
accordingly, I left it out. Neither did I study the beginnings of the
Biometric school except for linking its approach with empiricism.

Among my main sources are Knies (1850), the contributions of
Bortkiewicz and Chuprov and a number of my own writings (the
overlapping with which is minimal). I examine the period before and
after 1850 in §§ 2 and 5 respectively; a separate section (§ 3) is given
over to Quetelet and in § 4 I discuss empiricism as it was manifested
in statistics during the entire 19th century. Finally, in § 6 I offer a few
remarks on the work of Lexis.

My article is a comprehensive account of its subject. For the first
time ever, I linked it with the history of the statistical method in
natural sciences; the relevant documentation is in my previous papers,
see the References. Then, new material is contained in § 2.4 (the
essence of the battle between the two approaches to statistics) and in
§§ 5.2 and 5.3 which explain the late introduction of probability
theory into statistics. Finally, I described many unknown or hardly
known statements of Chr. Bernoulli‚ Butte, Humboldt, of many
Russian authors, et al, as well as Chebyshev’s opinion on the need to
reconstruct the theory of probability (Note 42).

2. The situation before 1850
2.1. Mathematics. The infantile stage of the theory of probability

ended in 1713 when Jakob Bernoulli’s law of large numbers was
published and became the bridge between probability and statistics.
Bernoulli also thought of, but did not have time for applying
probability to civil, moral and economic issues.

Referring to his unaccomplished goal, Montmort (1713, p. xiii)
reported that he chose not to apply probability to the sujets politiques,
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oeconomiques ou moraux; he was reluctant to faire des hypotheses
and lefl this subject à une autre temps. Then Montmort (p. xvi) added
that le caprice guided men much more than la raison and that (p. xix)
the postponed task would have demanded the disregard of free will,
cf. Note 29. Finally, he (p. 322) stated that he had quelques
[appropriate] idées & quelques materiaux, but that he was unable to
study this subject with mathematical precision.

The first direct use of probability in statistics was due to Arbuthnot,
who, in 1712, examined the sex ratio at birth by employing a quite
elementary stochastic analysis. The same problem prompted De
Moivre to prove, in 1733, the De Moivre – Laplace limit theorem, as it
is now called.4 Daniel Bernoulli invariably based his statistical studies
(mortality from smallpox; duration of marriages; and, again, the sex
ratio at birth) on probability.

In statistics, Laplace is mostly remembered for his estimation of the
population of France by means of sample data.5 He also systematically
examined the statistical significance of empirical discrepancies and
small effects both in natural sciences and population statistics. Then,
following Condorcet, he applied stochastic methods to study the
testimonies of witnesses and the verdicts of law courts. Only in
passing he (1812, p. 523) noted that he had assumed mutual
independence of the judges (or jurors), and this shortcoming led to the
denial of such applications of probability. That his (and Poisson’s
later) arguments helped to understand the administration of justice in
the ideal case was not recognized; true, Cournot (1843)6 described this
subject without criticizing him.

Laplace (1814, p. 62) not only urged scientists to apply the method
based on observation and calculus to the political and moral sciences;
he also noted the [relative] constancy of dead letters and of the profit
gained from lotteries (p. 37). Still, moral applications of probability
were difficult, cf. Montmort’s opinion above. Fourier (1821a, pp. iv –
v) declared that

L’esprit de dissertation et de conjectures est, en général, oppose
aux véritables progrés de la statistique, que est surtout une science
d’observation. Somewhat before 1826 he (Quetelet 1869, t. l, p. 103)
stated that such progress was only possible if statistics be confined to
subjects examined by théories mathématiques, but he did not mention
the theory of probability.

Gauss is known to have been collecting various statistical data,
partly for his own pleasure. He also studied infant mortality, mortality
of the members of tontines and occupied himself with life insurance
but apparently without applying any serious stochastic considerations.

Poisson resolutely supported the application of probability theory to
the baute statistique. Thus (Libri Carrucci et al 1834, p. 535):

The most sublime problems of the arithmétique sociale can be
resolved only with the help of the theory of probability.

Social arithmetic was a short-lived term, possibly coined by him; it
denoted demography, medical statistics and actuarial science (Sheynin
1978, pp. 296 – 297). Poisson et al. (1835, p. 174) also argued that

Statistics carried into effect is, after all, always the functioning

122



mechanism of the calculus of probability, necessarily concerning
infinite masses, an unrestricted number of facts.

Referring to his correspondence with Poisson, Quetelet (1869, t. l,
p. 103) testified that the former had parfois derisively expressed
himself about those statisticians who were apt to substitute their
fantasies for the véritables principes de la science. Poisson (1837)
systematically studied the statistical significance of empirical
discrepancies and Cournot (1843, end of Chapt. 8), who referred to
Bienaymé, and Lexis (1875, p. 103ff) followed him. His former
student, Gavarret, who later took to medicine, advocated such
methods as the comparison of two differing treatments and the check
of null hypotheses (1840). On his p. XIII he warmly acknowledged
Poisson’s influence.8 Poisson may well be called the godfather of the
Continental direction of statistics (§ 6; cf. Note 51).

Cournot (1843), as the context of his Chapt. 9 testifies, was all for
the connection of probability and statistics. Bienaymé (Guerry 1864)
stated that it was absolument impracticable to separate the two
disciplines. Nevertheless, opposition to such a link became fierce,
although it was mostly directed against the application of probability
for examining the work of the law courts and the voting procedures.
One such antagonist was Poinsot (Poisson 1836a‚ b).9 Much later
Poincaré (Le procés Dreyfus 1900, t. 2, p. 331) voiced a similar
opinion.

Quetelet (Congrés 1873, p. 139) mentioned a related point. He
noted that [apparently in the mid-century] mathematicians had moved
away from statistics10 which resulted in large mistakes in calculations.
He did not elaborate and he could have said moved away from
probability theory.

2.2. Political arithmetic. It came into being in the mid 17th century.
Neither Petty, who coined this term, nor his friend and colleague
Graunt (1662) ever defined it, but they strove to base their studies on
numerical data and shrunk from applying qualitative characteristics.
Graunt was able to use fragmentary statistical data for estimating the
population of London and England and to compile the first mortality
table. Already the title of his book implied that Graunt attempted to
study the influence of various factors on mortality; and he also made
several conclusions about London (a Head too big for the Body, p.
320), the electoral system, etc. In the 1680s, Leibniz wrote several
manuscripts (first published in 1866) partly devoted to political
arithmetic and recommended to compile Staats Tafeln, with or without
using numbers (Sheynin l977b, § 2.4.4).

Süssmilch is best remembered for originating demography, and,
especially, for compiling a life table which continued in use well into
the 19th century. He attempted to prove divine providence by revealing
the stability of vital statistical ratios (e.g., of deaths to births). And,
like Graunt, Süssmilch discussed the pertinent causes and offered
conclusions. Thus, he (1758) thought of examining the dependence of
mortality on climate and geographical position and he knew that
poverty and ignorance were conducive to the spread of epidemics.

Statistics (in the modern sense) thus took over from political
arithmetic. However, since Achenwall’s disciples continued to include
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the former in the Staatswissenschaft (§ 2.3), the latter term persisted
for a long time in statistical writings.

2.3. Staatswissenschaft. This was a branch of science founded by
Conring (1606 – 1681), and Achenwall (1719 – 1772) first presented it
systematically. According to both scholars, the aim of the
Staatswissenschaft or statistics (!) was to describe the climate,
geographical position, political structure and economics of a given
state and to estimate its population.11 It is to Schlözer (1804, p. 86),
Achenwall’s most eminent student and a member of his Göttingen
school of statistics, that this discipline owes its celebrated early
definition:

Geschichte ist eine fortlaufende Statistik und Statistik eine
stillstehende Geschichte.12

He thus opposed political arithmeticians by leaving aside the study
of causes and consideration of probable developments.

