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Notation
    Notation S, G, n refers to downloadable file n placed on my website
www.sheynin.de   which is being diligently copied by Google
(Google, Oscar Sheynin, Home). I apply this notation in case of
sources either rare or those in my translation into English.
    L, M, R = Leningrad, Moscow, in Russian
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I

On the Prehistory of the Theory of Probability

Arch. Hist. Ex. Sci., vol. 12, N. 2, 1974, pp. 97 – 141

1. Introduction
Evidently, none of the traditional sciences busies itself about the

accidental, says ARISTOTLE1, continuing that this (the accidental)
none of the recognized sciences considers, but only sophistic‚ and
repeats himself m other places2. However, this opinion is wide of the
mark since neither does the modern theory of probability busy itself
with chance, but rather with the laws of chance, with the probable2a.
And ARISTOTLE describes rhetoric as an art of persuasion based on
probabilities (§ 3.2). Moreover, reasoning on the probable abound in
various sciences in antiquity. The study of this aspect of various
sciences before the origin of the theory of probability (i. e., before the
second half of the 17th century) is attempted in §§ 3 – 8 while § 2 is
devoted mainly to ARISTOTLE and his notable commentator,
THOMAS AQUINAS. § 9 is a short account of appropriate
philosophical reasoning in the new time with a special reference to
JAKOB BERNOULLI, and general conclusions are formulated in
§ 10.
    It proved difficult to incorporate the prehistory of the theory of
errors into this article, and it has been dealt with separately3.

2. Randomness and Probability in Antique Philosophy
2.1. Prior to ARlSTOTLE. The period prior to ARISTOTLE is

known partly, possibly even mostly, from his own account4. Thus
(196a 10)
    Certainly the early physicists found no place for chance among the
causes which they recognized. … This is strange, whether they
supposed that there is no such thing as chance or whether they …
omitted to mention it and that too when they sometimes used it, as
Empedocles does. … He tells us that most of the parts of animals came
to be by chance.
    There are some too who ascribe this heavenly sphere and all the
worlds to spontaneity. … This statement might well cause surprise.
For they are asserting that chance is not responsible for the existence
or generation of animals and plants, nature or mind yet they assert
that the heavenly sphere and the divinest of visible things arose
spontaneously.

Others, continues ARISTOTLE (196b 5), believe that chance is a
cause, ... but that it is inscrutable to human intelligence. … Still
others (195b 35) say that nothing happens by chance.
    In each case the unnamed person(s) is DEMOCRITUS, says the
editor of ARISTOTLE. The ambiguity of DEMOCRITUS in his
attitude towards chance, which ARISTOTL'E does not mention,
seems genuine. This is proved by comparing the opinions of various
ancient commentators, including PLATO. Indeed, some of them
thought that, according to DEMOCRITUS, people made a fetish of
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chance so as to conceal their own want of sense while others ascribed
to him the explanation of everything by chance5.

2.2. ARISTOTLE. He was the first to attempt an explanation of
chance. He included this explanation in the general context of his
teaching of causes6, repeatedly mentioned chance, and also accidents
and coincidents. An accident, says ARISTOTLE7, actually introducing
this term into classical philosophy, is something which may possibly
either belong or not belong to any one and the selfsame thing.
    As to chance (and change), these8 are characteristic of the
perishable things of the earth. Some effects can be caused
incidentally, i.e., by spontaneity and chance (198a 5); chance is
opposed to mind and reason9 and its cause cannot be determined10.

The products of chance and fortune are opposed to what is, or
comes to be, always or usually.
    Similar assertions are made about accidents12, chance
conjunctions13 and coincidences14.
    ARISTOTLE also distinguishes between chance and spontaneity15:

Chance and what results from chance are appropriate to agents
that are capable of good fortune and of moral action generally.
Therefore necessarily chance is in the sphere of moral actions.

The spontaneous on the other hand is found both in the lower
animals and in many inanimate objects.
    Possibly the best account of ARISTOTLE’S concept of chance is
given in a rather rare source by JULIENNE JUNKERSFELD16: by
chance ARISTOTLE means something which takes place

Occasionally; has the character of an end; is such that it might
have been the object of a natural or of a rational appetite; was not in
fact the object of any appetite but came into being by accident.
    As shown above, the circularity of this definition is indeed present
in ARISTOTLE’S writings. JUNKERSFELD (p. 78) also mentions
the essential difference between chance as understood by
ARISTOTLE and in the modern sense: in the latter case chance is not
connected with intention (or, rather, with its non-fulfilment)‚ but it
seems that by referring only to COURNOT she overestimates his role
in the formation of the concept of chance.
    I mention now three examples of chance events given by
ARISTOTLE17 (JUNKERSFELD mentions a dozen):
    Digging a hole for a plant, someone finds a treasure (not a rusty
nail, which can hardly be the object of a natural or of a rational
appetite). ARISTOTLE calls this an accident in its first meaning
(which actually is the same as chance). I notice that the difficulty of
dividing unexpected events into remarkable and usual is here
considerably less than in a similar division of outcomes of a random
event in natural science needed for evaluating the probability of
remarkable outcomes.
    A meeting of two persons which takes place by chance.
    Mistakes in the operations of nature which give rise to
monstrosities. The first departure of nature from the type is that the
offspring should become female instead of male; … as it is possible
for the male sometimes not to prevail over the female … either
through youth or age or some other such cause.
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    Thus ARISTOTLE attributes the birth of a female to chance, adding
though that this is a natural necessity. Then, in general, for
ARISTOTLE the outcome of a chance event depends on rather small
changes in the chain (chains) of previous events. Of course, this is true
only if his connection of chance with non-fulfilment of intention is
disregarded. This general illustration is the same as was used by
POINCARÉ18: a chance event takes place when, in conditions of an
unstable equilibrium‚ very slight causes determine considerable
effects.
    ARISTOTLE connects the chance occurrence of sex with natural
necessity, i. e. with a definite (optimal) ratio of males and females for
any given species. Though he does not elaborate, this seems to be the
first statement connecting chance and necessity.
    ARISTOTLE’S writings also contain reasoning on the probable. A
probability19

Is a generally approved proposition: what men know to happen or
not to happen, to be or not to be, for the most part thus and thus ...,
e. g. the envious hate.
    Formulating what actually is a rather weak corollary of the strong
law of large numbers, ARISTOTLE20 notices that what is improbable
does happen … therefore it is probable that improbable things will
happen. On the other hand, ARISTOTLE understands that a very rare
event either in games of chance or in nature is impossible (see § 5).
He also describes rhetoric as an art of persuasion based on
probabilities (§ 3.2) and, speaking about persuasion in poetry and
anticipating ARCESILAS and CARNEADES, he even introduces a
rudimentary scale of subjective probabilities21: a likely impossibility is
always preferable to an unconvincing possibility.
    Several times ARISTOTLE mentions luck22 and fortune23. His
understanding of these concepts is that they qualitatively express
deviations from reasonable expectation, which is another qualitative
notion. Even if expectation is understood as a numerical measure in
the sense of the classical theory of probability, ARISTOTLE’S luck
and fortune will still differ from the concepts used by Jakob
BERNOULLI: although in one place ARISTOTLE (1361 b – 1362 a)
holds that luck equally means luck accruing beyond expectation or
escape from expected evil, elsewhere he (1207a 30) supposes that

Good fortune would seem to consist to a greater extent and more
properly in the obtaining of good … while the escaping of evil is a
piece of good fortune indirectly.
     ARISTOTLE in fact qualifies his own opinion on the impossibility
of a science of the accidental (§ 1) when he24 attributes strategy and
navigation to matters involving art, but into which chance largely
enters. However, he refutes his own qualification by saying (1247a
20) that in navigation not the cleverest are the most fortunate, but
it is as in throwing dice.
    Does this really mean that there can be no science of navigation? A
saner opinion is (PLATO25) that, though

Chance is almost everything in the arts of the … pilot, and the
physician (§ 6), and the general26 … yet in a storm there must surely
be a great advantage in having the aid of the pilot’s art.
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    S. SAMBURSKY27 quotes SIMPLICIUS as saying that PLATO
(and ARISTOTLE) called natural science the science of the probable
(ecotologia). His failure to cite the specific passage is much to be
regretted.
    Other interesting features in ARISTOTLE are, first, his actual
admission of the probable in biology and medicine (§ 6.2.2) and,
second, his use of the mean as a moral category. Thus28, temperance
and courage are destroyed by excess and defect, and preserved by the
mean.
    In medicine (§ 6.2) the mean was considered as the ideal state (of
health), while in the theory of errors29 and games of chance (§ 5) the
(arithmetic) mean came to be considered as possessing definite
stochastic properties.

2.3. EPICURUS and LUCRETIUS. In EPICURUS’ opinion30

atoms recoil and recoil, whenever they chance to be checked by the
interlacing with others.
    This is an attempt at a qualitative chance explanation of a physical
phenomenon. In another source31 EPICURUS is quoted as saying that

It …. may be that according to the diversity of the regions traversed
(by the stars) in some places there are uniform tracts of air, forcing
them forward … in others these tracts present such irregularities as
cause the motions observed, i. e., the wanderings of certain stars and
the regular movement of certain other stars.
    This passage possibly means that EPICURUS concerned himself
with laws of chance. See also § 8.1.1.
    Swerves of atoms neither the moment nor the direction of which
can be known beforehand are essential in LUCRETIUS’ physics32 and
even serve to explain naively the occurrence of free will. In the
absence of any quantitative description they also serve as a chance
mechanism which brings about determinate effects. As in
ARISTOTLE (§ 2.2) and, possibly, in EPICURUS (see above) this
again is a connection of chance and necessity.
    Some modern authors hold that ancient atomists did not consider
random events. Thus, bearing in mind philosophers before ARISTO-
TLE, B. RUSSELL33 noticed:

There is considerable reason to think that weight was not an
original property of the atoms of Leucippus and Democritus. It seems
more probable that, on their view, atoms were originally moving at
random. … As a result of collisions, collections of atoms came to form
vortices.

It was common in antiquity to reproach the atomists with
attributing everything to chance. They were, on the contrary, strict
determinists. Democritus explicitly denied that anything can happen
by chance ... Leucippus … is known to have said Naught happens for
nothing, but everything from a ground and of ncessity. It is true that
he gave no reason why the world should originally have been as it
was; this, perhaps‚ might have been attributed to chance. …
     Causation must start from something, and wherever it starts no
cause can be assigned for the initial datum. … The Creator Himself is
unaccounted for.
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    Even if this was meant to apply also to post-ARISTOTLE
philosophers, there still remains room to see both chance and
causation in their works, and it seems that almost every philosopher,
at least until and including I. KANT34, chose to find in them either the
first or the second.

2.4. THOMAS AQUINAS. He was one of the main commentators
of ARISTOTLE. Striving towards his general goal‚ which was to
unite faith and reason and to adapt pagan ARISTOTLE to
Christianity, he could not fail to study chance.
    THOMAS’ commentary on ARISTOTLE'S Physica seems to
suggest that he was the advocate of the Philosopher’s understanding of
chance35. THOMAS' main work36 also contains explanations of the
concept of chance:
    The effects willed by God happen contingently … because God has
prepared contingent causes for them.
    Casual and chance events are such as proceed from their causes in
the minority of cases and are quite unknown.
    He connects chance with hindrances37:

Some causes are so ordered to their effects as to produce them not
of necessity but in the majority of cases, and in the minority to fail in
producing them‚ which is due to some hindering cause.
    An example of such a hindering cause at work is the production of
woman which THOMAS38 explains by referring to ARISTOTLE (§ 2.
2) and repeating his connection between chance and necessity:

On the other hand, in the relation to the universal nature, woman is
not misbegotten, but is included in nature’s intention as ordered to the
work of generation.
    It is really difficult to see how ARISTOTLE, much less THOMAS,
combined chance (which takes place occasionally) with the produc-
tion of females. Even in the absence of any vital statistics it was
possibly known that the numbers of men and women in any “normal"
locality do not differ significantly‚ at least not in a proportion which
would justify the attribution of the production of women to occasional
chance effects.
    Another reasoning on the connection between chance and necessity
occurs in the same source39:
 .. Contingence arises from matter, for contingency is a potency to be
or not to be, and potency pertains to matter. But necessity results from
form, because whatever is consequent on form is of necessity in the
subject. But matter is the principle of individuation, whereas the
universal comes from the abstraction of the form from the particular
matter. … The contingent … is known directly by sense and indirectly
by the intellect, while the universal and necessary principles of
contingent things are known by the intellect. Hence if we consider the
objects of science in their universal principles, then all science is of
necessary things. But if we consider the things themselves, then some
sciences are of necessary things, some of contingent things.
    Thus, widening the concept of chance to correspond to
individualization and uttering a dialectical comparison of individual
with universal, THOMAS departs from ARISTOTLE (§ 1). However,
his bifurcation of science seems not to be elaborated: on the one hand,
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no science is interested in the individual; on the other hand, each
science has to do with different levels of abstraction so that something
general (e. g., a triangle) is only individual as regards the next stage of
abstraction (e. g., a polygon).
    THOMAS40 also tells us of his bifurcation of the accidental:

Accidents which are altogether accidental are neglected by every
art, by reason of their uncertainty and infinity. But accidents of this
kind are not what we call circumstances, because circumstances …
are in a kind of contact with (the act) … Proper accidents … come
under the considerations of art.
    This is not quite clear, but it is at least possible to say that likewise
the theory of probability can do nothing with, to paraphrase
THOMAS, randomness which is altogether random (i. e., possesses no
law of distribution).
    BYRNE41 considered all the works of THOMAS from the point of
view of probability. For the medieval, he notices on p. xxiii (and also
for ARISTOTLE, see § 2 2),

It is an opinion which is or is not probable, or is more or less
probable; and the notion of opinion refers not only to an objective
proposition but to a subjective commitment to that proposition.
    Probable opinions and conjectures, says BYRNE, are THOMAS’
grounds for proceedings of law courts (see § 3.2). His is also an

Appeal to a kind of moral law of large numbers42, so that it is more
probable that a given group will do that to which it is inclined by a
heavenly body than that one single man would so act. … Therefore,
astrological predictions are verified ut in pluribus.
    As it seems, this appeal is rather to a simple corollary of the law of
large numbers. See also §§ 7 and 9.1.
    BYRNE (Ibidem, pp. 202 – 208) also holds that THOMAS used a
rudimentary frequency theory of probability but his arguments are not
sufficiently convincing. Lastly, in a more general sense he holds
(p. 296) that there is a similarity (A) between THOMAS’ theory of
probability and the modern logical theory of probability and (B)
between his theory of contingency and the modern (MISES-type?)
frequency theory of probability.
    THOMAS’ writings certainly and essentially influenced scholars of
subsequent centuries but it seems that his influence was mainly
indirect, brought about through religion, jurisprudence etc., while the
formation of the theory of probability proper, as of any other scientific
discipline, was mainly caused by direct practical requirements.
BYRNE himself emphasizes not THOMAS’ direct influence but
rather the (possibly unconscious) continuity of ideas and points out
that his work is a contribution to the global, largely unsolved problem
of studying the correlation between medieval and modern science.

3. Jurisprudence
    This title should properly read Randomness and probability in
jurisprudence, but I have here (and similarly in §§ 4 – 8) chosen the
shorter version.

3.1. Ordeals. AL-BIRUNI’S account43 of law procedures in the
11th century India includes evidence of what apparently contradicts
modern standards of presumption of innocence:
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If the suitor is not able to prove his claim, the defendant must swear
    There are many kinds of the oath, in accordance with the value of
the object of the claim.
    Various kinds of the oath should have corresponded to different
expectations of gain from an unjust verdict: the higher the value of the
claim, the less should be the probability of impunity of a perjury. In a
sense this possibly was the case but there did not seem to exist any
definite scale of (subjective or objective) probabilities, the less so as
everybody obviously believed in divine defence of the right:

If the object of claim was of some importance, the accused was
invited to drink some kind of a liquid which in case he spoke the truth
would do him no harm.
    AL-BIRUNI mentioned still higher sorts of ordeals including the
carry of iron

So hot that it is near melting point on hand there being nothing
between the hand and the iron save a broad leaf of some plant and
under it some few … corns of rice in the husks.
    Degrees of ordeals were connected neither with the degree of proof
achieved by the parties concerned, nor with the corresponding
physical suffering: one of the highest ordeals as described by AL-
BIRUNI was to change one’s weight in practically no time, an effect
hardly accomplishable but at least painless to attempt.
    Ordeals had been known everywhere and, in particular, they are
described in legal documents of medieval Georgia and Russia. The
following is a commentary on ordeals the world over44:

We have not to speak of trial; we have to speak of proof. The old
modes of proof might be reduced to two, ordeals and oaths, both were
appeals to the supernatural. The history of ordeals is a long chapter
in the history of mankind. … Men of many, if not all, races have
carried the red-hot iron or performed some similar feat in proof of
their innocence.
    Among our own forefathers the two most fashionable methods of
obtaining an indicium Dei were that which adjured a pool of water to
receive the innocent and that which regarded a burnt hand as a proof
of guilt. Such evidence as we have seems to show that the ordeal of
hot iron was so arranged as to give the accused a considerable
chance of escape.
    Having referred to 13th century documents of a Hungarian
monastery, the authors conclude: it was about an even chance whether
the ordeal of hot iron succeeded or failed.
    Thus AL-BIRUNI’S testimony seems to be correct, at least
essentially. However, a more “simple” system of ordeals in India is
described elsewhere45:
    §114. Or the (judge ) may cause the (party) to carry fire or to dive
under water, or severally to touch the heads of his wives and children.
    § 115. He whom the blazing fire burns not, whom the water forces
not (?) to come (quickly) up, who meets with no speedy misfortune,
must be held innocent on (the strength of ) his oath.
    § 116. For formerly when Vatsa was accused by his brother, the fire
burned not even a hair (of his ) by reason of his veracity.



11

    In contrast to AL-BIRUNI the two latter sources do not suggest an
unconditional divine defence of the right: though God did not allow
his hand to be burnt, He left him to swim or sink on his own. How
then was it possible to distinguish between the innocent supernaturally
remaining under water and the guilty sinking under water quite
naturally?
    In other words, the intervention of the supernatural introduces
additional difficulties in the study of ordeals and it seems impossible
to say whether the legal profession (and society in general) really
imagined any probabilities attached to the possible outcomes of
ordeals.
    On the other hand, at least in countries influenced by the catholic
church, THOMAS AQUINAS’ teaching on miracles may have been
widely known. According to him46, those things, which God does
outside those causes which we know, are called miracles.
    THOMAS attributes various objective ranks of greatness to
miracles (art. 8, p. 545) and subdivides each rank into degrees
according to the different ways in which the power of nature is
surpassed. He does not elaborate. But in any case the lowest rank of
miracles is when

A thing surpasses nature’s power in the measure and order in
which it is done, as when a man is cured of a fever suddenly.
    It seems possible to place a successful outcome of some ordeals on
a par with accomplishment of miracles of the lower rank so that after
all the legal profession might have developed a tradition of comparing
one or another ordeal with evidence (and probability) of guilt. That
successful outcomes were really possible is testified by POLLOCK &
MAITLAND (see above) but, and this is the worst point, were not
these outcomes so many cooked-up frauds?
 .. The innocent believed that God will help him to get safely through
the ordeal. Not so it was with KEPLER’S mother47, a suspect witch,
almost sentenced to death (1621):

Sie jedoch ohngeachtet aller ernstlicher erinnerung und
Betrawungen der beschuldigten Hexerey und allzuemit uff die Knie
nidergefallen, ein Vater unser gebetten, und darauff vermeldendt, Gott
solle alda ein Zeichen thuen, wann Sie ein Hexin oder Unholden seye.
    Wasn’t KEPLER himself, for all his piety, instrumental in reversing
the usual procedure (God should have given a sign wann Sie kein
Hexin … seye!) virtually giving his mother a safe escape?