2.4. The competition. The fierce competition between political
arithmetic and Staatswissenschaft continued for more than fifty years
with the points of dissent being both the subject and the method of
research.

1) The subject. Political arithmeticians persistently concentrated on
population statistics, whereas, during the time from Achenwall to
Bluntschli (1867, p. 152), the subject of the Staatswissenschaft
narrowed. The latter did not anymore include climate or political
structure in its province, nor did he equate Staatswissenschaft with
statistics.13 Another innovation consisted in that the previous stress on
political problems was even earlier replaced by focussing
Staatswissenschaft on both politics and economics (on both
government and society). Knies (1852, p. 654) connected this second
change with Schlözer’ s statement.

Several Russian statisticians sided with Schlözer. Herrmann (1809,
p. 47) argued that statistics did not judge and Poroshin. (1838, p. 101)
declared that the statistician was not obliged to treat causes or
consequences. In France, Delambre (1819, p. LXVII) argued that
statistics exclut presque toujours les discussions et les conjectures.14

His next phrase was also significant:
L’ arithmétique politique … doit aussi étre distinguée de la

statistique.
And the London (later, Royal) Statistical Society declared

(Anonymous 1839, p. 1) that statistics does not discuss causes, nor
reason upon probable effects15 so that all conclusions shall admit of
mathematical demonstrations (p. 3). The second proposition was also
too restrictive. It is now known that statistics can reject a hypothesis
(stochastically rather than in the implied sense of the Society’s belief),
but that it can hardly demonstrate a positive conclusion.

The Society then stated that statistics are connected with or enter
into several sciences; and declared that statistics enter more or less
into every branch of science (Ibid.‚ pp. 2 and 3). Thus, they did not
recognize statistics as a separate discipline (witness also the appeared
plural form!), nor did they mention mathematics at all. At the same
time, they did not agree that statistics consist merely of columns of
figures, cf. § 4.2. The proponents of the other viewpoint were also
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numerous. Even in the 18th century Gatterer (1775, p. 15) declared
that, just like history ought

Nicht nur das Pourquoi, selbst auch das Pourquoi von dem
Pourquoi zu erforschen, so wird es auch bey der Statistik ... den
gegenwärtigen Zustand eines Staat aus dem vergangenen Zustände
begreiflich zu machen.

The author likely borrowed his French expression from Leibniz
(Krauske 1892, p. 680 with no reference provided):

Das Warum des Warum hätte sie [Sophie Charlotte, Queen of
Prussia] am liebsten ergründet, wie Leibniz meint.

Obodovsky (1839, p. 113) and Knies (1852, p 661) argued that the
Schlözer definition of statistics (§ 2.3) was inadequate because it
excluded the study of causes. Vernadsky (1852, p. 223) quoted the full
title of Dufau (1840) which strengthened his conclusion (pp. 224 –
225) that the [main] goal of statistics was to discover the appropriate
laws.

Knies (1850, p. 68) quoted the same title and cited from Dufau (p.
144):

La statistique a pour objet de conduire … à la découverte des lois
d’aprés lesquelles se développent les faits sociaux.

Also see Niemann’s opinion in Note 26.
2) The method. Are numbers sufficient for describing a state? This

issue is related to the application of mathematics to other fields of
knowledge. A statistician (say) should work together with a
mathematician rather than reject the 1atter’s science. Numbers met
with resolute opposition. In 1806, the Göttingische gelehrte Anzeigen
(John 1883, p. 670; author’s name not given) denounced political
arithmeticians who had attempted to make others believe that one
could ascertain the importance of a state by numbers. John also
quoted another source from 1811, again without naming the author,
who had stated that measuring everything by numbers was supremely
ridiculous.

A strange utterance was due to Mone (1824), see Knies (1850,
p.„80):
Une description simple va au fond des choses, tandis que les

nombres et les täbleux [§ 4.2] s’arrétent a la surface.
Then, Roslavsky (1839, pp. 181 – 182) thought that the number

element was an innovation [?] to be admitted with greatest caution.16

On the other hand, not only political arithmeticians, some
statisticians17 and the partisans of the numerical method (§ 4.1)
recognized the primary importance of numbers. In 1838, Humboldt
(Knies 1850, p. 145) declared that

Im politischen Haushalt, wie bei Erforschung von Natur-
erscheinungen sind die Zahlen immer das Entscheidende; sie sind die
letzten unerbittlichen Richter.

Provided that the numbers are not objected to, there still remains the
issue of mean statistical indicators. It was Quetelet (§ 3.2) who
introduced both them, and, actually, probabilities into statistics even
beyond demography. Vernadsky:(1852, p. 228) declared that
statistical laws were only revealed in mean values, and Yanson (1871,
p. 264) more correctly argued that
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The entire aim of statistics consists in constructing mean values
and studying deviations from them.18

In 1850, bearing in mind natural sciences, Humboldt (Sheynin
1984b, p. 68, note 36) stated that die einzig entscheidende Methode
was that of the Mittelzahlen. However, even if a statistician accepts
the traditions of political arithmetic, he (Knies 1852, p. 660)

Verwirft aber entweder die Anwendung der Wahrscheinlichkeits-
rechung [actually: of means], weil ihr Ergebnis kein adäquater
Ausdruck der Wirklichkeit ist, oder will zum Mindesten die Operation
des Statistikers keinenfalls auf sie beschränkt wissen.

Also see Note 17.
And so, the main conclusions concerning the first half of the 19th

century are
a) The battle between political arithmeticians and the followers of

Achenwall and Schlözer was not yet decided.
b) The theory of probability hardly entered statistics.
A special remark: Knies (1850) reasonably inferred that only

political arithmetic represented statistics proper, and he even called
this discipline mathematische Statistik (p. 163). Vernadsky (1852),
who referred to Knies on another occasion, repeated this term on his p.
237.

3. Quetelet
3.1. His work. Quetelet followed the traditions of political

arithmeticians. He (1846, p. 351) recommended to study the changes
brought about by the construction of telegraph lines and railways and
even to work out ideas on the future of the population (1829, p. i;
1843, p. 27).19 Then he (1845, p. 207) distinguished between constant,
variable (in particular, periodic) and accidental causes20 and stated that
statisticians should eliminate the last-mentioned ones and study the
constant and variable causes. Here is his example. A small number of
the newborn is not registered and the ensuing mistake in the sex ratio
at birth is random. If, however, some newborn sons are concealed in
order to save them from military service, the corruption becomes
variable, depending on the chances of war (1846, p. 193).

Another illustration concerned meteorology. Confirming a
contemporaneous and correct belief in that fair or foul weather tended
to last (1852, p. 57), Quetelet examined this fact by applying elements
of what is now called the theory of runs.

Preceding Quetelet by a few years, Cournot (1843, §§ 104 and 117)
isolated causes acting in the same way on a whole series of trials, and
in the second case he referred to Bienaymé, see Heyde & Seneta
(1977, p. 43). Apparently no one mentioned astronomy where
systematic errors (and therefore systematically acting causes) were
undoubtedly known to Tycho if not to Ptolemy. Quetelet also
quantitatively studied the significance of causes and Yule highly
praised his reasoning (Sheynin 1986, § 5.6).