3.2. Probabilities in Law-Courts. According to SAMBURSKY48,
SOCRATES held that in law-courts men care nothing about truth, but
only about conviction, and this is based on probability.
    ARISTOTLE49 paid special attention to application of rhetoric in
law and, even without emphasizing the matter, spoke about
probabilities:
    If you have no witnesses … you will argue that the judges must
decide from what is probable. … If you have witnesses, and the other
man has not, you will argue that probabilities cannot be put on their
trial and that we could do without the evidence of witnesses altogether
if we need do no more than balance the pleas advanced on either side.
    THOMAS AQUINAS50 also discussed probability in law:
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In the business affairs of men, there is no such thing as
demonstrative and infallible proof, and we must be content with a
certain conjectural probability. … Consequently, although it is quite
possible for two or three witnesses to agree to a falsehood, yet it is
neither easy nor probable that they succeed in so doing; therefore
their testimony is taken as being true. (A reference to ST.
AUGUSTINE follows.)
    Another line of development begins in India51:

On a conflict of witnesses the king shall accept (as true) the
(evidence of the ) majority; if (the conflicting parties ) are equal in
number, (that of) those distinguished by good qualities.
    Then comes another point (§ 108, p. 273):

The witness (in law-suits pertaining to loans), to whom, within seven
days after he has given evidence, happens (a misfortune through)
sickness, a fire, or the death of a relative, shall be made to pay the
debt and a fine.
    Thus it seems that ordeals and oaths comprised the second stage of
law-suits, being ordered on the basis of existing evidence (on the
balance of probabilities). As to the last point, it is nothing less than
possibly one of the first criteria for distinguishing between
randomness and divine intervention (determination).
    It is also possible that precisely in jurisprudence the first concept of
errors of the first and second kind, not yet formalized and, in
particular, unconnected with probabilities, came to be used. Thus,
ARISTOTLE52 held that

Any one of us would prefer to pass a sentence acquitting a wrong-
doer rather than condemning as guilty one who is innocent53.
    Similar assertions occur also in THOMAS AQUINAS54:

It is better to risk being deceived about others more often by having
a good opinion of them than to risk misjudging someone even rarely
by being suspicious of others.

The peril (to others) that exists so long as they (the criminals) are
alive is greater and more certain than the good which might be
expected from their rehabilitation. Moreover, even at the very moment
of death they have the opportunity to repent and be converted to God.
If therefore, … even at the moment of death their hearts do not turn
from malice, it can be estimated with sufficient probability that they
would never turn away from malice.
    I shall now skip over to LEIBNIZ55, a lawyer, who described
differences of probabilities such as became established in law-courts
of his day:

Es gibt … mehr als halb vollständige Beweise, bei denen, man dem,
der sich auf die stützt, die Ergänzung durch den Eid gestattet (man
nennt das iuramentum suppletorium); außerdem gibt es weniger als
halbvollständige Beweise, bei denen man im Gegensatz dazu
denjenigen zum Eid zulässt, der den Tatbestand abstreitet, damit er
sich reinwasche (man nennt das iuramentum purgationis). Außerdem
gibt es viele Grade von Vermutungen und Indizien.
    Distinguishing between four of them, LEIBNIZ concludes:

Alle Verfahrensformen in der Rechtsprechung sind in der Tat nicht
anderes als Arten der Logik, die auf Rechtsfragen angewandt werden.
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Auch die Mediziner haben für ihre Symptome und Indikationen viele
Grade und Unterschiede, wie man bei ihnen sehen kann.
   Though he does not mention probabilities, they are meant to be
present, as is testified by LEIBNIZ’ Arten der Logik (see a related
passage from LEIBNIZ in § 5).
    A relevant passage occurs in a contribution by E. NAGEL55a. In the
Middle Ages two witnesses were demanded for a full proof, while a
doubtful witness counted for less than half.
    Until now I discussed trials as such. However, trials are based upon
laws which, in a context of a given social system, were also worked
out so as to correspond with the usual, probable behaviour of men. In
the words of THOMAS56

    (1) The lawgiver cannot have in view every single case, he shapes
the law according to what happens most frequently.
    (2) In appointing the punishment for theft the Law considered what
would be likely to happen most frequently.
    However, the history of legal punishments is almost the history of
society in general and I leave the problem at that.
    It is well known that both LAPLACE and POISSON busied
themselves with applications of probability in jurisprudence but their
work is outside my scope.

3.3. Application of Means. It seems that in lawsuits and courts of
arbitration arithmetical means of estimates made by different persons
were widely used. Such, at least, is the testimony of G. CARDANO57‚
who, while describing conditions of a game of chance, notices that
this mean is composed of extremes (is the semirange), not as in
lawsuits, and valuations, and the like.
    Also, a definite testimony is due to LEIBNIZ58:

Die Grundlage, auf welche man baute (in the theory of probability)
kommt auf die Prostapherese zurück, das heißt darauf, dass man ein
arithmetisches Mittel zwischen mehreren gleich annehmbaren
Voraussetzungen nimmt. Und unsere Bauern bedienen sich auf Grund
ihrer natürlichen Mathematik dieses Verfahren seit langem. Wenn
eine Hinterlassenschaft oder ein Grundstück verkauft werden soll, so
bilden sie drei Gruppen von Schätzern … jede Gruppe stellt einen
Taxwert des fraglichen Gutes auf … nimmt man die Summe dieser
drei Schätzungen (an example follows) und teilt sie durch drei. …
Dies ist das Axiom aequalibus aequalia, gleiche Voraussetzungen
müssen gleichermaßen in Betracht gezogen werden.

4. Fine Arts
    Ending § 3 with what amounted to the use of the stochastic aspect
of the theory of means in jurisprudence, I shall now describe the same
subject as manifested in sculpture, one of the branches of fine arts.
    It is generally known that the mathematical teaching of proportions
was universally applied in antique and Renaissance architecture and,
also, that so early a scholar as VITRUVIUS systematically measured
proportions of the human body.
    L. B. ALBERTI (1404 – 1472), the scholar, architect, sculptor,
musician and writer, resumed such measurements. Not only did he
develop the procedure of measurement using a specially devised ruler,
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the exempeda, but, what is much more important, he came to use
mean dimensions of various models59:

I want to establish not the particulars of this man or that one, but as
far as possible, that exact beauty granted by Nature and given, as if in
select portions‚ to many bodies. ... I have therefore chosen many
bodies which are reputed to be the most beautiful by those who are
knowledgeable, and I have taken the measures and proportions of all
of these, comparing and eliminating the excesses of the extremes
(sic!). I have selected from many bodies and models those mean
proportions which seem to me most praiseworthy.
    Thus, ALBERTI really understood the idea of taking statistical
means, and the introduction of this statistical method into fine arts is
due precisely to him. To be sure, his method cannot be directly
compared with that of QUETELET who, in the 19th century,
introduced the concept of l’homme moyen (anticipated by
BUFFON60). QUETELET’S is the concept of man in general, though
awkward and even impossible anthropometrically61, a standard, at
least according to QUETELET and his followers, of moyen social and
moral qualities of man. On the other hand, ALBERTI’S is the concept
of a statistically most beautiful man, of l’homme moyen taken not
simply out of beautiful men in general, but, it seems, out of beautiful
men of almost the same constitution, of such a l’homme moyen as is
completely useless beyond fine arts.
    Being a man of education ALBERTI was also an outstanding
geodesist62:

Regiomontan hat in seinem Briefe vom … 1464 zwei Männer als
besonders zuverlässige Beobachter genannt, Toscanelli und Alberti.
    It would be extremely interesting to study ALBERTI’S methods of
treating astronomical and/or geodetic observations, a problem, which,
since I found no original sources, I could not solve.
    As to ALBERTI’s general place in the history of fine arts63,

He was the first theorist to advance the system of proportions (in
art) beyond medieval standards and beyond the classical system as
well. His two “rules” (for measuring proportions of bodies) and his
exempeda system of mensuration (measurement of the dimensions of
the parts of the body in terms of the length of the whole) are all
original. Among artists-theoreticians, Leonardo and Dürer both
incorporated and developed Alberti’s exempeda system, and F. Giazgi
described it in his speculative Harmonia mundi totius.
    LEONARDO DA VINCI64 employed a statistical method
resembling that of ALBERTI:
    (1) Look around you and take the best parts of many beautiful
faces. … So select beauties … and fix them in your mind.
    (2 ) Look at many men of 3 braccia, and out of the larger number
who are alike in their limbs. Choose one of those who are most
graceful and take your measurements.
    A method of obtaining a "mean” photograph of few kindred
persons, or people of a certain nationality or occupation (or criminals)
is due to GALTON65. According to his idea, extremely popular at the
time, composite photographs, as he called them, serve as a means for
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general cognition of the relevant statistical object. I do not venture to
pronounce any opinion about the practical value of this method.

5. Games of Chance
    Games of chance are known to have existed at the outset of
civilization66 as had also the drawings of lots67. In themselves, these
games did not essentially facilitate the development of either
combinatorial techniques or of the idea of randomness and
probability. The contributory reasons were the imperfection of
ordinary dice and the belief in supernatural intervention68 as well as
the comparative complexity of' the rules of many games. Thus, in a
throw of four astragali, not only the total number of points, but also
the manner of composition of this total had to be considered.
    However, by the middle of the 17th century mathematicians of the
highest calibre (PASCAL, FERMAT) became interested in the
stochastic aspect of games of chance and precisely such games
provided them with an opportunity to introduce first numerical
(mathematical) notions pertaining to probability.
    Later, games of chance were studied by such scholars as
HUYGENS, JAKOB BERNOULLI and DE MOIVRE, partly in
response to social demands of the day, but also in accordance with the
intrinsic logic of development of probability. Possibly bearing in mind
that simple games of chance provided mathematicians with precise
natural examples of problems, whose solution simultaneously led to
the development of general principles and theory, HUYGENS69 said:

Je veux croire qu’en considérant ces choses plus attentivement, le
lecteur apercevra bientôt qu’il ne s’agit pas ici d’un simple feu
d'esprit, mais qu’on y jette les fondements d’une spéculation fort
intéressante et profonde. Les Problèmes appartenant à cette Matière
ne seront pas, me semble-t-il, jugés plus faciles que ceux de
Diophante, mais on les trouvera peut-être plus amusants attendu
qu’ils renferment quelque chose de plus que de simples propriétés des
nombres.
    Understandably, HUYGENS underestimated the importance of the
simples propriétés des nombres. However, it is interesting to notice
that in earlier times games of chance were used to provide examples
of design rather than of chance. Even so they were used by
ARISTOTLE and KEPLER to prove that certain events in nature were
designed rather than produced by chance.

Ten thousand Coan throws in succession (whatever this means)
with the dice are impossible, says ARISTOTLE70, so that it is difficult
(impossible) to conceive that the pace of each star should be exactly
proportioned (by chance) to the size of its circle
(Ibidem, 289b 22).
    Similarly, discussing the appearance of a new star, KEPLER71

supposes this to be no chance event:
   Hingegen will ich aber auch mit denjenigen nicht gemeinschafft

haben wölliche diese zusammenstimmung aller dings in Wind
schlagen und darfür halten das es des blinden glücks schuld das
dieser newe sterne eben gerad diß Jahr Monat tag und ort der grossen
conjunction getroffen habe. Dan ob wol war (zum exempel) ein jeder
gerader wolgemachter würffel sechs felder hat und eins so wol fallen
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khan als das andere jedoch wan ein anzahl spieler jeder mit vier oder
fünff Würffeln nur einen einzigen Wurff thuen sollen und einem under
jnen füele das Sechsen auff allen würffeln so wiirde man ein sollichen
nit unbillich wegen einer verborgenen kunst verdacht haben und es
schwärlich dem glück zuschreiben: angesehen das wol hundert
tausendt würffe geschehen möchten ehe wieder einer auff diese weise
geriethe. Derowegen … diese wunderbarliche eintreffung der zeit und
ort nit gern dem blinden glück zuschreiben wollte: zumahl weil die
erscheinung selbsten eines newens Sternens fiir sich allein (auch ohne
betrachtung der zeit und ort) nit ein gemein ding ist wie ein spiel wurff
sondern ein grosses wunder desgleichen vor unsern zeiten nie erhört
oder gelesen worden.
    Such reasoning essentially depends on the correctness of dividing
events into remarkable and usual ones. Highly relevant criticisms of
stochastic considerations made by a no lesser person than LAPLACE
lui-même are due to C0URNOT72, and I say this once more in § 7 in
connection with KEPLER’s inference about the influence of celestial
aspects on meteorological phenomena.
    At least one methodological difficulty inherent in the related
problem of enumerating usual events is that they are not readily
noticed73:

Die sublunarische Natur aber, an die fortwährenden unharmoni-
schen Konfigurationen gewöhnt, achtet sie für nichts, weil sie nichts
Neues für sie sind. Auch einen harmonischen Winkel ist sie jedoch so
gespannt, wie wenn er allein da wäre. So wird es auch übersehen,
wenn ein Prognostikum tausendmal irrt; wenn er aber eine mal
einschlagt, so hält man das für besonders beachtenswert und aller
Mund spricht rühmend davon.
    Another, indirect reference to games of chance occurs in KEPLER74

in connection with his astronomical calculations:
 Man muss (nach der Regula falsi) … eine doppelte, sozusagen

quadratische Annahme, d. h. in der Tat eine unmathematische
Glückspielmethode anwenden.
    That iterative methods did not in KEPLER’S view belong to
mathematics proper is evident and is possibly understood by his
weariness occasioned by them, but, what is here more important,
mathematicians, and, for that matter, after the advent of the theory of
probability, astronomers hardly continued to use expressions such as
unmathematische Glückspielmethode.
    However, the main point in the early history of games of chance
seems to be that they promoted the general, possibly intuitive idea of
definite stochastic properties possessed by mean outcomes.
    The mean possible number of points in a throw of dice or astragali
served as an estimate of reasonable luck, as a measure of expectation.
Thus, CARDANO75 noticed that for a usual die the mean number of
points is 3.5 and that, if more than one ace shows up in a throw of four
astragali, that throw is called the dog, because whatever the other dice
may be, the throw cannot exceed the average number.
    An astragalus is a small bone in the ankle of animals and to its four
faces numbers 1, 3, 4 and 6 were usually attributed so that the mean
outcome of a throw of four astragali is 14. Curiously enough,
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CARDANO does not mention that, owing to the asymmetry of the
astragalus, the probabilities of the occurrences of its different faces are
unequal. On the other hand, this very omission seems to strengthen
my thesis formulated above.
    CARDANO quite often refers to the mean outcome, in particular
concerning throws of three usual die, so that ORE76 seems to be right
in saying that the reasoning on the mean outcome was one of
CARDANO'S main arguments. That, as also pointed out by ORE, this
argument sometimes led him to erroneous conclusions, is in this
context not so important.
    The dissemination of possibly unconscious ideas on the advantage
of mean outcomes is testified by one of GALILEI’S notes77 where he
tells us that gamblers of his day considered that in a throw of three die
10 or 11 points are more advantageous than 9 or 12 points. Supposing
that the gamblers intuitively compared the conditional probabilities
of events A = (10 or 11 points) with B = (9 or 12 points), one comes to

PA = P{A/A or B}= 27/52, PB = P{B/A or B} = 25/52.

    And ΔP = 2/52 = 0.0385 was not an insurmountable obstacle for the
statistical discovery of the fact that PA > PB. This fact did really appear
plausible even in the absence of statistical observations since both (10
and 11), and (9 and 12) are equidistant from 10.5, the mean
(impossible) outcome with the first distance being less than the second
one.
    An extremely interesting and generally known opinion of LEIBNIZ
is concerned with the development of (statistical) decision theory,
which came into being only recently (occasioned, moreover, by
practical requirements other than games of chance)78:

 Ich habe schon mehr als einmal gesagt, dass man eine neue Art
Logik braucht, die die Grade der Wahrscheinlichkeit behandelt. … Es
wäre gut, wenn derjenige, der diesen Gegenstand behandeln will, die
Untersuchung der Glücksspiele weiter verfolgte. Und im allgemeinen
würde ich wünschen, dass ein gelehrter Mathematiker ein
umfängliches Werk über alle Arten von Spielen mit genauer
Beschreibung und guter Begründung schreiben wollte, was von
großem Nutzen wäre, um die Erfindungskunst zu vervollkommen, da
der menschliche Geist besser bei den Spielen als bei den ernsteren
Gegenständen in Erscheinung tritt.

6. Biology and Medicine
6.1. Biology. The role of randomness in biology came to be

systematically studied only after DARWIN79 although he himself did
not admit it80:

I have hitherto sometimes spoken as if the variations had been due
to chance. This, of course, is a wholly incorrect expression, but it
serves to acknowledge plainly our ignorance of the cause of each
particular variation.
    Before DARWIN’S time biologists and scholars in general did
admit that many biological facts, including rather important ones,
were occasioned by chance and biology really was one of the sciences
in which chance had been explicitly spoken of. But chance was not yet
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considered to be the starting moment of (the yet barely discovered)
evolution.
    ARISTOTLE (§ 2.2) himself attributed the occurrence of one or
another sex of the offspring in animals to chance and noticed the
connection of randomness and necessity in this phenomenon. The
study of relative frequencies of births of both sexes in man played a
decisive role in the development of the theory of probability at least
during the whole of the 18th century. An additional point in this
connection is a regrettably unsubstantiated assertion81, that

The notion of probability seems to have been mentioned first in
China by Sun-Tze about 200 B. C. in connection with the probability
that a birth would be that of a boy or a girl.
    Explicit utterances on the variations inside a given species are due
to W. HARVEY and at least once he attributes them to chance82:

 To me the form of the egg has never appeared to have aught to do
with the engenderment of the chick, but to be a mere accident; and to
this conclusion I come the rather when I see such diversities in the
shapes of the eggs of different hens.
    I do not venture to agree with the first part of his assertion but at
least the second one is significant. Still more significant is the
statement of the same author83 that accident is the motive power of the
generation of some creatures:

Creatures that arise spontaneously are called automatic … because
they have their origin from accident, the spontaneous act of nature.
    That the theory of spontaneous generation has been abandoned ages
ago makes no difference here.
    Another author who mentioned variations was KEPLER. Although
not a botanist, he nevertheless seems to pronounce a generally
accepted opinion84:

Finden sich wol einzehle Früchte und Blumen, die 7, 9 oder 11
Fächer oder Blätter haben, wann die species in individuis
gemeiniglich variert, aber kein species findet sich nicht, die diese Zahl
beständig halte.
    HUYGENS85 maintained that diversities in animals and plants
separated in space are due to the divine will:

Il lui a plu … d’établir une certaine diversité de formes entre nos
animaux et plantes et les organismes d’outre-mer.
    On the other hand, LAPLACE86, with his celebrated avoidance of
the divine, was prepared to accept a tendency of (chance ?) changes in
time:

 Mais tant d’espèces d’animaux éteintes dont M. Cuvier a su
reconnaitre … l’organisation dans les nombreux ossements fossiles
qu’il a décrits, n’indiquent-elles pas dans la nature une tendance à
changer les choses mêmes les plus fixes en apparence?

6.2. Medicine
6.2.1. Hippocrates. HIPPOCRATIC writings contain a large

number of case histories and, as a rule, each one of them ends with a
commentary such as87

It is probable that, by means of … this patient was cured (or,
alternatively, It is probable that the death … is to be attributed to …).
    The use of qualitative stochastic considerations is his rule, e. g88.
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To speak in general terms, all cases of fractured bones are less
dangerous than those in which …
    This kind of reasoning seems to form the basis of HIPPOCRATIC
art of medicine. Thus, after an apparently matter-of-fact statement89

It appears … that the coming on of summer should have done good
in these cases. … And yet the summer … was not of itself well
constituted, for it became suddenly hot.
    HIPPOCRATES gives a general counsel (Ibidem, § 16):

 I look upon it as being a great part of the art to be able to judge
properly of that which has been written. For he that knows and makes
a proper use of these things, would appear to me not likely to commit
any great mistake in the art.
    He then explains that, knowing the climate and other external
conditions, the physician would be able to foretell the order of the
critical days and to know when and how to administer medicine.
Obviously this means that the physician ought to know the probable
course and outcome of a disease and to act accordingly.
    That the constitution and general condition of the patient should be
also taken into account is also stated90:
    (1) The separation of denuded bones is quicker or slower,
according to the mode of treatment; something, too, depends upon
whether the compression be stronger or weaker, and whether the
nerves, flesh … are quicker or slower in becoming blackened and in
dying … it is impossible to define accurately the time at which each of
these cases will terminate.
   (2) Men’s constitutions differ much from one another as to the
facility or difficulty with which dislocations are reduced.
    Thus, HIPPOCRATES understands that men differ from one
another in their response to medical treatment and in time necessary
for their convalescence. No such terms as chance or randomness are
used, but implicitly they are certainly present.
    Even more interesting, though, is the occurrence of what could be
called qualitative correlation91:
    (1) Persons who are naturally very fat are apt to die earlier than
those who are slender.
    (2) Those who are accustomed to endure habitual labours, although
they be weak or old, bear them better than strong and young persons
who have not been so accustomed.
    Consider, e. g., the first example. Let the excessive weight of a
given person be measured along the x axis and his longevity along the
y axis. Also, let segment [a, b] on the x axis represent the domain of
slenderness and point c be the beginning of fatness. By plotting results
of a large group of observations it would be possible to obtain a
quantitative (correlative) measure of longevity as against weight of
body.
    It is needless to say that HIPPOCRATES should be credited with
nothing more than an understanding of the existence of some
statistical relationship between weight and longevity. In the absence of
any vital statistics he could have hardly thought of anything else.

6.2.2. Aristotle. Interesting statements occur also in his works92:
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    (1) Why is it that, though the diseases due to bile occur in the
summer, … acute diseases due to bile occur rather in the winter?
    (2) Generally speaking, the change which occurs when a warm, dry
summer follows … on a wet spring, being violent has a deleterious
effect upon the body.
    (3) Why is it that deaths are particularly likely to occur during the
hundred days following each solstice?
    He discusses meteorological phenomena, which, according to his
opinion, accompany solstices and are responsible for the increased
mortality.
    (4) Why is it that fair men and white horses usually have grey eyes?
    Lacking, however, are statements about chance differences between
patients in their response to medical treatment.

6.2.3. GALEN. Developing HIPPOCRATES' doctrine, GALEN
devotes a special chapter of his Hygiene93 to explain that different
men require different ways of life and medical treatment. He also uses
stochastic reasoning such as94

 For the person with perfect constitution of body, who both chooses
a free life and in it never goes to any excess … is not very likely to fall
into any very pathological conditions.
    Chance repeatedly enters into his considerations, sometimes
explicitly and sometimes almost so: the body, says he95,
   Has two sources of deterioration, one intrinsic and spontaneous,

the other extrinsic and accidental. Of those things which affect it from
without (some) contacts are occasional, irregular, and not inevitable.
    Also, GALEN recognizes chance in medicine as understood by
POINCARÉ (see § 2.2)96:

In those who are healthy the body does not alter even from extreme
causes; but in old men even the smallest causes produce the greatest
change.
    At the same time GALEN firmly believed in the divine design of
man. His utterances to this effect are numerous97 and in one instance98

he attributes chance explanations to sophists (see § 1 for a similar
point of view of ARISTOTLE).
    GALEN did vaguely suppose that nature is prone to changes99:

Nature is a constructive artist and … the substance of things is
always tending towards unity and also towards alteration because its
own parts act upon and are acted upon by one another.
    However, he hardly thought these changes to be random100:

If the universe is not originated, it is in no danger of decay, nor is it
open to chance happenings and disorders … Whoso believes … that
the world is originated … comes to blasphemy.
    Thus, chance occurs in biology, but not in the world in general so
that GALEN’S philosophical outlook seems to be hardly consistent.
    The idea of means, as understood in moral philosophy by
ARISTOTLE, was described in § 2.2. GALEN also uses the same
idea, although in a medical context101:
    (1) A good constitution (is) a mean between extremes.
    (2) If the exact mean of all the extremes were in all parts of the
body, this would be the best to observe as being the symmetry most
suitable for all activities.
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    Possibly his statements are not altogether correct but at least they
show how the idea of means (in this case, the mean seems to be the
semirange) came to be advocated in science. See also § 5 where
another aspect of the same idea is described.
    To my understanding, GALEN says the same thing once more, this
time adding that chance deviations from the mean condition should be
small102:

Health is a sort of harmony … all harmony is accomplished and
manifested in a two-fold fashion, first in coming to perfection and
second in deviating slightly from this absolute perfection.
    GALEN’S writing On medical experience (note 100) is devoted to
the discussion of empiricism versus dogmatism in medicine and his
general conclusion (§ 31, p. 153) is that

Empiricism suffices to discover everything used in healing.
    Possibly this discussion is not as interesting as a discussion of
induction versus deduction would have been, but GALEN
(§§ 16 – 18) also makes remarkable comments on the paradox of the
heap, the solution of which (§ 18, p. 121) it is idle to demand. The
paradox, as seen in a medical context, or, rather, in that of medical
statistics, occurs because of the fact that response to medical treatment
is random (§ 15, p. 112):

Experience has shown that what has produced a like result in three
cases can produce the reverse in three others … a thing seen may be
seen exactly as before, and yet belong to those things which are of
both kinds (amfidoxos) or to those things which happen often, or to
those … which take place but rarely.
    Therefore (p. 113),

What is to prevent the medicine which is being tested from having a
given effect on two (three ?) hundred people and the reverse effect on
twenty others, and that of the first six people who were seen at first
and on whom the remedy took effect, three belong to the three
hundred and three to the twenty without your being able to know
which three belong to the three hundred, and which to the twenty,
even if you were a soothsayer you must needs wait until you see the
seventh and the eighth, or, to put it shortly, very many people in
succession.
    Understanding that the response to medical treatment is in a sense
random, GALEN strives for discretion and, it seems, is not prepared to
entrust himself to the relative frequencies of the both possible
responses. However, this meant that he did not give any positive
recommendation about the quantitative assessment of data. But at least
the formulation of the classical problem of medical statistics (that of
testing a given medicine), is due to him as is also the remark that
statistics has to do with the quantitative assessment of the “heaping”
of data. And precisely these philosophical aspects of statistics justify
assertions such as103

Statistics has long had a neighbourly relation with philosophy of
science in the epistemological city, although statistics has usually
been more modest in scope and more pragmatic in outlook. In a strict
sense, statistics is part of philosophy of science, but in fact the two
areas are usually studied separately.
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    I have described writings of HIPPOCRATES and GALEN. IBN
SINA, the third great man in the history of medicine, has no new ideas
to offer but at least he confirms HIPPOCRATES’ opinion concerning
both stochastic considerations and significance of symptoms104.   See
also § 3.2 for LEIBNIZ’ discussion of the Symptome und Indikationen
in medicine.

7. Astrology
    From a modern point of view astrology is nothing but a
pseudoscience. There were, however, astrologers, scholars of the
highest calibre included, who strove to discover connections between
heaven and earth, sincerely believing them to exist.
    That their delusion was not so evident as it could now seem to be is
testified by the fact that heaven does, after all, influence earth (e. g.,
ocean tides are occasioned by the sun and the moon).
    I describe KEPLER’S opinion on astrology. He was the man whose
attempt, if unsuccessful, to base astrology on new methodological
principles should be specifically mentioned. Indeed, his astrological
activities had been noticed before105:

Er wollte einen Unterschied machen zwischen dem chaldäischen,
sternguckerischen Aberglauben und der Physik, d. h. der auf
Erfahrung begründeten reinen Wissenschaft, die nach seiner
Überzeugung einen gewissen Zusammenhang zwischen den
Himmelerscheinungen und dem irdischen Geschehen bestätige.
    And, in more detail106‚

Dass er sich schon damals mit (astrology) beschäftigte, hat seinen
Grund nicht nur darin, dass er als Landschaftsmathematiker ... den
jährlichen Kalender anfertigen musste … oder gar darin, dass er sich
mit dem astrologischen Handwerk nur einen erwünschten
Nebenverdienst habe verschaffen wollen, ohne selbst an das zu
glauben, was er sagte. Er hat oft genug durch die Tat bewiesen, dass
er um der Wahrheit willen ideale und materielle Opfer bringen
konnte, und er hat seine Überzeugung nie um äußere Vorteile
verkauft. Und wenn auch das närrische Töchterlein Astrologie
bisweilen der Mutter Astronomie Mittel verschaffen musste, so ließ er
doch das Töchterlein alles nur so vorbringen, dass er es seiner
Überzeugung nach vertreten konnte. Der Glaube an eine
Beeinflussung des irdischen Geschehens durch die Erscheinungen am
… Himmel war vielmehr in seiner Zeit so allgemein verbreitet und
wurde von so vielen Männer, die er hochachtete, vertreten, dass er
auch ihn anstecken musste. Dass er aber auch hier schon von Anfang
an mit kritischem Verstand vorging beweisen die Ausführungen, die
sich in den … Briefen finden. …
    Dass eine Einwirkung des Himmels auf die Wettererscheinungen,
aber auch auf die menschliche Seele erfolgt, das ist ihm eine Tatsache
der Erfahrung.
    KEPLER’S original intention was to become a theologian107:

Ich wollte Theologe werden; lange war ich in Unruhe. Nun aber
sehet, wie Gott durch mein Bemühen auch in der Astronomie gefeiert
wird.
    It is to be doubted however, that he would have been successful as a
theologian. In his own words108
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Auf die Meinungen der Heiligen über diese natürlichen Dinge
antworte ich mit einzigen Wort: In der Theologie gilt das Gewicht der
Autoritäten, in der Philosophie aber das der Vernunftgründe.
    It clearly seems that his sympathies lie with the Vernunftgründe
and, in any case, his main occupation happened to be the
hochvernünftige astronomy and her daughter, the närrisches
astrology109:

Es ist wol diese Astrologia ein närrisches Töchterlin aber lieber
Gott, wo wolt ihr Mutter die hochvernünftige Astronomia bleiben,
wann sie diese ihre närrische Tochter nit hette, ist doch die Welt noch
viel närrischer, und so närrisch, dass demselben zu ihren selbst
frommen diese alte verständige Mutter die Astronomia durch der
Tochter Narrentaydung, weil sie zumal auch einen Spiegel hat, nur
eyngeschwatzt und eyngelogen werden muss.
    Uns seind sonsten der Mathematicorum salaria so seltzam und so
gering, dass die Mutter gewisslich Hunger leyden müsste, wann die
Tochter nichts erwürbe.
    KEPLER never renounced his moral principles. Therefore,
somewhat developing CASPAR’S opinion as stated above, I hold,
that, according to KEPLER‚ it is possible, and maybe even
reasonable, for an applied science (astrology) to keep its theoretical
counterpart (astronomy). And KEPLER did suppose that astrology is a
science. Moreover, he considered himself to be the actual founder of
astrology as a science110:

Ich habe nach gegen (H. RÖSLIN and P. FESELIUS) mit zwei …
Schriften gestellt. … Daraufhin erhielt ich Briefe von Gelehrten,
worin sie bezeugten, dass die Astrologen jetzt erst durch mich in eine
reinere Lehre eingeführt würden.
    According to KEPLER’S astrology, heaven does influence earth.
However, and this is his main point, this influence is a tendency rather
than a fatal drive. That this point of view was not due to KEPLER
alone is proved by TYCHO BRAHE’S preface to a book published in
1591 by one of his students and recently reprinted with a commentary
by J. CHRISTIANSON111. TYCHO is there quoted as supposing that
human beings are influenced by heaven in a lesser degree than
animals.
    In another source112 TYCHO is said to have

Criticized astrologers who drew improper conclusions based on
superstition and error rather than astrology itself, which he
considered a science for which both accurate knowledge of the course
of the stars and experience gained from signs seen in the elementary
world were needed.
    It thus seems reasonable that TYCHO hardly thought that heaven
influenced earth directly, fatally. Also, it is quite possible that many
scholars held a similar point of view (see § 2.4 for a relevant passage
from THOMAS AQUINAS) but at least KEPLER did have to defend
this point of view, a fact witnessed by his Tertius interveniens113

devoted to this end. A second relevant and, for that matter, more
important argument in favour of KEPLER is that he applied, or
attempted to apply, the principle of correlative influence to explain not
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only men’s dispositions (and, sometimes, fates) but also phenomena
pertaining to natural science; see below.
    The tendency of the heavenly influence is explained by him thus114:

Meine Gestirne waren … nicht der morgendliche Merkur …
sondern Kopernikus und Tycho Brahe, ohne dessen
Beobachtungsjournale alles, was ich bis heute in helles Licht gerückt
habe, in Finsternis begraben läge. …

Die einzige Wirkung der Geburtskonstellation bestand darin, dass
sie jene Flämmchen der angeborenen Anlage und der Urteilskraft
geschnenzt und den Wissendurst vermehrt hat; kurz, sie hat den Geist
und die genannten Seelenvermögen nicht inspiriert, sondern nur
geweckt.
    No wonder that115

    (1) Die Astrologi können futura contingentia nicht vorsagen.
    (2) Wahr ist es von dem großen Theil, aber nicht von allem, was die
Astrologi fürgeben: wahr ist es von den individuis, aber nicht von der
generalitet, die in alle individua eyngetheilt ist.
    (3) So cörperlich und so greifflich gehet es nicht zu, dass Himmel
und Erde einander anrühreten, wie die Räder in einer Uhr.
    (4) Die Handlungen seyend … nicht mehr influentia coelestis,
sondern actio naturae, in quam coelum influxit.
    Ordinary men expected astrologers to foretell important events in
their lives. Having neither the possibility of accomplishing this request
nor the desire to disappoint his readers, much less to deceive them,
KEPLER had to discontinue compilation of astrological almanacs116:

 Die Astrologi keine besondere Spraach haben, sondern die Wort
bey dem gemeinen Mann entlehnen müssen, so wil der gemeine Mann
sie nicht anderst verstehen, dann wie er gewohnet, weiss nichts von
den abstractionibus generalium, siehet nur auff die concreta, Lebt offt
einer Calender in einem Zutreffenden Fall, auf welchen der author nie
gedacht … ich endtlich hab auffhören Calender zu schreiben.
    His general conclusion is117:

Ein Astrologus, der nur den Himmel sihet und von …
zwischenursachen nicht weiss, nur allein probabiliter, nit
Messungsweiss, das ist, ein klein wenig mehr dann nichts, von dem
letzten Erfolg vorsagen könne.
    It is my understanding that probabiliter is a lame substitute for
something like almost at a guess. These thoughts naturally led
KEPLER to comparisons between astrology and medicine, another
science based on the probable (§ 6)118:
    (1) Astrologia in einem bessern Verstande ist mit ihrer experientia
so gewiss als Medicina Botanica, und muss man sich bey der orten
der Aberglauben erwehren.
    (2) Nit allein die Astrologi, sondern auch Medici bissweilen
krumme Wege gehen müssen, zu einem guten Intent zu gelangen.
    The krumme Wege of physicians are mentioned: dissection of
(snatched) bodies (criminal on both counts) and recommendation of
the use of contraceptives to avoid venereal diseases. The krumme
Wege of astrologers are not mentioned but possibly KEPLER thought
that astrology infringed on theological customs and by-laws (see also
below).
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    (3) Seynd die Medicinalische illationes nicht alle so gewiss als ein
vorsagung der Finsternuss, und bleibt demnach, dass in der
Astrologia auch wol etliche illationes aus der Erfahrenheit geschehen
können, welche gleich so gewiss, als wann ein Medicus einer Person,
die etwan gehling ihre Gedächtnuss und Sinne verlohren, und doch
baldt wider gesundt worden, angedeutet, sie wisse nun welches Todts
sie sterben werde.
    (4) Wann ein Medicus seiner Patienten Geneses und Crises so
fleissig auffgezeichnet hette, so fleissig ich diese 16 jahr das Wetter
auffgezeichnet habe. … Er müste aber mit seiner Experientz fürsichtig
handeln und sich keinen Patienten mit falschem Bericht betriegen
lassen.
    It was the established practice of astrologers to single out several
aspects, i. e. remarkable mutual positions of the sun, the moon and the
planets and at least a few commentaries on the connections between
aspects119 and meteorological phenomena on earth are to be found in
KEFLER120:
    (1) Ich habe … bemerkt, dass mit großer Regelmäßigkeit der
Zustand der Luft gestört wird, so oft Planeten entweder in
Konjunktion treten oder nach der herkömmlichen Lehre der
Astrologen Aspekte bilden. Anderseits habe ich bemerkt, dass
meistens Ruhe herrscht, wenn keine oder nur wenige Aspekte einfallen
oder wenn sie sich rasch vollziehen und vorübergehen.
    (2) Ist es auch möglich, dass es in der heißen Zone zur Zeit der
Aspekte mehr regnet als an Tagen, die frei von Aspekten sind.