3.2. Mean inclinations. Quetelet introduced the [mean] inclinations
to crime and to marriage. Subsequent statisticians vigorously attacked
the former; Rümelin (1867, p. 25) declared himself free of any such
inclination, but, at the same time, he agreed that the conclusions
derived from an appropriate mortality table were valid for him also.
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He was thus inconsistent. Moreover, unlike Quetelet, e. g. (1848, pp.
82 and 93), he apparently had not noticed that mean statistical
indicators did not necessarily apply to any given person.21

3.3. The theory of probability. Fourier22 rather than Laplace (as it
is usually stated) influenced Quetelet. Even when popularizing the
theory of probability, Quetelet never mentioned the latter’s main
stochastic tool, the central limit theorem; in general, he made many a
nice pronouncements, e. g. (1869, t. l, p. 134), on the theory but used
it rather seldom and unprofessionally. Thus, when introducing his
Average man, he did not mention the Poisson law of large numbers
although he cited it on another occasion (1846, p. 216).23

True, Quetelet (1869, t. l, p. 112) argued that, because of large
mistakes in the data, mathematical corrections were useless. Indeed,
the situation was likely dangerous, but only mathematics can detect
such errors, at least to some extent. More precisely, it is the modern
exploratory analysis, an important chapter of theoretical statistics, that
critically appraises the data. This analysis is largely informal, and,
what is noteworthy, Quetelet himself repeatedly advocated such
studies, see for example his Lettres (1846), and revealed gross errors
and deliberate distortions in official figures. His reference to
mathematical corrections was thus unclear but it possibly reflected a
widespread feeling.

Quetelet’s simplest procedure here (1846, pp. 199 and 308 – 311)
was to separate the data into groups and to study these one by one.
Closely linked with the examination of data is the estimation of their
plausibility whose importance in those times was apparently not yet
duly recognized (cf. § 4.2.5); for one thing, the variance was then
hardly used beyond the theory of errors as a measure of unreliability.
Indeed, in 1869 the International Congress of Statistics (Congrès
1870, p. 534) recommended that statistical investigations be
accompanied by information on the number (n) of observations (xi,)
made and on the differences (xi – xj), i ≠ j, and [xi – (l/n)∑xi]. The
variance was obviously still lacking!

One more point was there included: It was desired to indicate both
the means and the number of oscillations so as to calculate the mean
deviation of the results of a series from its mean. This advice was
formulated awkwardly, but it seems that at least a subdivision of
observations into series was thought about.

All these recommendations followed upon the statement of the
preceding Congress (Congrès 1868, p. 6) that statistical questions
should have their scientific base in mathematics and should be studied
in direct connection with the theory of probability.

Quetelet who died m 1874, is known to have greatly influenced the
work of these congresses which regularly took place from 1853 to
1876.24

3.4. Conclusions. Pearson (1924, p. 420) highly praised Quetelet’s
achievements in organizing official statistics in Belgium and in
unifying international statistics and called him the great Belgian
statistician (Ibid.‚ p. 12). Indeed, Quetelet was a highly respected
scholar who originated moral statistics,25 shaped statistics into an
important scientific discipline and remained its main representative for
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a few decades. As the material above (aims of statistics; initial
examination of data; study of causes) testifies, his work undoubtedly
belonged to political arithmetic or statistics proper.

At the same time, he was careless when teaching his conclusions.
Thus, he wrongly claimed that the [relative] crime figures were stable.
Moreover, Quetelet did not adequately qualify his statements and his
attractive style diverted the attention of his readers from studying his
contributions more attentively. Indeed, how else can we explain that
subsequent statisticians mistakenly assumed (§ 3.2) that his mean
inclination to crime was directly applicable to any individual?
Consequently, suchlike indicators (and probabilities in general)
associated with Queteletism, along with the theory of probability in its
entirety, became regarded with suspicion as an abstract theory.

4. Empiricism
4.1. The Numerical method. This is usually attributed to the

French physician Louis. He and his followers strove to base
themselves on statistical data rather than on doubtful, incomplete or
wrong information [faits] (Louis 1825, p. XVII), but they hardly ever
applied stochastic considerations or studied causes. This method,
whose advocates had actually appeared in medicine by the end of the
18th century (Black, in 1788), remained in vogue until ca. 1850.

Furthermore, it was actually used in other branches of natural
sciences as well, for example in biology (Aug. De Candolle, in 1832).
The spread of cholera was explained (Snow, in 1855) just by
subdividing the data m two groups.

At the same time, however, this attitude was not sufficient. Thus,
astronomers were unable to abandon theories on the structure of the
stellar system although Proctor, in 1872, had plotted 324 thousand
stars on his charts with the express goal of doing away with all such
theories.

Another aspect of the numerical method was the desire to amass
observations. Pettenkofer, in 1886 – 1887, who hardly recommended
it openly, published a monstrous survey of writings on cholera
epidemics adducing a large number of graphs and tables, but he was
unable to analyse his data.

At least in natural sciences the abundance of materials led to the
wrong opinion that mass heterogeneous data were better than a small
number of reliable observations. In 1847 – 1848, Simpson collected
information on mortality from amputations pertaining to many
hospitals for the period 1749 – 1846 and declared that this fact
ensured trustworthy conclusions for the future. More definitely,
William Herschel, in 1817, argued that the size of any star of the first
seven magnitudes promiscuously chosen out of the 14 thousand of
them will not be likely to differ much from a certain mean size of them
all. He naturally did not know that with respect to their size stars
enormously differed one from another, cf. Note 21.

4.2. Empiricism. In actual fact, the numerical method originated in
1741 with Anchersen, when statisticians have begun to describe states
in the tabular form (as foreseen by Leibniz, see § 2.2) and thus
facilitated the use of numbers. Achenwall, however, opposed tabular
statistics which was in essence a connecting link between the

128



Staatswissenschaft and political arithmetic. It continued to be
victimized (Knies 1850, p. 25; also Knies 1852, p. 658):

Man unterschied zwischen höherer [Achenwallian] und gemeiner
Statistik … bis auf unsere Tag.

At least by implication, the latter kind of statistics was not only its
tabular form, but political arithmetic as well. Recall (§ 2.1) that
Poisson apparently identified political arithmetic with the haute
statistique!

From 1827 onward the French Ministère de la Justice had been
publishing its yearly Compte général …‚which led to the origin of
criminal statistics. In general, those who collected and applied
statistics of some kind rapidly increased in number so that some
confusion had to occur26 and later statisticians (Mayr 1874, p. 26) had
to deny the purely empirical approach:

Die amtlichen Statistiker seien zu etwas Höherem als zu bloßen
Tabellenknechten berufen.

Nevertheless, Chuprov (1903, p. 42; 1905, p. 422) accused
practitioners (perhaps even some of those who kept to political
arithmetic):

a) Such statisticians who observe without thinking about the why or
the how, who make most involved computations without
understanding where all their multiplications and divisions might and
will lead them, are extremely numerous. And statistics has to thank
them for its ill fame.

b) Allgemein anerkannte Prinzipien, an denen die Richtigkeit der
Schlüsse und die Zweckmäßigkeit der angewendeten Methoden
geprüft werden könnten, gibt es gegenwärtig in der Statistik gar keine.

Sei es nun auch bloß, um die Individualwillkür einzuschränken und
den Ergebnissen der statistischen Forschung das wichtigste Abzeichen
der Wissenschaftlichkeit, die Allgemeingültigkeit, zu verschaffen, muss
demnach das gegenwärtige empirische Verfahren der Statistiker
rationalisiert werden.

4.3. Biometry. To make the next step: Anderson and Chuprov
properly accused the Biometric27 school of empiricism (Sheynin 2011,
§ 15.3). Thus, Chuprov (1918 – 1919, pp. 132 – 133) stated that
English scientists had avoided the concepts of probability and
expectation (restricting their attention to the appropriate empirical
indicators)28 and concluded:

Nicht Lexis gegen Pearson, sondern Pearson durch Lexis geläutert,
Lexis durch Pearson bereichert sollte gegenwärtig die Parole deren
lauten, die, von der geistlosen Empirie der nachqueteletischen
Statistik unbefriedigt, sich nach einer rationellen Theorie der Statistik
sehnen.

5. Statistics in the second half of the 19th century
5.1. The general situation. Fourier (§ 2.1) and Cauchy (Ibid., Note

9) declared that statistics should be based on mathematics and Poisson
(§ 2.1) resolutely stated that the theory of probability ought to be this
foundation. Cournot (1843, § 105) argued that statistics should be
applied to phenomena both of the ordre physique et naturel and of the
ordre social et politique. And in § 113 he added, without any
qualification, that the theory of probability was not indifférente for
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statisticians. His §§ 111 – 114 meant that stochastic calculations
should be accompanied by statistical reasoning.