Bibliographie Kepleriana contains no traces of KEPLER’S
meteorological activities. KEPLER did describe them in his
correspondence121 but in his time meteorology did not yet concern
itself with numerical data and for this reason, if for no other, the
correspondence contains no quantitative correlation between the
aspects and meteorological phenomena on earth.
    I have already quoted KEPLER’S opinion concerning the krumme
Wege of astrologers. That he possibly meant infringement on theology
is indirectly illustrated by a passage which ends on a cautious note
resembling that of J. BERNOULLI122:

Wenn ein vom Dach herabfallender Ziegel einen Vorübergehenden
trifft, … wenn die Geburtskonstellation für solche Ereignisse, die dem
Aufgabenbereich des Schützengels angehören, Anzeichen enthält, so
müssen sich aus dieser Konstellation für diese Betreuung hindernde
oder umgekehrt fördernde Wirkungen ergeben. Ob diese Meinung
nicht der Gottesverehrung widerspricht, das mögen die Theologen
entscheiden.
    Another extremely interesting feature of KEPLER’S astrology is his
presumption of the divine care for mankind, one of the corollaries of
which is123 that illegitimate children, whose birth just as well follows
the divine will, are endowed with reason no less than their legitimate
counterparts and have the same right to live (so as, presumably, to
foster the multiplication of mankind). If one bears in mind that
astrology had also to do with the general destiny of nations as decided
by the prevailing aspects, and, also, by geographical conditions, etc.
(see KEPLER’S prudent qualification about the Zwischenursachen)
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and that KEPLER, for one, contributed quite a few astrological
almanacs, it follows that both in his presumptions and aims KEPLER
the astrologer resembles founders of political arithmetic (J. GRAUNT,
W. PETTY). Howevér, to call KEPLER their precursor would be far-
fetched: completely lacking in his works are statistical data on
population, which were to form the basis of political arithmetic. But
hardly anyone could suppose that such data had existed in feudal and
subdivided Germany.

8. Astronomy
8.1. KEPLER. Possibly the first stochastic reasoning concerning

astronomy is due to ARISTOTLE (§ 5) and it is interesting to notice
that, beginning at least with KEPLER (see § 5 and below) and
NEWTON124, similar arguments about the impossibility of chance’s
governing the system of the world (or heaven in general) were
time and again pronounced by various European scholars125.
    KEPLER, who devoted all his life to the discovery of general laws
of nature, bitterly disclaimed randomness126:

 Mais qu’est-ce que le hasard? Pas autre chose qu’une idole, et la
plus détestable des idoles; pas autre chose que le mépris du Dieu
souverain et tout puissant, ainsi que du monde très parfait sorti de ses
mains.
    In a letter to HERWART dated Jan. 13‚ 1606 KEPLER pointed out
the origin of his philosophical outlook127:

Da ich es hierbei mit den Philosophen zu tun haben werde betreffs
der Begriffe Schicksal, Bestimmung, Zufall, wenn ich das wunderbare
Zusammentreffen einer großen Konjunktion mit dem neuen Stern
behandle (see also § 5), habe ich mich an die Lektüre von Augustinus’
Werk über den Gottesstaat gemacht.
    AUGUSTINUS128 has little to say about chance, so it seems that
KEPLER’S reasoning above was rather occasioned by ancient
thinkers in general (and, of course, by his own astronomical
discoveries).

8.1.1. Eccentricies. KEPLER did have to find room for the work of
random causes, first and foremost in connection with the eccentricities
of the planetary orbits. By this term, even after having discovered his
first law of planetary motion, KEPLER meant the eccentric position of
the sun as measured from the centre of a circular orbit129.
    Eccentricities caused much trouble to KEPLER even in his juvenile
work130. Attempting to explain the general construction of the system
of the world, KEPLER inserted the five regular solids between the
spheres of the six then known planets131, but the existence of
eccentricities, and for that matter unequal to one another, much
worried him132:

Die Ursache der Excentrizitäten wie auch ihrer Unterschiede noch
nicht erforscht ist.
    On p. 108, Kap. 17, he formulates the corresponding problem for
those who Lust dazu haben:

Die Ursachen der … Excentrizitäten aus den entsprechenden
Körpern (the regular solids) ableiten. Da nämlich auch diese
Abweichungen nicht aufs Geratewohl und ohne Grund gerade in
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dieser Größe von Gott den einzelnen Planeten zugemessen worden
sind.
    In the second edition of his Mysterium Kepler added Anmerkungen
to almost each chapter and among them are133

    (1) Man konnte noch nicht die Ursache der Excentrizitäten‚ man
wusste nicht, warum die Excentrizität bei den einzelnen Planeten
gerade so groß ist …
    (2) Ich habe die Größe der Excentrizitäten … erforscht, ich habe in
der Harmonik die Ursache der Excentrizitäten aufgedeckt.
    (3) Ich habe gesucht, und, siehe da, ich fand die vorzüglichsten
Ursachen (a reference to book 5 of the Harmonik is given).
    What then, occurred before 1621, the date of the publication of the
second edition of the Mysterium? In his main work134 KEPLER first
ascribes the eccentricities to random ifluences from without:

Die Beispiele aus der Natur und die … Verwandtschaft zwischen
den himmlischen und irdischen Erscheinungen bezeugen laut, dass die
Wirkungen eines einfachen Körpers um so einfacher sind je
allgemeiner sie sind, und dass Verschiedenheiten … (wie … die
Exzentrizität) von Ursachen herrühren, die von außen her hinzutreten.
    Thus, because of external hindrances, says KEPLER‚ rivers cannot
flow directly to the centre of the Earth.
    Das Abwärtsgleiten, die Stagnation, … das alles rührt von den
angegebenen Ursachen her, die zufällig von außen her hinzukommen.
    On p. 244 (Kap. 39) his similar reasoning is that the planets‚ being
situated at enormous distances from the sun, just could not accurately
trace their prescribed circular paths. But then (p. 268, Kap. 45) he
refutes himself:

 Denn nachdem ich im Kap. 39 in größter Verlegenheit war, weil ich
keine hinreichend wahrscheinliche Ursache dafür anführen konnte,
wie die Planetenbahn zu einem vollkommenen Kreis wird (immer
musste ich der Kraft im Planetenkörper eine absurde Eigenschaft
beilegen), nun aber auf Grund der Beobachtungen entdeckt hatte,
dass die Planetenbahn gar nicht vollkommen kreisförmig ist.
    However, and this is the important thing, KEPLER repeatedly
returns to the principle of outside influences. Thus, in 1616 he
writes135:
  Beweise ich, dass die Ungleichförmigkeit der Bewegung der Natur

der Planetenkugeln entspricht, also physikalisch ist. Außerdem
beweise ich, dass und in der sublunarischen Natur und in den
mechanischen Bewegungen Beispiele für eine solche regelmäßige
Ungleichförmigkeit der Himmelbewegungen zu Verfügung stehen,
also wiederum dass diese regelmäßige Ungleichförmigkeit
physikalisch ist.
    A few years pass and KEPLER explicates his thoughts in more
detail136:
   If the celestial movements were the work of mind, as the ancients

believed, then the conclusion that the routes of the planets are
perfectly circular would be plausible.
    But the celestial movements are … the work of … nature and this is
not proved by anything more validly than by the observation of the
astronomers, who … find, that the elliptical figure of revolution is left
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in the real and very true movement of the planet, and the ellipse bears
witness to the natural bodily power and to the emanation and
magnitude of its form.
.. Because in addition to mind there was then need of natural and
animal faculties also for the sake of movement; those faculties
followed their own bent … (and) did many things from material
necessity. So it is not surprising if those faculties, which are mingled
together, could not attain perfection completely. The ancients
themselves admit that the routes of the planets are eccentric, which
seems to be a much greater deformity than the ellipse.
    KEPLER’S general reference to the ancients seems inconclusive
and I feel it opportune to refer additionally to EPICURUS (§ 2.3) with
his similar thoughts about outside influences. Similar reasoning, in a
somewhat clumsy style which smacks of mysticism, may be found
also in book 5 of his Harmonices Mundi137. The title of Kap. 9 of this
book is

Dass die Exzentrizitäten bei den einzelnen Planeten ihren Ursprung
in der Vorsorge für die Harmonien zwischen ihren Bewegungen haben
and in this chapter (p. 317) one finds:

Der ... himmlische Werkmeister höchstselber die harmonischen
Proportionen … mit den fünf räumlichen regulären Figuren
verbunden hat, um aus den beiden Figurenklassen ein einziges
vollkommenstes Urbild des Himmels zu formen. … Die Maße der
Exzentrizitäten der einzelnen Bahnen zum Zweck einer
entsprechenden Regelung der Körperbewegungen enthalten waren.
    Actually here (and explicitly on p. 319, V. Satz) KEPLER is
referring to his second law of planetary motions: the measures of
eccentricities (and here eccentricities could be meant only as
pertaining to elliptical orbits) are predetermined so as to proportion
the movements of the planets. It is precisely this that KEPLER means
by saying (p. 316) that  Es können also … die Gesamtharmonien
aller sechs Planeten nicht von ungefähr auftreten.
    It remains uncertain why KEPLER failed to refer to his second law
in the Epitome. But in any case, it is my opinion that KEPLER never
rejected the idea that the circular motions of the planets are
predetermined while the elliptical motions are occasioned by a
relatively small corruption due to the natural and animal faculties etc.
    Moreover, the values of eccentricities of these motions are also
predetermined to proportion the movements of different planets, but
this, so to speak, is a predetermination of a second order. Dismissing
these faculties, one discovers that KEPLER, for all his negation of
randomness, ascribed the elliptical deviation from the circle to random
influences.
    I do not know just how much KANT and LAPLACE borrowed
from KEPLER but at least it was their point of view also that the
irregularities in the system of the world were occasioned by variety
(randomness)138:
    (1) Da es denn ein gar zu glückliches Ungefähr sein würde, wenn
gerade alle Planeten ganz genau in der Mitte zwischen diesen zwei
Seiten in der Fläche der Beziehung selber sich zu bilden anfangen
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sollten … überhaupt die Vielheit der Umstände, die an jeglicher
Naturbeschaffenheit Antheil nehmen, eine abgemessene
Regelmäßigkeit nicht verstattet.
    (2) Woher sind ihre Umläufe nicht vollkommen zirkelrund. … Ist es
nicht klar einzusehen, dass diejenige Ursache, welche die Laufbahnen
der Himmelskörper gestellt hat, es nicht völlig hat ausrichten können.
Ist nicht das gewöhnliche Verfahren der Natur hieran zu erkennen,
welches durch die Dazwischenkunst der verschiedenen Mitwirkungen
allemal von der ganz abgemessenen Bestimmung abweichend gemacht
wird?
    (3) Si le système solaire s’était formé avec une parfaite régularité,
les orbite des corps … seraient des cercles, dont les plans …
coincideraient avec le plan de l’équateur solaire. Mais on conçoit que
les variétés sans nombre qui ont dû exister dans la température et la
densité des diverses parties de ces grandes masses ont produit les
excentricités de leurs orbites, et les déviations de leurs mouvements
du plan de cet équateur.
    Thus, KEPLER’s natural und animal faculties are soberly called
variétés dans la température et la densité!

8.1.2. End of the World. Another important subject in KEPLER’s
writings is his speculation über den astronomischen Anfang und das
astronomische Ende der Welt139.
    In the first edition of the Mysterium, assuming an incorrect form of
the as yet unknown third law of planetary motions, KEPLER rejects
any possibility of a simultaneous return of all the planets to their
Anfangslage, their position at the moment of creation (Kap. 23, p.
144):

 Die Exzentrizität stehe in rationalem Verhältnis zum
Bahnhalbmesser, dann werden diese untereinander irrational, da sie
sich verhalten wie die Radien der In- und Umkugeln der Körper (the
regular solids), die in irrationalem Verhältnis zueinander stehen …
Nun aber stehen die Bewegungen zu den Radien in rationalem
Verhältnis, also sind die Bewegungen unter sich irrational, und
kehren daher nie wieder zur Anfangslage zurück, auch wenn sie
unendlich viele Jahrhunderte dauern würden.
    According to KEPLER, this means that the end of the world is
impossible. He refers to this argument in a letter to D. FABRICIUS140:

In der Tat entsteht auch jeder einzelne Aspekt in den Ephemeriden
aus seiner eigenen Ursache; sie treten aber in keinerlei Ordnung auf;
auch wenn die Welt 100,000 Jahre dauerte, so würde nie dieselbe
Reihenfolge wiederkehren, wie in meinem Mysterium (Kap. 23) steht.
    Then, in the second edition of Mysterium, bearing in mind (the
correct form of) the third law of planetary motions, KEPLER adds:
    Nun aber haben wir bereits dieses Fundament umgestoßen, insofern
die Verhältnisse der Himmelsbahnen nicht allein von dem fünf
Körpern herrühren. Es fragt sich also, was nun von dem vorliegenden
Satz zu halten ist. Gibt es eine vollständige Wiederkehr aller
Bewegungen? Ich sage nein, obwohl jener Beweisgrund umgestoßen
ist.
    His explanation, which follows on p. 146 with no reference being
given, is the same as the one in N. ORESME142:
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It is probable (verisimile) that two proposed unknown ratios are
incommensurable because if many unknown ratios are proposed it is
most probable that any (one) would be incommensurable to any
(other).
    Knowing nothing about the (KEPLERIAN) laws of planetary
motions, ORESME143 expressed an opinion much like KEPLER’S:

It is probable that in any instant the celestial bodies are related in
such a way that they were never so related in the past, nor will so be
related at any time in the future.
    The arguments of ORESME and KEPLER are interesting as being
the first, if naive, ones in which stochastic considerations are applied
to an abstract mathematical notion.
    Of course, neither of them knew that a dynamical system will
eventually return arbitrarily close to its original state.

8.2. GALILEI. Denying any possibility that a heavenly body can
move irregularly, GALILEI, as it seems, simultaneously denies
randomness144:

Those lines are called regular which, having a fixed and definite
description, have been susceptible of definition and of having their
qualities and properties demonstrated. … But irregular lines are those
which have no determinacy whatever and are indefinite and casual,
and hence indefinable; … to say, “Such events take place by reason of
an irregular line” is the same as saying “I do not know why they
occur.” The introduction of such lines is in no way superior to the
sympathy, antipathy, occult properties, influences, and other terms
employed by some philosophers as a cloak for the correct reply, which
would be “I do not know".
    If this was meant to be directed against some of KEPLER’S
utterances it will possibly explain, even if to a small extent, the puzzle
which GALILEI’S failure to recognize the KEPLERIAN laws of
planetary motions still poses.
    However, as also was the case with KEPLER, and, for that matter,
with any natural scientist worth his salt, GALILEI’S denial of
randomness did not prevent him from separating regularity and
randomness in an observed natural phenomenon.
    Exactly this was his main problem when he studied the behaviour
of solar spots145. Their rotation with the sun itself was the regular
component and their movement relative to the sun’s disk was the
random component of the observed phenomenon of their (general)
movement. GALILEI arrived at a rather accurate estimate of the
period of rotation of the sun (one lunar month; the modern
estimate is 24.5 – 26.5 days).

9. Modern Philosophy: Chance and Its Laws
9.1. Chance. Many eminent modern philosophers just did not

recognize chance, or, to put it more cautiously, reduced chance to
intersections of determinate chains of events. Thus, it was T.
HOBBES’ opinion146 that
    (1) Generally all contingents have their necessary causes … but are
called contingent in respect of other events upon which they do not
depend; as the rain … shall be … from necessary causes, but we think



31

… it happens by chance, because we do not yet perceive the causes
thereof.
    (2) By contingent, men … mean that which hath not for cause
anything that we perceive; … when a traveller meets with a shower,
the journey had a cause, and the rain had a cause sufficient to
produce it; but because the journey caused not the rain, nor the rain
the journey‚ we say they were contingent one to another.
    Much the same was the opinion of B. SPINOZA147, G. W.
LEIBNIZ148, VOLTAIRE149, C. A. HELVETIUS150, P. H. T.
D’H0LBACH151 and D. HUME152. As to LEIBNIZ, he153 adds that the
zufällig has

 Ihre Ursprung von einer überwiegenden Ursache her, die zwar
neiget, aber nicht zwinget.
    See §§ 2.4 and 7 for a similar kind of influence of celestial bodies
on man as understood by THOMAS AQUINAS and KEPLER.
    The point of view of POINCARÉ that randomness has to do with
phenomena in which slight causes have considerable effect (§ 2.2) had
also been pronounced by various earlier scholars, at least as applied to
history. This was the opinion of HELVETIUS, B. PASCAL, possibly
laughing in his sleeve, HOLBACH, and, to a certain extent,
VOLTA1RE154 of whom I shall quote only PASCAL:

Le nez de Cléopatre s'il eût été plus court toute la face de la terre
aurait changé.
     Modern philosophers used stochastic arguments either to explain
the origin of the world and/or of animals and man or to refute such
explanations. All these explanations (and refutations) were, of course,
qualitative, and the theory of probability did not come into being
because of them. However, a short account of them is justified at least
by the interesting concomitant considerations.
    Those against a chance origin of the world usually cited as
examples of similar impossible feats a chance composition of a
lengthy book155. Those against the origin of life by chance either took
their opinion for granted156 or thought it to be even less possible than
that of the world157. On the other hand, perhaps HELVETIUS158 did
imagine that the world originated by chance:

La nature, par ses combinaisons, enfante des soleils
while R. DESCARTES159, though with a qualifying remark

Il est bien plus vraisemblable que, des le commencement, Dieu l’a
rendu tel qu’il devoit être,
attempted to explain the origin of the world by chance160:
    (1) Quelque inégalité et confusion que nous puissons supposer que
Dieu ait mise au commencement entre les parties de la Matière, il
faut, suivant les loix qu’il a imposées a la Nature, que par après elles
se soient reduites presque toutes à une grosseur et à un mouvement
mediocre.
    (2) Je me résolus de … parler … de ce [monde] qui arriveroit dans
un nouveau, si Dieu créoit maintenant quelque part, … assez de
matière pour le composer, et qu’il agitât diversement et sans ordre les
diverses parties de cette matière, en sorte qu’il en composât un chaos
aussi confus que le poètes en puissent feindre, et que par après il ne fit
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autre chose que prêter son concours ordinaire à la nature, et à laisser
agir suivant les lois qu’il a établies.
… Je montrai comment la plus grande part de la matière de ce chaos
devoit, en suite de ces lois, se disposer et s’arranger d'une certaine
façon … comment cependant quelques-unes de ses parties devoient
composer une terre, et quelques-unes des planètes.
    Against this general background, it is all the more interesting to
notice passages, which, it seems, show that at least some scholars
were prepared to accept randomness in a more general sense than that
confined to blind chance (= to the uniform distribution)161:
    (1) Seroit-on bien étonné, s’il avoit dans un cornet cent mille dés,
d’en voir sortir cent mille six de suite? si ces dés étoient tous pipés on
cesseroit d’en être surpris. … Les molecules de la inatière peuvent
être comparées à des dés pipés … ces molécules étant essentiellenent
variees par elles-mêmes et par leurs combinaisons, elles sont pipées,
pour ainsi dire, d’une infinité de façons différentes.
    (2) En conséquence de cette sensibilité sourde et de la différence
des configurations, il n’y aurait eu pour une molécule organique
quelconque qu’une situation la plus commode de toutes, qu’elle aurait
sans cesse cherchée par une inquiétude automate.

9.2. Randomness and Necessity; Dialectics. An argument about
randomness and necessity, possibly the first one in recent times, is due
to KANT162:

Der Zufall im Einzelnen nichts desto weniger einer Regel im
Ganzen unterworfen ist.
    G. W. F. HEGEL163 developed this idea:

Diese Einheit der Möglichkeit und Wirklichkeit ist die Zufälligkeit.
[Das Zufällige] ist … unmittelbare Wirklichkeit; es hat keinen Grund
… Das Zufällige ist aber … das Wirkliche als ein nur Mögliches‚ … es
hat einen Grund.
    … Die Einheit der Notwendigkeit und Zufälligkeit … ist die
absolute Wirklichkeit zu nennen.
    HEGEL’s style is ponderous and the passages quoted above
remained virtually unnoticed at least until the development of
stochastic ideas in biology took place. F. ENGELS164 stressed the
importance of a dialectical understanding of randomness and necessity
for natural science as well as the actual if unconscious use of it by
DARWIN.
    9.3. An Attempt of Formalizing the Concept of Disorder. I have
already described J. H. LAMBERT'S work on probability including
his lone attempt to formalize the concept of randomness and the
connection of randomness with disorder, i. e. to solve a problem
which has been attacked once more only in our time165.
    LAMBERT posed much the same problem in a memoir166 which I
did not notice before. Referring to C. WOLFF, who, as is well known,
having started from LEIBNIZ’ general ideas, attempted to develop a
comprehensive system of knowledge, and, also, to his student, A. G.
BAUMGARTEN, LAMBERT applies mathematics to metaphysical
objects. Considering (§ 7 of pt. 1) the development of 12,
LAMBERT notices dans ces nombres un ordre de liaison (ordre
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légal, as he also calls it) which means that each digit occupe
nécessairement sa place. However,

Il est également vrai aussi, qu’il n’y a absolument point d’ordre de
ressemblance (ordre local), et qu’ils se succedent comme jettés au
hazard. … Aussi le calcul des probabilités y est parfaitmnent
applicable.
    Then LAMBERT estimates disorder in number series. Considering
permutations of elements (§ 11) he introduces a measure of disorder
equal to the sum of products of the value of each element by its
distance from its proper place. Thus, the disorder of a series 4, 3, 1, 2
is equal to

    4 3+3 1+1 2+2 2 = 21.

    Passing to the multidimensional case, LAMBERT (§ 13) considers
the order in the arrangement of n books of a given library:
Les livres s’y classifient d’abord suivant les sciences; ensuite on a
égard a leur ancienneté, au format, ...
    Assuming that these aspects of classification possess weights a, b,
c, LAMBERT (§ 15) estimates the order of the library: if the
arrangement of m books complies with each condition (aspect), while
that of p, q, r books (m + p + q + r = n) complies with conditions (1)
and (2), (1) and (3), and only (1) correspondingly, the order will be

( ) ( ) ( ) .
( )

m a b c p a b q a c ra
n a b c

+ + + + + + +
+ +

    A curious utterance is contained in § 16:
Mais si à cet égard on repasse la plupart des Institutions de

Chymie, où y trouvera un ordre d’un degré bien inférieur; et quand il
s’agit des écrits où l’ordre est = 0, c’est aux alchymistes qu’il faut
s'adresser.
    The first part of the memoir ends with the calculation of the optimal
place of an element in a given series. If, according to three
contradictory rules, this element is displaced by x, m – x and n – x
respectively, and if these rules possess weights A, B, and C, the degré
de défaut d’ordre will be

   y =Ax +B(m – x) + C(n – x).

    The minimal y is sought in three different cases, i.e. when A +B is
more or less than, or equal to C.
    The second part of the memoir is an attempt to formulate rules for
arranging elements of a given series. Beginning with preliminary
considerations, LAMBERT (§§ 8 – 18) studies one-dimensional
series; § 23 is devoted to two-dimensional series, while in § 24 he
formulates numerous rules which, on his view, should be followed.
Each rule, says LAMBERT, has to do only with l’ordre de
ressemblance, to which, and only to which, stochastic considerations
are applicable (see above).
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    One-dimensional series, it is said in rule No. 1, should be
symmetric relative to the central symbol, which, moreover, should not
occur anywhere else. (LAMBERT uses symbols rather than numbers
or digits.)Then (rules No. 4 and 5),

Les objets qui different en espèce doivent encore différer en
nombre.
… Chaque variété doit être rachetée par quelque ressemblance, et
réciproquement chaque ressemblance doit être contrebalancée par
quelque variété.
    Thus, LAMBERT the mathematician finally gave way to
LAMBERT the artist: his rules obviously have nothing to do with any
mathematical understanding of randomness. Moreover, stochastic
considerations are mentioned only in passing. Nevertheless, this
memoir should be mentioned in the general context of LAMBERT’S
heroic attempt to quantify disorder and randomness.

9.4. Theory of Probability and Mathematical Statistics. The
direct source of inspiration for J. BERNOULLI’S Ars Conjectandi167

is the celebrated Port-Royal where many of BERNOULLI’S initial
assumptions and even some of his examples are present.
Nevertheless, the idea of quantifying inductive inference and its
translation into mathematical formulae are due to BERNOULLI.
    What is called the classical probability of an event,

mp
n

=                                                                            (1)

where m is the number of favourable cases and n is the total number of
all (equally possible) cases, was known even to CARDANO and to
KEPLER (§ 8.2). Simultaneously with (1) a second, if tacit, statistical
definition

μ
ν

p =                                                                            (2)

where μ is the number of occurrences of a certain event in ν
independent trials with a constant probability (!) of success
came to be used.
    In distinction from R. CARNAP163‚ who stresses the difference
between (1) and (2), I notice that precisely the combination of these
definitions of probability beginning with the A. C. formed the basis for
the development of the theory of probability, possibly until the middle
of the 19th century.
    Consider, indeed, BERNOULLI’S law of large numbers: if the
probability p of the occurrence of an event in each trial is constant and
in ν trials this event occurs μ times, it follows that

μlim (| | ε) 1,  ν .
ν

P p- < = ®¥                                                  (3)
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    This law expresses a relation between the two probabilities (1) and
(2). BERNOULLI himself says so almost explicitly: in his view, the
experimental method of determining the number of cases, i. e., of
determining probability (2), is not new or unusual. However169,
    Man muss … ob ein bestimmter Grad der Gewissheit, das wahre
Verhältnis der Fälle gefunden zu haben, vorhanden ist, welcher auch
bei beliebiger Vermehrung der Beobachtungen niemals überschritten
werden kann.
    Because of (3) apprehensions are groundless and the probabilities
(1) and (2) may be applied on a par. As to the doubts of einiger
Gelehrten (p. 92), caused by the fact that the terms of fraction (2), in
distinction from those of fraction (1), are unbestimmt und unsicher,
unendlich and, moreover, nicht beständig, BERNOULLI refutes them
(p. 93): both fractions

Sind hinsichtlich unserer Erkenntnis gleich ungewiss und
unbestimmt. ... Auch zwischen zwei unendlich großen Zahlen ein
bestimmtes Verhältnis bestehen kann. … Bisweilen neue
Beobachtungen angestellt werden müssen.
    Interesting in this refutation is the assumption of an infinite number
of trials. VON MISES subsequently postulated this assumption, while
in mathematical statistics, at least from A. A. MARKOV’S work
onward, a finite group of observations is interpreted as a sample from
an infinite population.
    The Gelehrter to whom BERNOULLI refers is, presumably, just
one: LEIBNIZ, in correspondence with whom BERNOULLI170 had
outlined the content of the fourth part of his as yet unpublished work
and, in particular, had confided his concepts about the use of statistical
probabilities. LEIBNIZ, at least initially, disagreed, which is all the
more strange in that it was he who proposed that a stochastic logic be
developed (§ 5). My own understanding of this fact is that LEIBNIZ
may have been prepared to weigh delicate subjective opinions and
probabilities rather than to enumerate successful and unsuccessful
trials in (2).
    The law of large numbers and the limit theorems of the theory of
probability are generally used in natural science and precisely this use
is a definite proof that a science of the accidental, or, rather, of the
laws of randomness (§ 1), of a quantitative estimation of the gradual
transition of isolated statistical observations into a representative heap
(§ 6.2.3), does exist.
    It seems that from a philosophical point of view both the law of
large numbers and the (stochastic) limit theorems establish relations
between deductive and inductive methods, i. e. of the theory of
probability and mathematical statistics.
    One of the possible consequences is that the history of
mathematical statistics, if not of probability, should begin with J.
BERNOULLI. That the borderline between probability and statistics
should be drawn in this wise is also the opinion of CARNAP171, while
mathematicians evidently stress the similarity of both these
disciplines172. For a natural scientist this last opinion may be less
attractive.

10. General Conclusions
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    ARISTOTLE connected the concept of randomness with non-
fulfilment of intention. Disregarding this connection, it is possible to
say that his is an understanding of a chance event as dependent on
small changes in chains of previous events; which takes place when
slight causes determine considerable effects (POINCARÉ).
    In a biological context ARISTOTLE offers a dialectical statement
connecting randomness and necessity. However, the laws of chance
being of course still unheard of, ARISTOTLE denied any possibility
of studying randomness.
    Jurisprudence had always been based on probabilities and in
LEIBNIZ’ times (possibly even earlier) the probability p = 1/2 became
officially recognized in law.
    The first concept, though not formalized and unconnected with
probabilities, of errors of the first and second kind, now generally
used in statistics, perhaps came to be used precisely in jurisprudence.
Also in jurisprudence a naive criterion for distinguishing between
randomness and divine intervention (determination) had been
formulated, possibly for the first time in the history of mankind.
In lawsuits and courts of arbitration arithmetical means of estimates
made by different persons were widely used. This stochastic aspect of
the theory of means had also been manifested in sculpture (ALBERTI,
15th century) and in games of chance.
    There is evidence (CARDANO) that gamblers regarded the mean
possible outcome of a throw of astragali as an estimate of reasonable
luck, and (GALILEI, indirectly) that of a throw of dice as being most
advantageous. Games of chance did not essentially facilitate the
development of either combinatorial techniques or of the idea of
randomness and probability, but they were used to facilitate reasoning
on design versus chance (ARISTOTLE, KEPLER). Also, they
provided an opportunity to introduce first numerical notions pertaining
to probability (PASCAL, FERMAT).
    The role of randomness in biology became apparent only after
DARWIN but even before him biologists (HARVEY) and scholars in
general did admit that many important biological phenomena were
occasioned by chance.
    Medicine, as developed by HIPPOCRATES and GALEN, was a
science of the probable and HIPPOCRATES even used what amounts
to qualitative correlation, while GALEN emphasized the connection
of health with mean constitution, mean of all extremes, etc., which is
another aspect of the theory of means, and of the general idea that the
mean of something is most advantageous. Also, GALEN formulated
the problem of testing medicine. Though denying any possibility of a
numerical (statistical) solution of this problem, he at least noticed its
connection with the general problem (paradox) of the heap, i. e., the
connection of statistics with philosophy of experimental science.
Lastly, GALEN, also in a medical context, admitted randomness in
the sense later offered by POINCARÉ.
    Astrology, notably at the hands of KEPLER, had been understood
as a study of tendencies and of correlation and it is in this connection
that he compared astrology with medicine. As regards foretelling
tendencies in the future of nations, the aims of KEPLER resembled
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those of later political arithmeticians (GRAUNT, PETTY), but of
course he did not yet possess statistical data, therefore could not
use it and could not be called their precursor.
    In astronomy, KEPLER‚ though denouncing randomness, had to
recognize it to explain eccentricities of planetary orbits. His arguments
on this subject could be seen as a development of a purely qualitative
reasoning of EPICURUS and perhaps it was just in his writings that
KANT and LAPLACE later picked up a similar point of view.
In distinction from ARISTOTLE, who had to do with isolated acts of
randomness (and whose understanding of it I have linked with that of
POINCARÉ), EPICURUS and KEPLER‚ and, also, KANT and
LAPLACE distinguished random influences such as occasioned by
causes whose general effect is relatively small, like a noise
superimposed on a determinate phenomenon. The first understanding
of randomness leads to the uniform distribution (POINCARÈ)‚ while
the second one leads to the normal distribution (the central limit
theorem, one of whose sufficient conditions is, that, in a sense, each
random component is small).
    Another point of interest in KEPLER'S (and ORESME’S)
astronomy is his understanding that two numbers, taken “at random”,
are most possibly irrationally related to each other, a fact which he
used to prove that the end of the world is practically impossible.
    GALILEI, also denouncing randomness, nevertheless successfully
separated the regular rotation of solar spots with the sun itself from the
random component (i. e., from their proper movement relative to the
sun’s disk) of the observed phenomenon (of the general movement of
solar spots).
    Modern philosophers usually reduced randomness to intersections
of determinate chains of events; also, an understanding of randomness
similar to that of POINCARÉ did exist, but it was related to the
general history of mankind rather than to phenomena in nature.
    With the outstanding exception of DESCARTES, who described a
qualitative picture of a chance origin of the world, almost no one
believed in such an origin, the less so as the central limit theorem,
according to which a certain order is to be expected even out of blind
chance (out of randomness in the sense of uniform distribution),
remained of course unknown. And exactly blind chance was the patent
notion of randomness. With the exception of HOLBACH and
DIDEROT, whose opinion happened to be either unnoticed or at least
forgotten, no philosopher thought of any other kind of randomness, e.
g., of random quantities possessing binomial distributions, which had
been used by A. DE MOIVRE and N. BERNOULLI. Even
HOLBACH and DIDEROT did not formulate their reasoning in a
mathematical way.
    LAMBERT’S lone attempt to formalize the notions of randomness
and disorder‚ an attempt made ahead of time and therefore doomed to
failure, is described in part as are also the outstanding achievements of
JAKOB BERNOULLI in quantifying inductive inference (quantifying
and in the statistical sense solving the paradox of the heap) and thus
starting the history of mathematical statistics. A broad picture of the
history of randomness and probability has been attempted, and the
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most general conclusion is that randomness did enter into
philosophical and astronomical systems built by most eminent
scholars and that, even in antiquity, there did exist sciences of the
probable, if not of the accidental.
    The main weakness of this article, as I see it, is that I have been
unable to connect randomness, as understood by scholars of the past,
with what seems to be a modern point of view as developed by A. N.
KOLMOGOROV, R. J. SOLOMONOFF and P. MARTIN-LÖF173

(the “nearer" is the density function of a certain random quantity to
the uniform law, the “more random" is this quantity). However, this
point of view seems to be pronounced (and, for that matter, only
implicitly),
on a heutistic level only; even so, it does not seem to be generally
accepted.

Addendum (added in proof)
[1] YU. A. DANILOV & YA. A. SMORODINSKY, J. Kepler: from Misterium to
De Harmonice. Uspekhi physic. Nauk, vol. 109, No. 1, 1973, pp 175 – 209 (in
Russian).
[2] O. GINGERICH, Kepler. Dict. Scient. Biogr. (see note 35), vol. 7, 1973,
pp. 289 – 312.
[3] N. L. RABINOVITCH, Probability and statistical inference in ancient and
medieval Jewish literature. Toronto, 1973.
[ 4 ] A. C. CROMBIE, Avicenna’s influence on the medieval scientific tradition. In
Avicenna: scientist and philosopher. Ed. G. M. WICKENS. London, 1952,
pp. 84 – 107.

    Reference [4], brought to my attention by S. M . STIGLER describes
AVICENNA’S (= IBN SINA’s) methodology of experimentation.
    I have noticed that LAPLACE, in his Sur les probabilités (see note 146,
p. 480), introduced what is now called DIRAC’S delta function.
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Notes

1. Metaphysica, 1064b 15. Throughout this article I refer to the English edition of
ARISTOTLE (vols. 1 – 12, editor D. Ross). References are given to pages and lines
only. Also, it seemed unnecessary to quality the reference to ARISTOTLE by
dividing the ARISTOTELIAN Corpus into ARISTOTLE proper and pseudo-
ARISTOTLE, a distinction which for that matter seems not to have been established
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2. Metaphys., 1026b,1027a; Ethica Eudemia, 1247b.
2a. In the words of F. SCHILLER‚

Der Weise sucht das vertraute Gesetz in des Zufalls grausenden Wandern, Sucht
den ruhenden Pol in der Erscheinungen Flucht.
(Der Spaziergang, 1795. Werke, Bd. 2. Leipzig, 1955, p. 710.)
    Noticed by A. VASILIEV (Vestnik Evropy, 1892, vol. 27, No. 10. In Russian.)
3. O. B. SHEYNIN, Mathematical treatment of astronomical observations. In this
collection.
4. Physica, 195b – 196b.
5. C. B. BAILEY, The Greek atomists and Epicurus. Oxford, 1928, pp. 121 and 139;
Democritus in his fragments and testimonies by ancients. No place, 1935. Ed. G. K.
BAMMEL (in Russian). See pp. 57, 61, 129.
6. Analytica posteriora, 94a; Phys. 194b; Metaphys., 983a, 1013a, 1044a.
7. E. g., Topica, 102b 6. See also Anal. post., 73b and Topica, 120b
8. De partibus animalium, 641b 15.
9. Magna moralia, 1207a 5.
10. Rhetorica, 1369a 31, see also Ethica Eud., 1247b.
11. De Caelo, 283b 1, see also Phys. 196b and Rhetorica, 1369a.
12. Metaphys, 1025a, 1065a.
13. Anal. post., 87b.
14. Parva naturalia, 463 b.
15. Phys., 197b 0 and 197b 14. See also 197a 5.
16. The Aristotelian-Thomistic concept of chance. Notre Dame, Indiana, 1945. See
p. 22.
17. Metaphys.‚ 1025a; 196b 30; and (example 3), Phys., 199b 1 and De generatione
animalium, 767b 5.
18. Science et méthode. Paris, 1906. English translation of the relevant chapter:
 pp. 1380 – 1394 of World of mathematics‚ vol. 2. New York, 1956, ed. J. R.
NEWMAN.
19. Analytica priora, 70a 0.
20. Rhetorica, 1402a 5, see also De Poetica, 1461 b.
21. De Poet., 1460a 25.
22. Metaphys. 1065a; Rhetorica, 1361 b.
23. Magna moralia, 1206b and 1270a.
24. Ethica Eud., 1247a.
25. V. CIOFFARI, Fortune and fate from Democritus to St. Thomas Aquinas. New
York, 1935. See p. 30.
26. Interesting reasoning on the military art is contained in an ancient Chinese book
Sun-Tsi written by SUN-BIN in the 4th century B. C. (see chap. 1, § 9 of this book in
Drevnekitaiskaia Filosofia (Ancient Chinese philosophy), vol. 1. Moscow, 1972, in
Russian, p. 203):