Quetelet is known to have considered his Average man as a
specimen of both physical and moral qualities; he thus believed that,
at least to a certain extent, stochastic reasoning was applicable to
sociology.29 And here are a few related pronouncements. Chr.
Bernoulli (ca. 1842, p. 17):

Das numerische Verhältnis der jährlichen Trauungen, der
unehelichen Geburten oder der Findelkinder variirt fast überall
weniger als das der Sterblichkeit ...

Guy (1885, p. 85) repeated his earlier opinion of 1869:
Subject to many exceptions, ... events brought about by physical

causes are subject to greater fluctuations ... than events in the
production of which the will bears a part.

Cournot (1843, § 118) even thought that the figures of criminal
statistics were more stable than those determined by the concours des
forces aveugles de la nature because the causes of different crimes
were virtually independent one from another. His conclusion hardly
followed from this independence (which in itself was dubious).

Bortkiewicz (1894 – 1896, p. 356) stated that
Diejenigen statistischen Größen, die sich in die Schemata der

Wahrscheinlichkeitsrechnung am ehesten fügen lassen, zugleich
solche sind, die meistens kein großes materiell-statistisches Interesse
in Anspruch nehmen können.30

He was thus sceptical, but on p. 360 he added that a Richtung der
theoretisch statistischen Forschung recognized that the
Massenerscheinungen der menschlichen Gesellschaft can only be
understood aus den Prinzipien der Wahrscheinlichkeitsrechnung.31

Bortkiewicz linked his first passage with the concluding pages of
Lexis (1879) whose exposition was there rather indefinite; he likely
thought about the case of constant probabilities (see § 5.3.2). Here, I
note that Bortkiewicz (1904, p. 241) and Chuprov (1905, p. 424),
without providing the exact reference, remarked that, according to
Lexis, the menschliche Handeln fell ganz außerhalb des Rahmen der
Naturgesetzlichkeit.

Chuprov (pp. 473 – 474n) also stated that previous theoreticians of
statistics were inclined to contrast nature with man and society. The
Editor of the Russian edition of Chuprov’s collected papers, his
student N. S. Chetverikov (Chuprov 1960, p. 85), mentioned here
Chuprov’s later statements where his teacher argued that this point of
view was definitely obsolete. He did not cite anyone (see above).

Lexis (1877, p. 5) stated that statistics was mostly based on
probability and that (1903, p. 241) the

Schema der Wahrscheinlichkeitsrechnung was auch die höchste
wissenschaftliche Form in welche die Statistik ihren Stoff fassen kann.

And (p. 230) the only [but most essential] aim of applying
probability was to obtain‘ ein verständliches Schema für die
Verteilung der Fälle und … einen Maßstab für die Stabilität der
statistischen Verhältniszahlen [§ 6] zu bieten.
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Lexis (pp. 242 – 243) also reasonably thought that the causes of
social phenomena should be ascertained by the use of both stochastic
and deterministic methods.

5.2. The subjects not yet/hardly studied by statisticians. Several
important subjects were not yet, or hardly studied in the 19th century
which partly explains the situation in statistics.

1) Correlation. Galton introduced the concepts of regression and
correlation in the last decades of that century but Continental
statisticians did not then become interested. True, in 1912, in Russia,
Slutsky published an important treatise explaining the correlation
theory to his fellow-countrymen. Kolmogorov (1948) thought that this
contribution was still important, but then, in 1912, Markov opposed it
(Sheynin 2011, § 7.4.1). Markov (1916, pp. 200 – 202) again
criticized the correlation theory, and Linnik, in a modern commentary
to Markov, agreed in that correlation was then not yet sufficiently
developed.

It is noteworthy that Seidel and Kapteyn pyblished findings related
to correlation theory. I mentioned the former in § 1 (Note 2); and the
latter, in 1912, being dissatisfied with Galton’s work, introduced his
own correlation coefficient for applications in astronomy.

Kaufman (1922, p. 152) stated that the
So-called correlation method … does not essentially add anything

to the results of an elementary analysis.
It seems however that at least a comparison of two cases, of two

appropriate correlation coefficients, could have been interesting for
understanding where the connection between factors was tighter. And
the sign of the coefficient is also important.

2) Sampling. Its prehistory goes back to the 12th century when the
checking of the quality of coinage began in England (Stigler 1977).
Simplest sampling estimations of harvest were made in Russia from
the 17th century onward (Ptukha 1961). Laplace (§ 2.1) applied
sampling for estimating the population of France, and Buniakovsky, in
1846 (Sheynin 1991b, p. 211), in essence repeated his study. Fries
(1842, p. 148), Knies (1850, pp. 152 – 153) and Kries (1886, p. 241)
utterly rejected Laplace’s investigation whereas Cournot (1843)
passed it over in silence. Knies also remarked that sampling became
widespread in the nächstvergangenen Zeit. Fourier (1821b,
p. XXXVIII) mentioned sampling without any misgivings, but later
authors, just as those referred to above, were critical. Moreau de
Jonnès (l847 pp. 53 – 54) cited Vauban, a military engineer and a
marshal of France‚ who, at the beginning of the 18th century, had
examined the agricultural production of France by sampling and
argued that this procedure semble étrange aujourd’hui. Quetelet
(1846, p. 293) thought that sampling should be avoided and John
(1896, p. 39) mentioned it disapprovingly.

Bortkiewicz (1904, p. 252) and later on Chuprov, see below, stated
that Mayr was opposed to sampling. This pronouncement seems
plausible, but I am unable to confirm it. Bortkiewicz (1901, p. 825)
also argued that the compilation of data in the 19th century brought
about the decline of sampling (of Konjekturalberechnung, as he called
it)32 but he also mentioned the pioneer work of Kiaer. In 1904 and
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even in 1893 Kapteyn began to consider the stellar universe as a
stochastic entity and in 1906 he initiated its international
sampling study.

It seems that neither this example, nor the progress in medical
statistics, which had to make use of inductive methods, influenced
statisticians engaged in sociological studies.

Chuprov (1906, p. 706) stressed the importance of sampling for
obtaining materials concerning the time period between adjacent
censuses, but he warned his readers against arbitrary assumptions, His
father (Chuprov, A. I., 1894) upheld sampling as a means for
supplementing previous full-scale statistical investigations.33 In 1910
A. A. Chuprov delivered a popular report on sampling (Sheynin
1997a). He indicated (p. 662) that Mayr and several other like-minded
statisticians had opposed this procedure. Although he did not say so
directly, the context of his report clearly shows that Chuprov
reasonably believed in a great future for sampling.

Czuber (1921, p. 13) still associated sampling with Konjektural-
rechnungen and apparently regarded it as an obsolete method.

3) The study of public opinion. This is inseparably linked with
sampling. Small (1916), who reviewed sociology in the USA during
1865 – 1915, did not even mention such investigations (and hardly
discussed statistics).

4) Statistical control of quality began in the 1920s (Shewhart 1931).
True, in 1848 Ostrogradsky suggested sampling for checking the
quality of goods supplied in batches but his recommendation was
hardly noticed (Sheynin 1991b, pp. 206 – 207).

5) Estimation of precision. Until the 1920s statisticians had not
studied it. Even Cournot (1843) actually followed Fourier rather than
Gauss and did not therefore directly describe the use (or the benefits)
of the variance (for the case of repeated observations). Kries (1886, p.
180) remarked that the probable error of weighing a chemical
substance with a sufficiently precise balance was of no significance
and that, in general, the calculation of aller Wahrscheinlichkeiten
might be sogar irreführend.

Mayr (1914, p. 46) did not recognize verfeinerte investigations of
plausibility which were still unable, as he declared, to distinguish
between errors and deviations from the assumed model.