Who even before battle gains victory by military estimations has many chances …
Who has many chances (actually) gains victory, who has few chances does not gain
victory‚ all the less he who has no chances at all.
    This means that a rare event is practically impossible, a fact which, it seems, still
causes headache to philosophers trying to explain it.
    Another statistical argument appears in the same source (p. 214) which was
possibly written in the 4th or 5th century B. C.:

Jan-Chzhu said: A hundred years is the upper limit of the length of human life.
Out of a thousand men even one is unable to reach the age of hundred.
    I return to this source in notes 28 and 68. The transcriptions of Chinese names and
titles of books which I use in all three places are likely wrong.
27. On the possible and probable in ancient Greece. Osiris, vol. 12, 1956,
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pp. 35 – 48. See p. 37.
28. Ethica Nicomachea, 1104a 24. For similar assertions see 1107b – 1108b, 1133b
and, also, Magna Moralia and Ethica Eud.
    A similar understanding of the mean courses of action and behaviour as the best
ones is in ancient Chinese literature, See chap. 52 – 53 (Doctrine of the mean) and
59 (Behaviour of scholars) of the book Li Tszi (Book of rites, or, alternatively, A
tract on the norms of behaviour). Compiled in the 4th – 1st centuries B. C., it is one
of the books of the CONFUCIUS canon. The Doctrine … is attributed to TSZY SY,
a pupil of CONFUCIUS. See Ancient Chinese philosophy, vol. 2. Moscow, 1973,
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29. See note 3.
30. C. BAILEY, Epicurus the extant remains. Oxford, 1926. See p. 25.
31. Philosophers speak for themselves, vol. 1. Ed., T. V. SMITH. Chicago, 1956.
See p. 140.
32. De rerum natura, book 2, lines 216 – 224, 251 – 262, 292 – 293. Engl.
translation by H. A. J. MUNRO in Great books of western world (hereafter: Great
books). Chicago, 1952, vol. 12, pp. 1 – 97.
33. History of western philosophy. London, 1962. See p. 83.
34. E. g., Nicht der ungefähre Zusammenlauf der Atomen des Lucrez hat die Welt
gebildet (Allgemeine Naturgeschichte und Theorie des Himmels etc., 1755. Ges.
Schriften, Bd. 1. Berlin, 1910, pp. 215 – 368. See p. 334).
35. E. F. BYRNE, Probability and opinion. The Hague, 1968. General information
about THOMAS and his works is found in W. A. WALLACE, Aquinas. Dict. scient.
biogr., vol. 1, 1970, pp. 196 – 200.
36. Summa Theologica. Engl. transl.: Great books, vols. 19 and 20. This writing is
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38. Treatise on man, Q. 92, art. 1; Ibidem, p. 489.
39. Q. 86, art. 3; Ibidem, p. 463. It is instructive to notice the opinion of D.
DIDEROT on the same subject:

Nous les [diverses sciences] divisons en trois classes, relativement à leur objet: en
sciences nécessaires, telles que la métaphysique, les matématiques … 2° en sciences
contingentes; l’on comprendra sous ce titre la science des esprits créés et des corps;
3° en arbitraires, et sous cette dernière classe l’on peut ranger la grammaire, [une]
partie de la logique, qui dépend des mots, signes de nos pensées.
    See Induction (one of the articles from the Encyclopédie) on pp. 206 – 216 in
Oeuvr. Compl., t. 15. Paris, 1876. Quotation from p. 208. On p. 212 DIDEROT
attributes architecture, painting, music, etc. to the third class of sciences.
40. Treatise on human acts, Q. 7, art: 2. Great books, vol. 19, p. 653.
41. See note 35.
42. BYRNE, p. 210. See also my § 7.
43. Alberuni’s India. Delhi, vols. 1 – 2, 1964. Ed. E. C. SACHAN. See vol. 2,
chap. 70 (pp. 158 – 160). The three quotations below are all from this small chapter.
44. F. POLLOCK & F. W. MAITLAND, History of English law before the time of
Edward I‚ vols. 1 – 2. Cambridge, 1898 (2nd ed.). See vol. 2, p. 598.
45 Laws of Manu. Ed. G. BÜHLER. Oxford, 1886 this being vol. 25 of Sacred
books of the East. See p. 274 and further. Written some time between 2nd century B.
C. and 2nd century A. D. (Enc. Brit., vol. 14, 1965, p. 812).
46. Treatise on the divine government. Q. 105, art. 7. Great books, vol. 19, p. 544.
47. Judicium matris Kepleri, see pp. 361 – 562 in J. KEPLER, Opera omnia, t. 8, pt.
1. Francofurti a. M., 1870. Quotation from pp. 549 – 550.
48. See p. 36 of article mentioned in note 27.
49. Rhetorica, 1376a 19.
50. Treatise on law, Q. 105, art. 2. Great books, vol. 20, p. 314.
51. Laws of Manu (see note 45), § 73, p. 267.
52. Problemata, 951 b 0.
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53. It is such humane utterances that make distasteful, to say the least, comparison
of ARISTOTLE with HITLER:

Aristotle's works, though tough going, did not require, or did not seem to require,
anything but common sense to understand them. Like Hitler, Aristotle never told
anyone anything they did not already believe.
    See (an otherwise excellent book) J. BERNAL, Science in history. London, 1957.
Quotation from p. 148.
54. BYRNE (see note 35), pp. 223 and 226. See also THOMAS AQUINAS,
Treatise on faith etc., Q. 25, art. 6. Great books, vol. 20, p. 505.
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book 4, chap. 16, pp. 511 and 513. As to LEIBNIZ’ Grade von Vermutungen und
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B. KRUSKAL, The meaning of words, both from Statistics: a guide to the unknown.
Chief ed. JUDITH M. TANUR, San Francisco, 1972, pp. 176 – 184 and 185 – 194,
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procedures but it seems that at least the spirit of LEIBNIZ’ general endeavours is not
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Ibidem, p. 314.
57. Book on games of chance. Transl. by S. H. GOULD. In: O. ORE‚ Cardano, the
gambling scholar. Princeton, 1953, pp. 181 – 241. See § 20, p. 215.
58. Neue Abhandl. (see note 55), pp. 513 and 515.
59. JOAN GADOL, L. B. Alberti‚ universal man of the early Renaissance. Chicago
– London, 1969. See p. 82. The Italian text is on pp. 116 – 117 of ALBERTI’S Della
pittura e della statua. Milano, 1804.
60. Histoire naturelle, Suppl., t. 4. Paris, 1777. See § 8.
61. J. BERTRAND, Preface to Calcul des probabilités. Paris, 1888.
62. M. CANTOR, Vorlesungen über Geschichte der Mathematik. Leipzig, 1913. See
chap. 56, p. 292.
63. J. GADOL, see note 59, p. 80 (footnote).
64. Scritti letterari, Literary works, vol. 1. Bilingual edition. Ed. J. P. RICHTER.
London, 1939. See §§ 587 and 309, respectively. Noticed by GADOL.
65. K. PEARSON, Life, letters and labours of F. Galton, vol. 2. Cambridge, 1924.
See chap. 12.
66. F. N. DAVID, Dicing and gaming (a note on the history of probability).
Biometrika, 1955, vol. 42, pp. 1 – 15; M. G. KENDALL, The beginnings of a
probability calculus. Ibidem, 1956, vol. 43, pp. 1 – 14. Both articles reprinted in
Studies in the history of statistics and probability. Ed., E. S. PEARSON & M. G.
KENDALL. London, 1970, pp. 1 – 17 and 19 – 34 respectively.
67. This procedure was widely used in social life, as is testified by no lesser
authorities than PLATO and ARISTOTLE. Drawing of lots in religious life is
described by A. M. HASOVER, Random mechanisms in Talmudic literature.
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Fortune tellers (should be) appointed, so that they should tell fortune by
(studying) tortoises’ shells and stems of milfoil. Fortune (should be) told by three
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    Quotation from Shu Tein, or Shan Shu, a book usually attributed to CONFUCIUS.
See chap. The great law, p. 108 of Ancient Chinese philosophy (see note 26). The
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meaning of the title of the book, as given by its Russian translator, is Book of
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    Also, CARDANO (see note 57), though he does not say anything similar, at least
advises his readers as to where, when, with whom etc. it is admissible to play. A
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75. § 32, pp. 240 – 241 of his book (see note 57).
76. See p. 145 of his book (see note 57).
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DIDEROT (De l’interprétation de la nature. Oeuvr. Compl., t. 2. Paris, 1875,
pp. 1 – 62. See § 58, p. 57):

Si la foi ne nous apprenait que les animaux sont sortis des mains du Créateur tels
que nous les voyons; et s’il était permis d’avoir la moindre incertitude sur leur
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    WOOLHOUSE (p. 39) also notices that the emblem chosen for the Statistical
Society, a wheatsheaf, reminds statisticians that they should be content, so to speak,
with

Binding up … sheaves of wheat for others to thrash out! These absurd restrictions
have been necessarily disregarded in numerous papers.
    The wheatsheaf still remains the emblem of that Society in whose periodicals,
however, new definitions of statistics are to be seen nowadays:

Statistics covers all those branches of the mathematical sciences, which are
applied to the analysis and understanding of numerical observations, particularly
those affected by chance
(H. O. LANCASTER, Problems in the bibliography of statistics. J. Roy. Stat. Soc.
vol. A133, pt. 3, 1970, pp. 409 – 441, see p. 411.)
104. Canon of medicine, vol. 4. Tashkent, 1960 (in Russian). See pt. 1, art. 2, § 52
and pt. 2, art. 1, § 24.
105. M. CASPAR, J. Kepler. Stuttgart, 1958. See p. 209.
106. M. CASPAR, see p. 22* of his commentary to KEPLER’S Welt-Harmonik
(note 73).
107. Brief an MÄSTLIN dated Oct. 3, 1595. M. CASPAR et al (see note 74), Bd. 1,
pp. 17 – 24. Quotation from p. 24.
108. Neue Astronomie (1609, in Latin). München – Berlin, 1929. Hrsg. M.
CASPAR. See Einleitung, p. 33.
109. Tertius interveniens (note 84), § 7, p. 161. KEPLER'S understanding of the
interrelation of astronomy and astrology is also in his preface to the Rudolphine
tables (1627). An English translation by O. GINGERICH & W. WALDERMAN is



44
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117. Ibidem, § 74, p. 217.
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127. M. CASPAR et al (see note 74), Bd. 1, p. 261.
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133. Anm. 3 und 7 zum Kap. 18, Anm. 3 zum Kap. 17 (pp. 117, 118 und 109
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141. Anm. 5 zum Kap. 23, p. 145.
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the name of MIRABAUD.) See pp. 137 and 141 of pt. 2.
152. D. HUME, Treatise on human nature, vol. 1 (1740). London, 1874. See pp.
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157. I. KANT, Allg. Naturgeschichte (see note 34), p. 230; VOLTAIRE Homélies
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158. Le vrai sens (see note 150), chap. 3, p. 8.
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160. Le monde (1664). Oeuvres, t. 11. Paris, 1909, pp. 1 – 118. See chap. 8, p. 48;
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161. HOLBACH, Syst. nat. (see note 151), pt. 2, pp. 138 – 139; DIDEROT, De
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163. Wissenschaft der Logik. 2 Tl. Leipzig, 1934. (Sämtl. Werke, Bd. 4). See
pp. 173, 174 and 180.
164. Dialektik der Natur. Berlin, 1958. See Zufälligkeit und Notwendigkeit
(pp. 231 – 235) from the Notizen und Fragmente. This unfinished book, written
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165. J. H. Lambert’s work on probability. This Archive, vol. 7, 1971, pp. 244 – 256.
166. Essai de taxéométrie ou sur la mesure de l’ordre. Nouv. Mém. Acad. Roy. Sci. et
Belles–Lettres Berlin, 1770 (1772), pp. 327 – 342 and 1773 (1775), pp. 347 – 368.
167. See note 122. Quotations below are from the German translation of pt. 4.
168. Logical foundations of probability. Chicago, 1951.
169. Ars Conjectandi, pp. 90 – 91.
170. The correspondence is published in LEIBNIZ’ Ges. Werke, Bd. 3/1. Halle,
1855. German translations of important parts are given by C. GIN1, Schweiz. Z. f.
Volkswirtschaft u. Statistik, 1946, 82. Jg., No. 5; pp. 401 – 413. English translations
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171. Logical foundations (note 168), § 49.
172. J. NEYMAN, First course in probability and statistics. New York, 1950. See
§ 1.3.1; S. S. WILKS, Mathematical statistics. New York, 1962. See Preface.
173. Selecta mathematica, Bd. 2. Hrsg., K. JACOBS. (Coll. of articles). Berlin,
1970.

Afterword
    I have somewhat corrected my English and see now that the Editor
was unable to revise it thoroughly. But I will now offer more
important remarks and, first of all, much additional information is in
my later papers, and in particular in my forgotten paper of 1983 (p.
174).

First, the bibliographic information is dated. I mention just two
new important sources: Kepler (1609/1992, 2015) and Lambert (1965
– 2007). Readers can find many other new sources in my book
Sheynin (2017).

Second, the moral climate of the scientific community, at least in
my field of work, has drastically worsened and researchers are more
actively than ever before engaged in the scientific rat race. Publish or
perish! Detestable books are put out by venerable publishers (Sheynin
2006) partly since reviewing is barely recognized as scientific work.
Why? Because such is the opinion of the tribe of scientometricians
who reigns supreme, reigns by its sledgehammer law (Sheynin 2018).
It, that tribe, defies criticism while the pillars of science, the national
academies, keep arrogantly silent.

Third, here are some remarks about my text.
On § 3: see Franklin (2001). On § 8.1.1. The explanation of the

form of planetary orbits by Kant and Laplace are wrong. Laplace was
ignorant of Newton’s finding, see Sheynin (2017, p. 119). On § 8.1.2.
Problems about rational/irrational numbers have no connection with
distances between heavenly bodies. On § 9.3. Lambert conditioned
the application of the theory of probability by the existence of local
disorder (= irregularity) of the studied elements. Mises specified this
condition (which Lambert, in the second part of his memoir, declared
necessary and sufficient) by assuming that randomness can only be
discussed in a collective. On § 9.4. Statistical probability (2) depends
on the lame definition of the classical probability (1) and the remark
on § 9.3 is valid here also.
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    And, as a general remark on randomness, I stress that chaotic
movement ought to be nowadays discussed. Finally, as a general
remark on chance, I quote Ecclesiastes 9:11: all is decided by chance,
by being in the right place at the right time.

Franklin J. (2001), The Science of Conjecture. Baltimore.
 Lambert J. H. (1965 – 2020), Philosophische Schriften, Bde. 1 – 10 +

Supplement volume. Hildesheim.
 Kepler J. (1609/1992, 2015), New Astronomy. Cambridge.
Sheynin O. (1983), Corrections and short notes on my papers. This Archive,

vol. 1983, pp. 171 – 195.
    --- (2006), Reviews. Historia Scientiarum, vol. 16, pp. 206 – 209 and 212 – 214.
    --- (2017), Theory of Probability. Historical Essay. Berlin. S, G, 10.
    --- (2018), History of mathematics. Some thoughts about the present situation.
Silesian Stat. Rev., No. 16 (22), pp. 127 – 156.
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II

Poisson and statistics

Math. Scientist, vol. 37, 2012, pp. 149 – 150

    Leaving aside Poisson’s important contributions to probability
theory, I point out two lesser known facts (Sheynin 1978, §§ 2.5 and
7.2). Poisson introduced both the notions of a random variable (calling
it by a provisional term) and a distribution function. More to the point,
he emphasized the need to check the significance of empirical
discrepancies, and studied criminal statistics following and enlarging
on the work of Laplace. Thus, Poisson (1837, p. 4) introduced the
mean prior probability of a defendant’s guilt, statistically justified but
not applicable to any particular individual. Finally, Poisson furthered,
although indirectly, stochastic applications to medicine.
    In spite of numerous criticisms, mostly directed against the tacitly
assumed independence of the verdicts reached by jurors or judges,
(which Laplace mentioned in passing), his work was important. Heyde
and Seneta (1977, p. 31) noted that in the 19th century there was a
surge of activity stimulated by Poisson (which seems doubtful) and
that (p. 34) in the 1970s there appeared papers which had reexamined
Poisson’s work and placed it in a modern setting.
    Poisson’s former student, Gavarret, had taken to medicine and
published the first book (Gavarret 1840) on what was later termed
medical statistics. He (p. XIII) acknowledged his debt to The lectures
and writings of the illustrious geometer and described the normal
approximation of the binomial distribution and the estimation of
admissible discrepancies of frequencies in Poisson trials. Gavarret
(1840, for example on p. 194) was also the first to stress the
importance of checking the null hypothesis, as it was later called, in
medicine, but actually in natural sciences generally.
    This innovation can be seen as a logical consequence of Poisson’s
insistence on testing empirical discrepancies. His approach has been
an extremely important feature of statistics which followed the work
of Wilhelm Lexis in the 1870s.
    Gavarret’s book became well known, although, on the other hand, it
was not mentioned in the literature pertaining to the breakthrough in
surgery that took place in the mid-century, i.e. to the introduction of
anaesthesia and antiseptic measures (Sheynin 1982, § 6.1).
This is not surprising, as both Poisson and Gavarret only considered
large numbers of trials and Poisson (1837, p. vi, in a footnote to the
Table des matières) declared that

Medicine will not become an art or a science without basing itself
on numerous observations.
    From the context of his entire book, he meant numerical
observations and his opinion was at least corroborated by
epidemiologists.
    The German physician Liebermeister (ca. 1877, pp. 935 – 940)
resolutely opposed that condition. He argued that in therapeutics it
was impossible to collect so many observations (and even mentioned
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hundreds of thousands of them, in an obvious exaggeration), but he
did not say that they should have been separated into groups according
to the patients’ characteristics. Indeed, statisticians cannot avoid small
samples, and Liebermeister was a pioneer of medical statistics.
Freudenthal and Steiner (1966, pp. 181 – 182) mistakenly attributed to
Gavarret rather than Liebermeister the transition from almost absolute
certainty with large samples to reasonable probability with small
samples.
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III

Simon Newcomb as a Statistician

Historia Scientiarum, vol. 12, 2002, pp. 142 – 167

1. Introduction
    Newcomb (1835 – 1909) was “the most honoured American
scientist of his time” (Marsden 1974, p. 33). Known and respected
worldwide, he published many contributions in Europe, corresponded
with leading European scholars and was a member of prestigious
scientific societies at home and abroad. Some of his letters are kept in
Berlin and in London (correspondence with Karl Pearson).1
From my point of view, Newcomb’s greatest merit consisted in
discussing and combining the observations of the sun, moon and
planets obtained at the main observatories of the world.2
    For Newcomb’s biography see Benjamin (1910), Brown (1910),
Campbell (1924) and Marsden (1974). The first two of these authors
(pp. 376 and 347 respectively) as well as later commentators stated
that Newcomb had to process more than 62 thousand observations of
the sun and the planets and that his work included a complete revision
of the constants of astronomy. He thus performed a titanic amount of
calculations without any aids except for logarithmic tables.3
Newcomb’s work involved him in studies of the observations made
from Ptolemy onward,4 e.g. [13; 22; 28], and he might well be called a
historian of astronomy.
    Marsden (1974, p. 33) maintained that Newcomb “had great respect
but no particular love, for observational work”. Nevertheless, he
measured the velocity of light (§ 3.l) and in many cases he [10; 28; 33;
34; 44] discussed the errors of observation which corrupted either the
ancient records or contemporary findings.
    In addition to planetary astronomy, Newcomb studied the structure
of the starry heaven and thus contributed to stellar statistics. He
regarded that discipline as a “new branch of astronomical science”
[47], see Sheynin (1984, pp. 186 and 187), and held a high opinion of
Seeliger, see e. g. Newcomb [55, p. 227]. Drawing on an unpublished
letter of that astronomer dated 1904, Paul (l993, p. 78) reports
however that he “was not mutually impressed with Newcomb”.
    Newcomb also published contributions on mathematics,5 treatment
of observations, population statistics, meteorology, and even political
economy. In this last mentioned field, he published 42 important
writings,6 many of them controversial (Fisher 1909).
    In several addresses and papers Newcomb showed himself as a
humane scholar concerned about both abstract science and the future
of his native country. The Anthropological Society of Washington
awarded him one of its two prizes for his essay [31] on the duties of
an American citizen. Back in 1876 Newcomb [18] published a still
interesting essay on the history of the abstract science in the United
States, from which I am now quoting (pp. 117 and 122):

It might seem entirely feasible to make our country the leader of the
world in science at no very remote day.
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  No want from which our nation suffers is more urgent than that of a
wider diffusion of the ideas and modes of thought of the exact
sciences.
    I am describing Newcomb’s contributions, whether astronomical or
not, from the angle of the theory of errors and statistics; I understand
the latter term as both mathematical statistics and probability theory.
My predecessors, whom I mention in the main text below, have only
studied a few of the relevant sources (mostly [26]). I myself sketched
a mere outline of my present subject (Sheynin 1984) and discussed the
same contribution [26] (Sheynin 1995, §§ 4.3 – 4.6).