And here is _Bortkiewicz (1894 – 1896):
Die Präcision einer statistischen Größe ist stets als etwas

Accessorisches anzusehen (p. 353); the statistische Sinne hardly ever
errs so that the calculation of precision in each case is a Luxus; and the
value of the probability that characterizes our conclusions is not
important if it is not sufficiently close to unity (p. 354). Only the last
phrase seems to be quite correct.

The statistical feeling should apparently be supplemented by
considering the results of similar previous investigations whose
precision had since became known; by subdividing the data into
groups and comparing these one with another; and, generally, by
critically examining the data, cf. § 3.3. And I quote Chr. Bernoulli’s
sound opinion (ca. 1842, p. 6):
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Eben so gewiss aber werden wir eine vorhandene Gesetzmäßigkeit
in diesem Sinne [of large numbers] anerkennen müssen, so oft wir
nach solchen Beobachtungen Ergebnisse sich beständig und in
demselben numerischen Verhältnis wiederholen sehen, und zwar wie
sehr auch die Ereignisse vom Zufall oder dem menschlichen Willen
abzuhängen scheinen, oder wie sehr wir über die eigentliche Ursache
im Dunkeln sein mögen.

I still have to refer to Kaufinan (1913, p. 105) who described a
modern-looking procedure without however providing any examples
or explaining it in any detail. He recommended to construct an
empirische Abweichungskurve and to compare it with the
appropriate theoretisch berechneten Kurven.

6) Econometrics originated only in the 1930s and united statistics
with the appropriate branches of economics and mathematics. The
disputes about the relation between statistics and political economy
(economics) became meaningless.

5.3. Difficulties (real and imaginary) of applying the theory of
probability. There existed real and imaginary difficulties in applying
the theory of probability. When discussing the restrictions governing
the theory, statisticians invariably stated that the trials of a given series
should be [mutually] independent; the probabilities of success in these
trials should be constant. The very concept of probability, based on
the existence of equally possible cases, was hardly fit for applications;
the theory was too abstract; and its law of large numbers was of little
use.

I take up these points one by one and I show that in the first two
cases some thought was given to broadening the scope of the
application of probability.

l) I list three items. a) The problem of the extinction of families
(that is, the prehistory of simple branching processes) goes back to
Bienaymé (Heyde & Seneta 1977, § 5.9). b) Kries (1886, pp. 242 –
243) remarked that the expectations of life were not independent for
man and wife. c) Directly applicable to my subject is Cournot’s
exposition (1843, §§ 104 and 117): he knew that consecutive trials
often depended one on another so that much more observations were
then needed than in the case of independence, and he mentioned
l’économie sociale and natural sciences. In § 206ff Cournot even
attempted to examine the likely dependence between the decisions
made by the jurors in courts of law.

2) Cournot also devoted a (short) chapter to the variability of
chances. He did not consider there any statistical examples (nor had
he referred to Poisson), but this was a hardly sufficient cause for the
statisticians to ignore his study (as they obviously did).

Cournot (§ 116) recommended to partition series of trials into
groups so as to reveal whether the appropriate probability was
constant. He referred to Bienaymé whereas Bru, the Editor of
Cournot’s latest edition, additionally cited Fourier.

John (1896, p. 39) and then Czuber (1899, p. 231) noted that a
number of conditions should remain permanent for a relative
statistical indicator to be (some function of) a [constant] probability
and that this circumstance (indicated by Bienaymé and Cournot, as

133



Czuber (1921, p. 35 – 36) added later) was not taken into account by
previous workers.35 He did not say that, irrespective of probabilities, a
change in the relevant conditions depreciated the collected data.

Knapp (1872, p. 117) argued that
Man braucht mehr als nur die Urnen des Laplace mit bunten

Kugeln zu füllen um eine theoretische Statistik herauszuschütteln. Die
Anwendung auf Bevölkerungsstatistik liegt im Argen: denn es fehlt
hier alle Ähnlichkeit der Bedingungen.

Neither he, nor Guerry (1864, p. XXXIV), who preceded him by
making a (weaker) statement similar to the first half of the passage just
above, mentioned constant probabilities, but they hardly thought of
anything else (for example, of statistical control of quality, § 5.2.4,
connected with variable probabilities). And Mayr (1914, p. 45)36

declared that stochastic interpretation of statistical studies was only
possible for repeated observations of one and the same object37 or
when they were similar to urn problems concerning constant
probabilities.

I ought to add that Lexis naturally (§ 6) did not restrict his attention
to the case of constant probabilities:

Schema einer konstanten Wahrscheinlichkeit … nur in den
seltensten Fällen auf die menschlichen Massenerscheinungen passt,
as Bortkiewicz (1904, p. 247) argued, and added that for this reason
Lexis kein besonderes Gewicht auf dieselben legt. See the related
material concerning Lexis in § 5.1.

3) Equally possible cases. Cournot (1843, § l8) heuristically
introduced geometric probability,38 applied it for defining the density
curve (§§ 65 – 66) and described the latter’s use in statistics (§ 125).
Statisticians however hardly took notice although the issue of equally
possible cases was thus softened. Kries (1886, p. 6) justified equally
possible cases by the Princip des mangelnden Grundes, as he named
it.38a He (p. 64) then attempted to avoid such cases by noting that in a
game of roulette kleinen Variirungen der Bewegungs-Modi of the
rotating ball were sufficient for a considerable effect.39 Therefore, as
he concluded on an intuitive level, the occurrences of red and black
were equally probable, and, more generally, the appearance of the
uniform distribution in most various cases was proved. Poincaré
(1896) independently explained the last-mentioned conclusion by
introducing the important notion of arbitrary functions, which allow
the modern theory of probability to keep to the concept of
equipossibility, and he additionally considered such phenomena as the
uniform distribution of the ecliptic longitudes of the minor planets
(Sheynin 1991a, § 8).

Lexis (1886, p. 436) favourably described and enlarged on Kries
but he mistakenly believed that the uniform distribution was necessary
for justifying the theory of probability. He (p. 437) also inferred that,
because of the equally possible cases (which haunted him even much
later (1913, p. 2091), the theory of probability was a subjectively
based discipline (see below).40 For some reason he did not repeat here
his earlier statement (1877, p. 17) to the effect that equally possible
cases might be presumed when a statistical probability tended to its
theoretical counterpart, when this later was justified by experience.
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Still earlier, apparently in 1874, he (1903, pp. 241 – 242) indirectly
argued that the existence of such cases was necessary for the Schema
der Wahrscheinlichkeitsrechnung.

Cournot (1843, § 86) was perhaps the first who strongly argued that
the Bernoulli principle allowed the practitioners to apply empirical
frequencies instead of probabilities. Nevertheless, mathematicians
naturally remained unhappy and even .in the mid-20th century
Khinchin [xiii, p. 104] noted that each author … invariably spoke
about equally possible cases attempting however to leave this
annoying subject as soon as possible.

Perhaps the situation in the natural sciences was more difficult than
in statistics. Thus, Langevin (1913, p. 3) thought that, for the kinetic
theory of gases, the main difficulty consisted in providing an
appropriate (correcte) and clear definition of probability.

The axiomatic theory of probability naturally does not help the
practitioner here so that the theoretically imperfect frequentist theory
found [and continued to find] a large number of partisans among both
mathematicians and, especially, representatives of natural and
applied sciences and in particular among physicists (Khinchin, p.
101).

These considerations do not exonerate Soviet statisticians, who, for
a few decades, had been denying the theory of probability and
justifying their attitude by the lack of equally possible cases in the
national economy. They were doing their best to protect Marxist
dogmas against the pernicious influence of the contemporaneous
science (Sheynin 1998, §§ 3.5 and 5).

Already Poisson (1837, pp. 30 – 31) distinguished between
objective and subjective probabilities. Cournot (1843, §§ 44 and 46)
believed that the term probability usually implied a subjective sense
and thought (§§ 86 and 240.4) that there existed a distinction
fondamentale between the two versions of probability. He also called
subjective probabilities philosophical (§ 233).

Referring to Kries, Bortkiewicz (1894 – 1896, p. 661) argued that
Jene Unterscheidung zwischen objektiven und subjektiven
Wahrscheinlichkeiten anerkanntermaßen nicht stichhaltig ist, weil
jede gegebene Wahrscheinlichkeit einen bestimmten Wissens- oder
Unwissenheitszustand voraussetzt und in diesem Sinn notwendig
subjektive ist.

Chuprov resolutely disagreed: A difference, and not a small one
does nevertheless exist. This was a marginal note written (in German
or Russian ?) on his copy of Bortkiewicz’s paper and now adduced to
the Russian translation of the latter (Chetverikov 1968, p. 74).41

Subjective probabilities are still with us, but they do not underpin
the theory of probability.

4) The history of mathematics proves that the more abstract it
becomes, the more fruitful are its applications. However, some
statisticians had been complaining that the theory of probability was
too abstract. Such was the opinion of Block (1886, p. 134) who also
argued that it should not be employed too often.

Consider now Knapp’s arguments (1872). First (p. 115), he doubted
that dieser schwierige Calcul nützlich gemacht werden kenne beyond
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games of chance or insurance. He then declared that even and
independence were mangelhaft umschreibenden Begriffe.42 It is true
that, once a mathematical theory becomes axiomatized, its notions
should be somehow interpreted before being practically applied.
However, probability had not then approached axiomatization and 1
doubt that Knapp ’s objections were really important.

5) Jakob Bemoulli’s law of large numbers established the relation
between probability and frequency, between deduction and induction.
He (1713, Chapt. 4 of pt. 4) attempted to find out whether [the right
side of our present formula of his law is unity or some positive proper
fraction]. The second would have meant, as he himself effectively
argued, that induction was incapable of precise conclusions.43

And still, at least one statistician (Haushofer 1872, pp. 107—108)
declared that statistics

Steht in gar keiner inneren Beziehung with mathematics; die
Mathematik beruht eben auf der Deduktion, die Statistik auf der
Induktion.

Not only did Haushofer disregard Bernoulli’s thoughts; he failed to
notice that theoretical statistics was only partly deductive
(mathematics in general was not here relevant).

Many statisticians, even without mentioning philosophical
concepts, denied the applicability of the law of large numbers. Knapp
(1872, pp. 116 – 117),44 for example, alleged that statisticians always
made only one observation (as when counting the population of a city)
so that for statistics the law ist von geringerer Bedeutung! Quetelet’s
celebrated study (1846), the treatment of the chest measurements of
about six thousand soldiers by means of one single distribution,
apparently did not concern him at all. Hardly less known is the
example of throwing several coins of the same coinage: the relative
frequency of heads was here quite stable.45 Lexis (1879, §§ 6 and 7)
applied the same idea for studying series of numbers oscillating
around some mean value.

It was in this context that Knapp added that die Urnen des Laplace
were insufficient for creating theoretical statistics (§ 5.3.2) but he did
not explain what else was needed.

Maciejewski (1911) formulated curious thoughts about the law of
large numbers.46 He (p. 95) noted that statisticians understood the law
discordantly, and, on p. 96, he introdued la loi des grands nombres
des statisticiens which stated that

The oscillations of statistical numbers diminishes as the number of
observations increases.

He (pp. 94 – 98) also declared that the (real) law did not lead to any
remarkable results and even impeded the development of statistics and
that the principles of insurance were established before Jakob
Bernoulli’s discovery.

It is natural to recall here Bortkiewicz’s remark (1904, p. 251):
Auch der grimmigste Feind of probability theory operiert … mit

Vorstellungen die gerade diesem Erscheinungsgebiete entstammen,
but in unmethodischer Weise!

I did not see any references to Maciejewski’s book and came across
it by chance.
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6. Lexis: stability of statistical series
In §§ 2.1, 5.1 and 5.3.3 1 mentioned Lexis in connection with the

examination of expected empirical discrepancies; with ascertaining the
appropriate causes and the relations between probability theory and
statistics; and with subjective probabilities, respectively. I shall now
touch on his study of the stability of statistical series, of discovering
possible variations in the probability underlying several consecutive
statistical series (1877 and, especially, 1879).47 Many commentators
described these contributions; suffice it to mention Chuprov (below)
and Bauer (1955). I also dealt with this subject including the related
work of such scholars as Bortkiewicz, Markov and Chuprov (Sheynin
2011, § 14).

Lexis’s non-parametric test of stability was based on calculating the
ratio (Q) of two expressions for the appropriate variance48 and he
argued that the case Q < l signified a change of the probability. He
also stated that Q > l characterized interdependence of the series, but
he left this case aside. It is understandable that, unlike his followers,
Lexis himself did not calculate either the mean value or the variance
of his criterion, this problem proved to be very diflicult. And he even
did not formulate it although he could have done so, because Gauss,
when introducing his measure of precision of observations,
specifically chose an unbiased statistic (the sample variance, in 1823)
and calculated its own variance.

Lexis greatly differed from his contemporaries who never thought
of such quantitative studies. Instead of abandoning the case of variable
probabilities, he attempted to examine it. Indeed, as noted by
Bortkiewicz (1904, p. 248), he (1903, p. 98) had stated
that

Das Interessante in den moral-statistischen Zahlen … ist überhaupt
nicht ihre Stabilität, sondern ihre Veränderlichkeit.49

Formally speaking, Lexis’s study was unsuccessful: Chuprov (1918
– 1919) proved that the use of the criterion Q (or Q2) was hardly
justified.50 Nevertheless, Lexis originated the Continental direction of
statistics,51 which, as hoped by Chuprov (see end of § 4.3), had
merged with the Biometric school thus leading to the creation of a
unified mathematical statistics.

Chuprov repeatedly praised Lexis although some of his
pronouncements were wrong, as he himself proved (1918 – 1919). 1
reproduce three passages from his Russian contributions and I only
mention that another relevant statement appeared in a German
source (1905, p. 450).52

a) The coming together [of probability theory and statistics] was
sketched out by Cournot; and Lexis … accomplished it in a number of
writings rich in deep original ideas (1897, p. 55).

b): His works, where originality competes with clearness of
exposition, opened up the newest epoch in the development of metal
statistics (Ibidem, p. 59).

c) For a long time, his ... investigations … constituted the only
source of vivid theoretical thought in our science (1909/1959, p. 63).
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Kries’s opinion (1886, p. 287) is also important (although his
mentioning the theory of probability instead of theoretical statistics
seems wrong):

Darf die Arbeit von Lexis gerade mit Bezug auf die Principien als
eine der wichtigsten aus der ganzen Literatur der
Wahrscheinlichkeits-Rechnung bezeichnet werden.

Much later Anderson (1932, p. 531) testified that
Unsere (jungere) Generation der Statistiker kann sich kaum jenen

Sumpf vorstellen, in welchen die statistische Theorie nach dem
Zusammenbruch des Queteletschen Systems hineingeraten war und
der Ausweg, aus welchem damals nur bei Lexis und Bortkiewicz
gefunden werden konnte.

And, again:
Nur unter den antimathematischen Statistikern Deutschlands fand

er [Bortkiewicz] keinen tieferen Anklang. Doch scheint jetzt hier eine
Neubelebung der mathematischen Statistik zu sein.

Two years passed and Anderson (1934, p. 539) added:
Germanic countries, despite the work of Lexis and his eminent pupil

Bortkiewicz, still continue under the influence of von Mayr’s empirical
school … Only in very recent years has a faint start been made
toward the acceptance of the English theories, and, in economic
statistics, of American methods.