2. Popular and Expository Writings
    2.1. Popular Writings. Newcomb was an eager populariser of
science. Up to 1918, his Popular Astronomy [21] went through 13
editions. It was translated into three languages and its German version,
“bearbeitet” and eventually “völlig umgearbeitet” by Rud.
Engelmann, appeared eight times up to 1948. The third German
edition which I saw included a discussion of the statistical method in
astronomy and contained short biographies of ancient and modem
astronomers.
    In 1893 – 1895, the Johnson’s Universal Cyclopedia carried 72 of
his items on astronomy, mathematics and physics and its later edition
of 1901, the Universal Cyclopedia and Atlas, included 81 such items.
Even apart from that source, Newcomb published about 75 popular
contributions and reviews of the works of his contemporaries, notably
R.A. Proctor. He [11] maintained that that astronomer was an able
mathematician possessing a good style but liable to error7. Later he
[17] stated that some of Proctor’s essays were “fugitive”.
    Newcomb presided at the International Congress of Arts and
Sciences (St. Louis, 1904) and delivered, as a highly appropriate
opening address there, a general and concise review of the
development of science over the centuries [50].8 Newcomb thought
[18, p. 106] that the pure and the applied science should not be
divorced, but he [39, p. 87] also stated that

The astronomer is moved by the love of knowledge for its own sake,
and not for the sake of its application. Yet he is proud to know that his
science has been worth more to mankind than it has cost.
    I do not discuss Newcomb’s three notes on life insurance which
were intended for a broader circle of readers. He devoted another note
to a problem in geometric probability.
    2.2. General Statements. Newcomb’s popular writings contain
general statements which I describe with minimal comment.

1. Newcomb [45 p. 413] thought that the universe “has existed
forever”, and that (p. 416) “matter itself is eternal”, but he somehow
believed that the universe will some time cease to exist (p. 414).

2. Newcomb [16, p. 838] believed that “we probably see the limit of
its [of the universe’s] densest portion”. Elsewhere he [37, p. 8]
declared that the evidence suggested that “we actually see the
boundary of our universe”. Still later he [45, p. 403] corrected
himself: only the densest part of the universe had a boundary;
otherwise “the heavens would blaze with the light of the noonday



53

sun”. He [5, p. 377; 45, p. 412] rejected Struve’s belief that the
interstellar space absorbed light; nowadays this phenomenon is
recognized. In addition, Newcomb [45, p. 410] declared that, in “an
absolutely infinite system of stars”, “the attractive force … would be
infinitely great in some direction or another”.

3. On the contrary, Newcomb [l6, p. 840] doubted that the mutual
attraction of the stars was “sufficient to prevent them from all flying
away from each other in virtue of the proper motions.” He [19, p. 102]
also noted that it was not established “whether the motions of the
planets accord perfectly with the theory of gravitation” and mentioned
Le Verrier. Newcomb made similar remarks elsewhere. Le Verrier’s
discovery led to the conclusion that the law of gravitation “by itself
fails to account for all the astronomical phenomena” (Marsden 1995,
p. 211).

4. While discussing solar eclipses, Newcomb [51, p. 35] concluded
that

The act of rejecting the results of gravitational theory in order to
secure the best possible representation of these supposed [total]
eclipses is subject to judgements similar to those pronounced by the
Congregation of Cardinals against the doctrine of Galileo.
    This statement is indeed topical! Following others, I (1993,
pp. 178 – 179) ridiculed the absurd ideas put forward by A. T.
Fomenko et al. and partly based on similar arguments. In essence, they
attempted to rewrite the entire history of mankind, and they still
continue in the same vein. Novikov (2000) and Zaliznyak (2000)
destructively criticize them and regret that Kolmogorov had
died: he would have prevented the growth of such rubbish! Highly
relevant is Fomenko’s arbitrary opinion (Zaliznyak, p. 164) that the
solar eclipse of 431 BC had been total. Cf. Newcomb’s prudent
discussion of ancient lunar eclipses (§ 3.1, Note 16). Moreover, he
[22, pp. 32 – 33] examined the very same eclipse of 431 BC as
recorded by Thucydides and concluded that

The probability in favour of the totality of this eclipse is as great as
in the case of any other of those under consideration, though not
sufficient to justify the introduction of an equation founded on it.
    Later Newcomb [55, p. 232] still remained undecided.

5. Newcomb [47, p. 122] made an unfortunate remark about
chemical elements. These, he asserted, “might merge into each other
by insensible gradations”. Radioactivity had then been just discovered,
but he mentioned three ordinary elements.
    2.3. Theory of Probability. In this field, Newcomb published
several expositive writings. He [25] called the theory “the art of
judging in cases where only probable evidence can be obtained”, and
considered it “by far the most slippery [subject] with which the
mathematician or logician has to deal”. I would rather say that
probability theory studies the laws of chance; Newcomb himself
(Ibidem) mentioned the “law of averages” [of large numbers] as “one
of the most curious and important results of this calculus”9.
    Elsewhere Newcomb [1] discussed the theory of probability in
much more detail and already then he [l, vol. 1, p. 136] offered its
similar definition. He (Ibidem, p. 235) introduced ‘the value of
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expectation” for the discrete finite case and proved that it was
expressed in the usual way. He thus followed Huygens and Jakob
Bernoulli, whereas, beginning with De Moivre, the expectation (and
not its “value”) is being defined rather than derived.10

    True, late in life Newcomb [53; p. 540] borrowed Poincaré’s
definition (1912, p. 62) according to which “the probable value of a
doubtful [of a discrete random] magnitude” taking values x1, x2, …, xn
with probabilities p1, p2, …, pn respectively was equal to [px]11. This,
of course, was the expectation of that magnitude, which, curiously
enough, Poincaré (p. 57) defined in exactly the same way!
    Expectations had not been adequately utilized in probability or its
applications. Clausius (1889 – 1891, p. 71) quite unnecessarily proved
that E(ξ/Eξ) = 1 (modern notation); his ξ was the velocity of a
molecule. Then, Poincaré (1912, p. 63) did not see fit to provide the
formula for the “probable” [the mean] value of a product of
independent random variables.12 So it is hardly strange that Newcomb
[l5, pp. 270 – 271] went on to prove, unnecessarily and restrictively,
that

    E[(s + r1) (s + r2 ) =
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where s was a systematic error and r1 and r2 were “independent
accidental errors”.
    Two more points. First, as noticed by Stigler (1978, p. 252),
Newcomb [1, vol. 3, p. 123], when discussing a problem concerning
drawings with replacement, expressed the idea of sufficiency, an
important modern notion of mathematical statistics. Second, on
the next page, he wrote down the sum of a finite number of terms of
the type 1/n10 as the difference between the corresponding infinite sum
and the remainder. He apparently calculated the former by the formula
involving the Bernoulli number B10 and the Euler – MacLaurin
summation formula in the latter case, but he did not explain anything.
In another note Newcomb [3, p. 436] distinguished between subjective
and objective probabilities. In actual fact he thus followed Cournot
and Poisson (Sheynin 1978, p. 249), but he hardly thought about that
issue when solving astronomical problems. His note as well as another
one [4] were largely devoted to the calculation of the probability of
the existence of close stars, see § 4.1.4.
    Newcomb [3, p. 440] also mentioned his plans for compiling an
apparently never published “paper on the application of the theory of
probabilities to natural phenomena”.

3. The Theory of Errors
    In adjusting observations Newcomb had to consider the venerable
problems of minimizing the influence of systematic errors, of
assigning weights to observations and to tackle issues now directly
pertaining to mathematical statistics. The treatment of observations
made under unfavourable conditions prompted him to originate a
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“generalized” theory (§ 3.4). He obviously excluded such
circumstances when advocating “greatest possible diversity” [32,
p. 134].

3.1. Systematic and Irregular Errors. The study and the
elimination of non-random errors might be related to the aims of
preliminary data analysis, an important chapter of theoretical statistics.
Newcomb studied systematic errors of observation and especially [33,
p. 187; 34; 44] the variation of the personal equation with the
magnitude of the observed stars.
    In one instance, after examining his measurements of the velocity
of light, Newcomb [27] rejected two out of three of his observational
series because of suspected systematic errors and much later he [41,
p. 3] maintained that “bad consequences” might follow if “all
existing material of any kind” be utilized. Dorsey (1944, p. 54),
however, concluded that his doubts were unfounded: all three series
should have been retained.13

    At the same time Newcomb [40‚ p. 133] thought, with good reason,
that “the practice of correction for systematic errors has, in recent
times, been carried too far” – for such errors, as he himself explained,
“which cannot be plausibly traced to a known cause”. And in one case
he [12, p. 22] decided that the systematic errors were “so small that
they may be treated as accidental.” Newcomb invariably attempted to
estimate the influence of systematic errors in all of his materials. Thus,
when reducing the “principal original catalogues to a homogeneous
system”, Newcomb [12, p. 5] thought, first and foremost, of assigning
weights to each catalogue by considering “the probable freedom of the
instruments from sources of systematic error” (p. 8).
    At the final stage of his calculations he assigned new weights
chosen with regard to the possible random errors.14

    I adduce two examples of systematic (or, in the second case,
periodic or irregular) influences considered by Newcomb.

1. Newcomb [35] studied the centennial proper motion in
declination of stars separated into four groups in accord with their
magnitudes. He assumed that their motions were “as likely to be in
one direction as in another” and concluded that the mean proper
motion in each group was due to the solar motion. In essence, this
statement was tantamount to revealing a systematic error of
observation.

2. Newcomb [15, p. 268] investigated “whether the sun’s diameter
is subject to any changes” by considering the observations made at
Greenwich and Washington during 1862 – 1870 (and concluded, on p.
277, that no “sensible variability” was likely). Here is his reasoning.
Let u1, u2, …, un and v1, v2, …, vn with  mean values  andu v  be such
observations. If, during day i, the sun was larger (smaller) than the
average, the probability of positive (negative) residuals (ui –u ) and
(vi – v ) would be p = 1/2 ± α, α > 0, and, of the coincidence of the
signs of these residuals, (1/2 + 2α2). Newcomb had not however
provided a pertinent quantitative rule.15 Then, he (p. 270) stated that,
when the residuals were “purely accidental” [and independent], the
mean value of (ui – u )(vi – v ) will tend to zero. This is wrong: the
mean value tends to u v [in probability]!
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    In 1865 – 1866, Seidel, an astronomer and mathematician, studied
the dependence of typhoid fever on some meteorological factor(s)‚ see
Sheynin (1982, § 7.4). Following him, Newcomb could have counted
the number of the agreements and disagreements of the signs of his
residuals and compared that empirical evidence with the results
conforming to the symmetric binomial distribution. Seidel (1863) also
applied a few reasonable tests for revealing systematic errors, and, at
the same time, Ernst Abbe offered his celebrated criterion intended for
the same purpose. Newcomb’s aim was, however, different, and I do
not understand why he [15, p. 270] went on to calculate the mean
value of (s + rl)(s + r2) for a constant s and independent random
variables r1 and r2, see § 2.3.
    3.2. Rejection of Outliers. Even modern mathematical statistics is
unable to solve definitively this issue. Newcomb [24, p. 368] rejected
observations “of unknown observers at stations whose longitudes
would be difficult to determine”; a similar statement is in [28, p. 376].
He [24, p. 372] also “thr[ew] aside or corrected” an observation
“when it appear[ed] probable that it did not or could not correspond to
the general mean”. Later, however, he [32, p. 186] maintained that
deviating or doubtful observations should be rejected only in the
presence of a “well established cause of systematic error”. And when
the distinction between a systematic error (to be somehow corrected),
or, possibly, a blunder16, and a legitimate large random error was too
difficult, he [26 p. 344 – 345; 40, p. 134] was naturally at a loss. In
the first case and in [66, pp. 212ff] Newcomb remarked that the
rcjection of outliers led to abrupt changes depending on the decision
made and was therefore not good enough. Once he [36, p. 16] stated,
indicating the abrupt change, that rejection was a “matter which has to
be left entirely to the judgement of the investigator”. Nevertheless, he
[28, pp. 263 – 264] remarked that there had been “a decided bias in
each generation of astronomers towards depending upon a few recent
observations to the exclusion of past ones.” He himself, Newcomb
added, was also guilty.
    Elsewhere Newcomb [26, p. 344] reasonably and even
insufficiently criticized the Peirce test for rejecting observations
calling it the “best known” criterion. I suspect, however, that at the
time the much simpler Chauvenet test published in 1863 already
superseded it.

3.3. Various Estimators. In addition to the arithmetic mean
Newcomb applied other estimators of the “location parameter”.

l. “Where there is a large deviation from the normal law of error17

the mean values should be determined mainly from the quantities near
the centre or [arithmetic] mean of the series” [35, p. 43] but he added
that
  A more rigorous mode of proceeding would have been to assign a

graduated series of weights, converging to zero at the two limits
of the central group of observations. He thus recommended a
generalized arithmetic mean. He formulated similar ideas elsewhere
[28, p. 374, 32, pp. 84 and 168; 36, p. 17].18 In the last-mentioned
contribution Newcomb again restricted his recommendation to non-
normal laws. His attitude and his qualification still seem reasonable
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and it is worthwhile to note that some natural scientists thought that
the asymmetry of observational series precluded the “Fehler-
rechnung” (Meyer 1891, p. 32). See related material in § 3.4.

2. Newcomb [38, p. 162] noted that the “statistical mean” was
“independent of the distribution of the quantities in magnitudes”. He
reasonably applied it when being confronted with a “marked
inequality in the distribution”. That mean was actually the median, the
“valeur médiane”, as Cournot (1843,§ 34) named it. In another
contribution of the same year Newcomb [36, p. 19] called the same
estimator the “mid-point”. In neither case did he mention the other
term!
    Boscovich and then Laplace applied the median much earlier than
Newcomb did (Sheynin 1977, § 8.3). The median is a robust
estimator, a statistic, robust against possible deviations from the
assumed law of distribution. Its application as also the introduction
of appropriate posterior weights makes the rejection of outliers much
less harmless; nevertheless, the median had not at all superseded the
arithmetic mean.

3. Newcomb [55, pp. 212 – 214] described a special procedure for
diminishing the weights of the outliers. Let observations be xi, i = l, 2,
…, n, and x , their arithmetic mean. Then, as he proposed, the
corresponding weights will be

,
max(| |,  )i

i

cp
x x c

=
-

                                                    (3.3.1)

where c > 0. Observations of the central group will thus have unit
weights and the weights of the deviating observations will diminish.
Newcomb noted that the parameter c had to be somehow selected; in
addition, iterations will be necessary for consecutively correcting x .
    Stiglier (l973, p. 413) connected this formula with a lesser known
modern estimator.
    From Gauss onward, the proper measure of precision of the
observations had been the variance or its root, the standard deviation
(two modern terms)19. Astronomers, however, were keeping to a
statistically inferior but intuitive appealing probable error. The ratio of
the two last-mentioned measures varies with the appropriate law of
distribution but in some cases Newcomb [41, p. 3; 53, p. 542; 54,
p 167] calculated either of them by issuing from the other one without
any comment, as though the pertinent law were normal.
    True, Newcomb [24, p, 381] once stated that the normal law should
have indeed been assumed. Elsewhere he[l2, p‚ 17] maintained that
the calculation of the probable error by issuing from the mean square
error was “more elegant” but that it seemed to him that “too much
weight is [thus] assigned to those large residuals the presence or
absence of which is a matter of chance”, see also [35, p. 43]. I return
to this issue in § 3.4. Once Newcomb [24] rather based his
computation on the mean absolute error to which the probable error
was proportional “and only a little smaller”. The latter is indeed equal
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to 0.845 of the former, but, again, only for the normal distribution
(Gauss 1816, § 5).

3.4. A Mixture of Normal Distributions. Cournot (1843, § 132)
was the first to recommend the application of a mixture of densities,
but he did not elaborate; it is not even clear whether he thought of
normal laws. For some details see Sheynin (1995, p. 177). Now,
Newcomb [26] assumed that the law of error in astronomical
observations was a mixture of n normal distributions with measures of
precision hi occurring with corresponding probabilities pi, so that the
parameter h had thus become a discrete random variable. The
unknown values of pi, hi and n had to be assigned subjectively20.
Newcomb then suggested that the observed quantity should be
estimated by issuing from that mixture and the principle of maximum
likelihood. I (1995, pp. 179 – 182) described his proposal in somewhat
more detail and dwelt on its generalizations by Lehmann-Filhés (in
1887) and Ogorodnikov (in 1928 and 1929) and I also mentioned
Eddington who had proved, in 1933, that the proposed mixture was
not normal, which was possibly unknown to Newcomb!
    The proposals of the three authors were hardly interesting for the
practitioner, but it is worthwhile to study Newcomb’s justification of
his innovation. At least from 1872 onward he began to realize that
observations did not obey the normal law; in any case, he then
expressed his apprehension for the undue influence of large residuals
on the estimate of the observed quantity. Later he [24, p. 382] stated
that,

Owing to unfavourable circumstances under which observations
are frequently made, … the arithmetical mean does not
necessarily give the most probable result … any collection of
observations of transits of Mercury must be a mixture of observations
with different probable errors.
    It was this contribution [24] that led Newcomb to his law.
Nevertheless, he [26 p. 351] was much too optimistic in hoping to
modify “the usually assumed law in order that it may be applicable to
all cases whatever”.
    Newcomb (p. 346) remarked that his innovation led to a generalized
arithmetic mean with posterior weights decreasing toward the tails of
the adopted distribution (cf. § 3.3.1). Although he had not indicated
this feature when providing the necessary formulas (p. 357), it was
seen in his numerical example on p. 361.