And he also stated, on the same page: by 1870 – 1890 statistics
came to designate the science of mass [stochastic] phenomena in
social life. Cf. the title of Lexis (1877)!
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Notes
1. Lazarsfeld (1961) studied the period before the 19th century, the work of Quetelet
and some other issues, but from another angle.
2. I list several pertinent facts. In 1865 – 1866 Seidel (Sheynin 1982, pp. 277 – 278)
quantitatively estimated the correlation of typhoid fever with some meteorological
factors; in 1877, in the context of clinical trials, Liebermeister (Seneta 1994)
proposed a test for homogeneity of two binomial populations; and Enko (1889)
constructed the first epidemiological model. [It is a sad fact that statistics of
population neglected even epidemics.]
3. Even in 1709 Niklaus Bernoulli applied the art of conjecturing to jurisprudence.
He hardly promoted this science, but at least he made an important step in the right
direction.
4. De Moivre (1756, p. 348) remarked that censuses, repeated at proper intervals
with the population distributed into the proper Classes, might result in useful
conclusions and in discovering the general state of the Nation.
5 He had also managed to estimate the precision of his calculations (of sampling) by
general mathematical and stochastic means. Also see § 5.2.2. Bearing in mind
statistics, Laplace (1781, p. 383) appropriately mentioned une nouvelle brauche de
la théorie des probabilités. It was Lagrange (letter to Laplace of 13.1.1775 in t. 14 of
his Oeuvres) who first said nouvelle branche with respect to one of Laplace’s
problems. [Pearson criticized Laplace’s calculation of the population of France
(Sheynin 2017, pp. 103 – 104).]
6. 1 refer to him time and time again, and I quote Chuprov’s relevant opinion (1909,
p. 30). Cournot was

One of the most original and profound thinkers of the 19th century … who rates
higher and higher in the eyes of posterity.

Chuprov likely bore in mind Cournot’s contribution to economics as well.
[Poisson’s studies of criminal statistics (1837) were mostly aimed at discovering

the optimal majority of the juror’s voices for accusing a defendant, and the issue of
independence of votes was hardly important.]
7. The end of this sentence was the first direct proposition linking statistics with
mass (but not infinite!) phenomena. Littrow (1842, p. 1205) followed suit and
additionally argued that

Für ganze große Völkerschaften, so lehrt die Erfahrung, verschwindet die
Wirkung des freien Willens beinahe gänzlich …,
cf. Note 29.
8. Gavarret opposed D’Amador ( 1837) who had contended that the foundation of
probability theory was doubtful (p. 114), its applications ou inutile ou illusoire (p.
15), etc. In Russia, Davidov (Ondar 1971) followed Poisson m applying the theory
of probability to therapeutics.
9. He was against the moral applications of mathematics. Even earlier Cauchy
(1821, p. v) argued that mathematics should not be applied beyond natural sciences.
10. Quetelet obviously disregarded population statistics.
11. Knies (1850, p. 62) added:

Obwohl Achenwall selbst bereits von Folge spricht, … so sehen wir doch darauf
weit weniger Gewicht gelegt ...
12. Strictly speaking, this statement served Schlözer only as an illustration. And here
is a hardly known contemporaneous definition (Butte 1808, p. xi) which almost
coincides with the modern formula of mathematical statistics (Kolmogorov &
Prokhorov, see Sheynin 1999, p. 707): the theory of statistics is

Die Wissenschaft der Kunst statistische Data zu erkennen und zu würdigen,
solche zu sammeln und zu ordnen ...

[Essentially important is a comparison of statistical data belonging to differing
moments or regions (which was known to Leibniz!). Therefore, Schlözer’s saying
was lame.]
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13. Mayr (1906, pp. 52 and 58; 1910, p. 76; 1921, pp. 100 – 101) still included
statistics into the Staatswissenschaft understood im engeren übertragenen Sinn (in
the last instance, he omitted the engeren). Much earlier, Obodovsky (1839, p. 137)
stated that Nobody doubts anymore that statistics is a science, cf. also the very title
of Knies (1850).
14. Delambre (p. LXX) also remarked that Les descriptions minéralogiques
appartiennent sans doute à la statistique. This statement indeed corresponded to
qualitative statistics. And in 1838 J. E. Portlock (Fallati 1843, p. 3) declared that the
not entire numerical descriptions of animals, plants and minerals were their
respective statistics! [Schlözer did not deny studies of causes. His viewpoint was
embivalent.]
15. Woolhouse (1873, p. 37) noted that the absurd restrictions imposed by the
Society have been necessarily disregarded.
16. Later on similar pronouncements were made with respect to the theory of
probability (§ 5).
17. Moreau de Jonnès (1847) began his book by stating that statistics was la science
des faits sociaux exprimés par de termes numériques. At the same time, his subject
index lacked such terms as political arithmetic, mathematics, probability theory.
18. Cf. Fourier (1823, p. XX):

It is not enough to collect a large number of observed values and to take the mean
value; it is also necessary to examine whether these values approach, or lie wide
apart [s’écartent beaucoup] from the mean result.
19. Cf. Cauchy (1845, p. 242): Statistics offered the means for judging doctrines and
institutions. He did not say anything about its relations with probability, but he
recommended to apply it with full rigour. His viewpoint apparently changed as
compared with 1821, see Note 9.
20. This subdivision was only heuristic since accidental causes are variable. Quetelet
enlarged upon Laplace (1814, p. 37) who recognized irregular and constant causes.
21. In usual notation, the magnitude |ξ – Eξ| obeys the Bienaymé – Chebyshev
inequality which certainly does not mean that some value xi of ξ coincides with Eξ,
and Rümelin was wrong. Chr. Bernoulli (1841, p. 389) and Fries (1842, p. 23)
correctly stated that mean indicators cannot be directly applied to individual cases
and logicians (Sigwart 1878, p. 537) agreed with this. Nevertheless, some
statisticians repeated Rümelin’s mistake; Bortkiewicz (1904, pp. 250 – 251) accused
die Neueren of keeping to the wrong conclusion.
22. I bear in mind the four volumes of tables (Recherches 1821 – 1829).
23. Even in the 20th century Halbwachs (1913, p. 172) declared that the Bernoulli
law of large numbers cannot be applied to social phenomena because society
consists of groups with any individual belonging to some group.
24. In 1885, the International Statistical Institute was established in their stead.
25. Since the time of Quetelet the field of moral statistics greatly widened; even
Zuravsky (1846, p. 216) understood it as comprising the issues of crime,
bankruptcies, prostitution, religious dissent, vagrancy, alcoholism, the state of
prisons, philanthropy, official decorations. [In moral statistics, Süssmilch was
Quetelet’s predecessor.]
26. When discussing political arithmetic, Niemann (1807) declared that (John 1883,
p. 672)

Its employment in determining the social conditions of men ... in considering these
[pertinent] facts for different periods in order to compare them and then see how far
and in what particular progress or decline had taken place; in studying the
influences exercised by physical and political causes, has done more for the
improvement of the political condition of states than the mere piling up of figures
which are frequently so little to be relied upon.

Lueder (1812, p. 9) argued that Legionenweise erschienen statistische Angaben in
Zahlen und statistische Tabellen voll Zahlen. Cournot (1843, § 103) stated that

In our days ... statistics blossomed out somewhat exuberantly and we even have to
guard ourselves against its premature and improper applications which can
discredit it for some time ...

In § 105 he added that statistics should have sa théorie, ses régles, ses principes.
In turn, Quetelet (1846) denounced the reduction of statistics to compilation of
tables (p. 432) as practised by some statisticians (p. 278).
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27. Chr. Bemoulli (1841, p. 389) used the term Biometrie as representing mass
observations concerning einer ganzen Klasse oder Gattung of men.
28. Cf. Kolmogorov (1948, p. 77):

Notions about the logical structure of the theory of probability, which underlies
all the methods of mathematical statistics, remained [in the Pearsonian school] on
the level of the 18th century.
29. The ensuing discussions on the part of the free will in man’s behaviour (also see
§ 3.2, Montmort’s and Littrow’s opinion in § 2.1 and Note 7) did not involve
mathematics (Chuprov 1897). I adduce Schiller’s statement (Wallenstein‚ 1800;
Wallenstein’s Tod, Aufzug 2, Auftritt 3, also quoted in 1867 by Drobisch):

Des Menschen Thaten und Gedanken ... sind notwendig wie des Baumes Frucht,
Sie kann der Zufall gaukelnd nicht verwandeln.

Compare now the issue of free will with the ability of a physician [xiv, Note  5].
30. It is therefore hardly surprising that Yanson (1887, p. 291 – 293) did not set high
store by mathematics. Thus, mathematicians, who analysed data on social
phenomena,

Disregarded their special properties and sometimes arrived at conclusions
bordering on nonsense.

Stochastic calculations presuppose constancy of the phenomena studied and
statisticians should not be carried away by mathematical deductions; general
elementary knowledge of probability theory is in most cases sufficient for appraising
statistical conclusions.

The first two statements only mean that statisticians and mathematicians should
work together (of. § 2.4.2), and the last declaration proved wrong.
31. Angelo Messedaglia, 1866, as quoted by John (1896, p. 18), was much more
resolute: Die Statistik ist, schon an und für sich nichts anderes als eine
Wahrscheinlichkeitsrechnung. The 1atter also remarked that another Italian
statistician, Luigi Perozzo, was of the same Grundanschauung.

On the other hand, continuing the tradition of the Staatswissenschafl, Block
(1886, p. 132) discussed the relations between statistics and history, geography and
political economy without saying anything about mathematics.
32. Apparently after 1850, see Knies’s testimony above.
33. Aleksandr Ivanovich Chuprov (1842 – 1908) was an economist and a non-
mathematical statistician and the creator of the zemstvo, of the local agricultural
statistics in Russia. In general, see Seneta (1985) for the early history of sampling in
Russia.
34. Cf. Young (ca. 1819, pp. 8 – 9); It is vain

To substitute arithmetic for common sense …; at least as much good sense is
required in applying our mathematics to objects of a moral nature as would be
sufficient to enable us to judge of all their relations without any mathematics at all.

In demography, the non-formal attitude was justified by the presence of large
systematic mistakes. Alteady Lambert (1772, § 108), when studying the size of
families, arbitrarily increased the numbers of children by l/2 thus allowing for
stillbirths and infant mortality. Geodesists, beginning with Gauss, adhered to a
mixed approach: they definitively estimated precision by taking into account all the
appropriate discrepancies (the closings of their triangles etc.) rather than by
examining the repeated observations at single stations.

Common sense failed Westergaard (1890, pp. 90 – 91). As it is borne out by his
figures, he decided that the formal error in the sample number of births was equal to
[0.0lqn]1/2 where n was the sample population and q%, the birth-rate.
35. Lexis (1879, §§ 3 and 5) even indirectly argued that not every such indicator was
a probability and that (§ 13) such cases were indeed interesting. The law of large
numbers (as well as the De Moivre – Laplace limit theorem) assumes that the
probability of a random event exists and is known. For calculating an unknown (but
existing) probability p ) statisticians could have rather applied the Bayesian
approach or the (hardly known) Bayes limit theorem

3 0

2[ ] exp( /2)
π/

2 zp a
P z z x dx

pq n
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where p is the number of the occurrences of the studied event in n trials, q = n – p
and a = p/n (Sheynin 1971).
36. While examining the applied aims of mathematical statistics, Mayr (pp. 43 – 46)
largely restricted them. During the period from 1895, the year when the first edition
of his work had appeared, his narrow viewpoint did not change, as he himself stated
(1914, p. 153); see pp. 26 – 29 of this first edition. It is instructive to compare
Mayr’s account with a modern description of the application of stochastic processes
(!) in sociology (Lang 1992).
37. Here, he disregarded Knapp’s opinion, see § 5.3.5.
38. Envisioned by Newton in a manuscript written about 1665, hinted at by Jakob
Bernoulli (1713, chapter 4 of pt.4) and applied by Buffon and Laplace.
38a. Chuprov (Ziele und Wege …, Nordisk Statistisk Tidskrift, Bd. 3, 1924, p. 435),
however, remarked:

Der Wahrscheinlichkeitsbegriff der klassischen Wahrscheinlichkeitsrechnung, der
sich auf das so genannte Prinzip des mangelnden Grundes stützt, kann Niemand
mehr, als Grundlage der statistischen Anwendungen der Wahrscheinlichkeits-
rechnung, befriedigen.
39. This is true not only from the gambler’s point of view: the effect can well change
the number of the revolutions of the ball.
40. He said much the same earlier (1877, p. 14).
41. In 1925, in a Russian contribution, Chuprov again reasonably maintained that
the issue of the subjective versus objective nature of probability acquires [in
applications] superior importance (Sheynin 2011, p. 121).
42. Independence of events is defined through their probabilities. As to event, I
quote Chebyshev (1936, p. 111):

The word event means, in general, everything whose probability is being
determined ... the word probability thus serves to denote some magnitude subject to
measurement.

This great scientist thus made a tiny step towards an axiomatic theory of
probability. Moreover, Tikhomandritsky (1898, p. iv) put on record that Chebyshev,
in 1887, had argued that the entire theory of probability should now be
reconstructed.
43. Cf. Cournot (1843, § 115): The Bernoulli principle is the only base solide for all
the applications of probability theory. [Part 4 of J. B.’s classic is inadequately
known. Thus, he thought that statistical probability of an event should be applied
even when its theoretical probability did not exist.]
44. Knapp’s negative attitude towards probability theory is also seen in his (correct)
statement (p. 101) that each crime has its own cause and in his denial (p. 114) of any
difference between essential and random causes.

Here is what Bortkiewicz (1904, pp. 252—253) had to say about Knapp (the
anderer) and Mayr: Knapp was

Ein anderer und wohl der schärfste und konsequenteste Gegner der
wahrscheinlichkeits-theoretischen Auffassungsweise
and (1910, p. 358) a most convinced enemy of applying probability.

Bortkiewicz was hardly able to speak his mind during Knapp’s jubilee (observing
his 40 years at Strasbourg) where he (1915, p. 119) even credited the latter with the
Neubegründung einer Theorie der Statistik. It is true, however, that Knapp was
meritorious for studying mortality (Bortkiewicz 1922).
45. This was one of Poisson’s illustrations of his version of the law of large
numbers.
46. The author was a physician in Petersburg.
47. Dormoy should also be mentioned as cofounder of the same theory. However
(Bortkiewicz 1930, p. 53),

Ging Dormoy das Verständnis für Anwendungen der Wahrscheinlichkeits-
rechnung auf Erfahrungstatsachen in so starkem Masse ab, dass es der historischen
Gerechtigkeit nicht entspricht, ihn, so oft von Dispersionstheorie die Rede ist, in
eine Reihe mit Lexis zu stellen.
48. A notion which was then not yet applied beyond the error theory, cf. the
beginning of § 5.2.5.
49. Beginning with 1913, Yastremsky treated the Lexian theory as a theory of
mutability of statistical series. Romanovsky (1923, p. 160) briefly described the
essence of his method which remains hardly known in spite of the appearance of
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Yastremsky’s Selected works (1964). It is instructive to recall that Buys-Ballot, in
1850, argued that modern meteorology was then in its second stage characterized by
the [statistical, at least in part] study of the deviations from the mean states of the
atmosphere.
50. Chuprov’s related manuscript devoted to the derivation of the asymptotic density
of Q2 (Sheynin 2011, p. 101) is now published in an English translation (Chuprov
1999).
51. Poisson, Bienaymé and Cournot might be called its predecessors; Bortkiewicz
and Chuprov were among his followers (the former was also a student of Lexis).
52. In 1906 Chuprov also edited the translation of two of Lexis’s papers on the
statistical measurement of mortality.
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