 3.5. The Difference between Empirical Values. Two independent
series of observations whose errors obey the (usually normal)
distribution with given variances 2 2

1 2σ  and σ are made. It is required
to decide whether the corresponding arithmetic means essentially
differ from each other. Newcomb and other astronomers had to solve
this problem that now belongs to mathematical statistics.
    Suppose that the distribution is indeed normal, that the two series
consist of n1 and n2 observations respectively, that σ1 = σ2 and that
n1 = n2 = 100. Then

    the admissible | u v- | ≤ ( 2 2
1 1 2 2σ / +σ /n n ) = 0.22zS
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where S is the sum of the equally probable errors and z is determined
in accord with the chosen value of

2

0

1 exp( /2) .
2π

z

I x dx= -ò

    For 2I = 0.95 we have z ≈ 1.96 and, approximately, | u v- | ≤ 0.45S.
If, however, |u v- | ≤ S (see below), z ≈ 5 and I ≈ l; this requirement
seems too rigid.
    Newcomb had not considered the similar problem about the
difference between two variances. True, in several cases he noted that
it was significant and attempted to act accordingly (cf. § 3.4). Now,
however, I describe an instance in which he had not commented that
|σ1 – σ2| should have been neglected.
    Newcomb [14] investigated whether the then already suspected
unevenness in the rotation of the earth had caused the inequalities of
long period in the motion of the moon. He asked the Pulkovo
astronomer Sergei Glasenapp, who had been studying the eclipses of
the first satellite of Jupiter, to check his hypothesis, and he
incorporated the latter’s answer in his paper.
    Glasenapp compared [14, p. 164] the probable errors 9.89 and 9.09
with 9.77 and 8.97 respectively21 characterising the two possible
answers and concluded (unreasonably, in my opinion) that the second
case provided a “somewhat better” correspondence between theory
and observation.
    Then Glasenapp (p. 166) stated that the difference between the
values of certain quantities, ml and m2, and kl and k2, was “larger than
their probable errors allow it”. Now, the actual figures were

    Δm = 0.044; sum of probable errors of ml and m2, 0.036;
    Δk = 0.17; the similar sum, 0.25.

    Newcomb only concluded that, although the unevenness in the
rotation of the earth was thus likely corroborated, mostly by other,
independent qualitative comparisons also made by Glasenapp, his
colleague had not proved that it really caused the remaining errors in
the moon’s place. He performed additional calculations based on an
empirical approach and decided that the hypothesis tested remained
“worthy of reception” (p. 170).
    Newcomb himself [38, p. 165], somewhat more definitely than
Glasenapp did, maintained that two empirical values differed
essentially if their difference was “much greater than the sum of their
probable errors”, and it seems that at the time this was the standard
criterion.
.
    In 1903 Markov (Sheynin 1989, p. 351) agreed with F. A.
Bredikhin’s orally expressed rule according to which “in order to
admit the reality of a computed quantity, it should at least twice
numerically exceed its probable error”. I chose to differ, and,
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moreover, this case does not apply to the problem under discussion,
but at least the (hardly Bredikhin’s) test confirms that astronomers had
been using statistical rules of thumb22. Newcomb, however, did not
comply. In one instance he [28, p. 401] concluded that a certain
constant was k = 0.23 ± 0.15. Elsewhere he [43, p. 9] listed four
computed values with their mean (not probable) errors two of which
were

    0.297 ± 0.43 and 0.05 ± 0.92

and similar cases are elsewhere [55, p. 219]. Regrettably, Newcomb
had not commented.

4. Statistics
4.1. Laws of Distribution. Noting that the first pages of

logarithmic tables wear out “much faster” than the last ones,
Newcomb [23] set out to derive the probability that the first significant
digits of empirically obtained numbers will be n1, n2, … Such
numbers were “ratios of quantities”; a measurement, as I understand
him, shows the ratio of the relevant magnitude to the appropriate unit.
    Going over to logarithms with base a and considering only their
mantissas, Newcomb had to study the expression

1 2 3 4( )( ) ...s s s sa - - +

and take into account only the positive fractional portion of the
exponent. Each difference in the exponent corresponded to an
empirical number, and sl, s2, …  were selected “at random”.
     “Whatever be the original law of arrangement” of the si, 2n in
number, Newcomb stated, “the fractions will approach to an equal
distribution” around a circumference as n increased. Without any ado,
he formulated his main conclusion:

The law of probability of the occurrence of numbers is such that all
mantissas of their logarithms are equally probable.
    Several authors, some of them without mentioning Newcomb
(Benford 1938, Feller 1971, pp. 63 – 64), proved this proposition
which Raimi (1976, p. 536) considered Newcomb’s “inspired guess”.
Raimi also noted that it was not universal. For my part, 1 connect
Newcomb’s statement with his remark about the distribution of the
asteroids (Item 2 below) and note that it heuristically resembles the
celebrated Weyl theorem according to which the terms of the
sequence {nx} where x is an irrational number, n = l, 2, … and the
braces mean “drop the integral part”, are uniformly distributed on an
unit segment. Again, it is remarkable that Newcomb’s statement
means that, in the sense of the information theory, each empirical
number tends to provide one and the same information.
    I continue with several astronomical examples the second of which
is likely connected with the material just discussed.

l. Newcomb [6] qualitatively studied the distribution of the,
parameters of the orbits of the 57 first asteroids (in longitude, for the
perihelia and nodes; by magnitude, for the eccentricities and
inclinations). For the first two parameters he also compared the actual
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and the “probable” distributions without explaining how he derived
the latter.

2. Newcomb began his next relevant article [7] by maintaining that
the inequalities in longitude of the nodes and perihelia of the small
planets had “frequently been a subject for remarks and speculation”,
for “foolish speculation”, as he wrote in the covering letter to the
Editor, C. A. F. Peters, on July 31, 1862.
    Newcomb’s account is extremely difficult to understand, mostly
because of careless notation, but it seems that he (p. 212) intuitively
came to the following statement: The independent angles (B1 + b1t),
(B2 + b2t), … will be “pretty evenly distributed around the circle [the
circumference] if their number is great”. Here, t denotes time and the
other magnitudes are constant. Newcomb admitted that at some
moments the uniformness might disappear, although not in the case of
an infinitely many asteroids. His qualification remark seems, however,
wrong.
    Newcomb then makes use of the uniformness for deriving the
probability that the longitudes of the perihelion and node of an
asteroid of a given mean distance is in any particular quadrant and
provides stochastic considerations simple in principle but again more
difficult to follow in detail.
    Here is an example (pp. 214 – 215) concerning a certain parameter
σ. It

May be regarded as a constant for all values of x up to a certain
limit More exactly, when σ = 0, we have also dσ/dx = 0. Again, as we
approach [some value of x], σ will gradually vanish.
    The simplest hypothesis, Newcomb continues, is that dσ/dx is
“continually negative”.

3. While studying proper stellar motions, Newcomb [46, p. 166],
see Sheynin (1984, pp. 182 – 183), supposed, as a “simplest” initial
hypothesis, that their projections on an arbitrary axis were normally
distributed. As a corollary, he correctly provided, although without
any explanation, the density law of their projections on an arbitrary
plane and their own distribution. Both laws were connected with the
chi-squared distribution and their derivation is not elementary23.
    On p. 167 Newcomb provided a table

Of the adopted distribution of the linear speeds of stars, relative to
the Sun, and projected on a plane.
    For such projections, at least for angular motions, he derived
(above) the density

    φ(x) = Cxexp(– x2/b2), or C(x – a)exp[– (x — a)2/b2]

but he had not explained how he estimated b. And he also stated that
the “distribution should follow the exponential law”24.

 4. In 1767, Michell, assuming that the stars were scattered “by mere
chance” over the sky, attempted to derive the probability that two of
them were close to each other. I (1984, § 5) discussed his calculations
and the work of later commentators including Newcomb [1, vol. 1, pp.
137 – 138; 3, pp. 437 – 439] who made use of the Poisson
distribution.
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    He [4] also solved a related problem where he determined the
probability of the mutual inclination of two great circles randomly
situated on a sphere, or, rather, that the distance a between their poles
was n < a < m. Newcomb stated that in this case the probability sought
was equal to the ratio of two areas, of the spherical zone just
containing the poles of the two circles and the hemisphere, that is, to

P = cosn – cosm.

    Elsewhere he [48, p. 13] noted that
When a point is taken at random on a sphere, all real [?] values of

the cosines of its distance from a fixed point are equally probable.
    In this latter instance Newcomb effectively maintained that the
density function of a was

    φ(x) = sinx.

    Indeed, this function is proportional to the length of the locus of
random points having distance x, and it is now easy to see that cosa
has a uniform density. Newcomb [48] also correctly stated that the
probable [the mean] value of cosa [a blunder: he meant cos2a] was
1/3. He derived this equality from a simple but apparently insufficient
geometric condition; nevertheless, it is again easy to see now, that, if a
random variable is uniformly distributed on [0; l], its square has mean
value 1/3.
    Laplace, as Newcomb [4] remarked in his previous paper, had
wrongly solved the earlier problem. He (1812, p. 261) assumed that,
rather than (3),

P = (m – n)/90.

    Cournot (1843,§ 148) offered yet another solution:

P(α ≤ a ≤ α +dα) = sinαdα.

He apparently thought that the second pole could be situated anywhere
on a circumference of a circle with radius proportional to sinα.

5. Many times Newcomb compared empirical and theoretical
distributions and noted whether the discrepancies were reasonably
small. He accomplished this work in the examples 1 – 3 above as well
as in at least two other cases.
    a) Newcomb [42] studied the mean daily motion (μ) of asteroids.
He selected 354 of them having motion 600″ ≤ μ ≤ 1000″, arranged
them in 40 groups with μ =600 – 610, 610 – 620, …, 990 – 1000″,
and, without explanation, adduced a table of probabilities for a group
to contain 0, l, 2, …, 19 small planets. These probabilities conformed
to the Poisson distribution

    φ(x) = e–λλx/x!

for λ = 354/40 = 8.85 to within 0.002.
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    b) Newcomb [35] compared the law of distribution of the stars by
their motion with two normal laws differing in “probable errors”
[variances]. Both the choice of these variances and the comparison
were qualitative.
    4.2. Sex Ratio at Birth. In his pertinent study, Newcomb [49] drew
on some American genealogical data25 and on the statistics of twin
births in France and Berlin. He noted that the American Civil War had
“not the slightest influence” on that ratio (p. 27) and that the American
records were imperfect since a large family might have consisted, over
the years, of the same father and two [or more] mothers so that the
ages of the parents were not sufficiently clear (p. 26).
    Newcomb (p. 21) suggested that after conception there might have
been “a series of causes” tending

 To make one sex or the other more probable, until, gradually, the
sex is definitely determined.
    He thus thought about an event whose probability changed with
time which was a step toward introducing random functions.
Newcomb (p. 29ff) then assumed that there existed three classes of
families, hl, h2/2 and h2/2 in relative numbers, hl + h2 = 1, producing
male children with probabilities p, p + α and p – α ( p ≈ 1/2)
respectively. By means of the binomial distribution he obtained the
probability that a family with n children will have s boys and r girls
(s + r = n)
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    Necessarily considering h1α2 as a single unknown, assuming h1 = 1
and making use of statistical data, he arrived at α = 0.27. He (p. 18)
then somehow applied the same value of α for studying twin births,
although, complying with his explanation of the production of sex, he
held that unisex twins were more probable than their counterparts,
and, by implication, the parameter α should have been larger for them.
The magnitude h1 remained unknown.
    On Nov. 14, 1904, Newcomb arranged for sending a copy of his
study to Pearson calling it “a paper very much in your line” and
asking him to “examine it carefully”. He repeated his request on Nov.
21 indicating that in his case “the ordinary system of comparing
causes and effects” was “impracticable”. He did not elaborate. On Jan.
2, 1905, Pearson answered that he had “duly received & read”
Newcomb’s memoir. Pleading lack of time, he found himself “unable
to write at length”, but he thought that the work “might be
strengthened had it been accompanied by the probable errors of the
quantities involved”.

4.3. Time Series. These are sequences of empirical numbers
corresponding to certain instants of time. Until the 1920s, elementary
methods were used (by Newcomb also) for studying such series. After
that, stochastic models began to be applied.

1. When investigating the variation of terrestrial latitudes Newcomb
[29] issued from Chandler’s empirically derived period T = 427 days
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= l.17 years. Assuming a uniform movement of the poles along a
circumference, he compared eight properly reduced
observations of maximal latitude during 1865 – 1890 with the
calculated epochs.
    The observations followed each other after Δt ≈ l.17n years with n =
6, 3, …, but I might as well suppose that n = 1. Newcomb stated that,
“were the observed epochs not periodically recurring”, the mean
discrepancy “excluding the first and the last of the series” would be
0.29 years. Noting that only one result was greater in absolute value
than 0.29 whereas all the rest ones fell “within an octant of the
observed epoch”, he concluded that “the chances are about 400 to 1
against this being the result of chance”, and that the existence of
period T = 430 (not 427!) was proved “beyond reasonable doubt”.
    The total length of segments each representing 1/8 of the distance
between adjacent equidistant points 1, 2, …, 7, 8 will be 14:8 = 7:4, or
1/4 of the length of [1; 8]. The probability that exactly seven out of the
eight observational points will be situated on these segments is
therefore

P = 8 – (1/4)7·3/4 = 1/2730

which does not at all corroborate Newcomb’s estimate (but all the
more confirms his final conclusion). If the “left” neighbourhood of
point 1, and the “right” neighbourhood of point 8 be added, then
P = 1/1420, which does not change the situation.
    I shall now check the other estimate, 0.29. Arrange eight other
points a, b,…, g, h uniformly on segment [1; 8] in such a way that
[1; a] = [a; b] = … = [g; h] = [h; 8]. Then the mean distance between a
new point and the nearest initial point will be 0.275; or, multiplied by
1.17, 0.32, but not 0.29.

2. The essence of Newcomb’s contribution [43] was the derivation
of the periodicity (T) of sunspots. He collected their observations
covering 26 periods (1610 – 1889) and considered the maxima and the
minima of the phenomenon as well as the “half-tide phases”, half the
sums of the numbers of the sunspots “corresponding to the year of
minimum and the following maximum, or vice versa” (p. 4).
     Assuming some zero phase and a provisional periodicity T0
Newcomb formed observational equations

x +nΔT0 = Δt

with x being the correction to the assumed zero phase, Δt, the
difference between the observed and the computed epochs, and n, the
appropriate number of periods. His preliminary solution (p. 6) of these
equations by the method of least squares (which he omitted) yielded

T = 11.13 years.

    Then Newcomb found several “definite” solutions but the
preliminary value of T persisted (p. 10). He had not expressly
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explained the aims of the preliminary adjustment; obviously, it was
needed for studying any peculiar features of the observational results
(which he indeed indicated) and assigning them proper weights. What
I fail to understand is the separate adjustment of each of the four
phases (only two of which were independent) and the calculation of
the mean of the four periodicities thus obtained. It is thought
nowadays that T ≈ 11 years, but that a strict periodicity does not exist.

3. Newcomb [52] attempted to devise a test for correlation (loosely
understood) among terrestrial temperatures by means of their
simultaneous measurements
.

v1j, v2j, …, vnj, j = l, 2, …, r

in r regions of the earth. He did not go beyond the limits of the
classical error theory and his main assumption was that the products
of two independent observations might be neglected.
    In a few preliminary sections Newcomb considered time series
possibly having a main periodic component. Let

aoj, a1j, …, anj, j = l‚ 2, …, r

be sequences of equally distant terms selected from the series. Then,
as he assumed,

a1j = a0jx1 + e1j, a1j = a0jx2 + e2j, …, anj = a0jxn + enj,

with the e’s being random terms. The unknown x’s might then be
calculated (each one separately) from n normal equations. If aoj > 0,
then, as Newcomb remarked, the unknowns will increase until “the
completion of the period”, assuming that it existed and did not exceed
the time interval covered by the selected sequence; if no period
existed, then (p. 321)

    (l/n)(x1 + x2 + … + xn) will converge [in probability] to zero.

    I doubt whether his recommendations were ever applied.
4. Newcomb [54, pp 167 – 170] studied the moon’s mean motion in

longitude from 1621 to 1908. He graphically represented the observed
points and the curve of “the pure theory”, showed the mean error of
the “true [observed] curve” at each point by additional curves; he
obviously interpolated both the observations and the errors so as to
obtain continuous lines. In addition, he constructed the curve of the
“great fluctuation” of long period although without insisting on its
reality and he (p. 168)26 maintained that the

Minor deviations during the past 100 years may be empirically
represented by a trigonometrical series,
but he did not justify his conclusions or adduce his calculations.
    Newcomb regarded the observed fluctuations as “the most
enigmatic phenomenon presented by the celestial motions”, “perhaps
due to fluctuations in the Earth’s speed of rotation” (p. 168), cf. end of
§ 3.5.
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5. The Method of Least Squares, MLSq
    The initial data treated by least squares are represented by a
redundant system of equations such as

aix1 + bix2 + … + si = 0, i = 1, 2, …, n

in k unknowns (k < n) where the coefficients are given by the
appropriate theory and the observed free terms si are “physically”
independent. Hence, the system is inconsistent and is adjusted under
the condition

    ∑vi
2 = min

where the v’s are the residual free terms. The errors of si are assumed
to be only random; their normal distribution presents the most
favourable, but not necessary case.
    The condition above leads to a system of k normal equations

    [av] = [aa]x1 + [ab]x2 + … + [as] = 0
    [bv] = [ab]x1 + [bb]x2 + … + [bs] = 0, etc.

    In accord with the two methods of forming the initial equations,
they are called observational or conditional. Unlike geodesists,
astronomers applied only the former, but always called the
equations conditional.
    In 1823, when providing his definitive justification of the MLSq
Gauss proved that for unimodal distributions (for one and the same
distribution in each case) it yielded unbiased estimators with least
variance. True, systematic errors and blunders, dependence between
observations and their incorrect weighting were not accounted for by
the classical error theory.
    Strange as it is, Newcomb, although referring to that justification
[26, p. 348n], shared the wrong opinion of many other scientists
(Eisenhart 1964, p. 24) that the MLSq was inseparable from the
normal distribution [32‚ p. 82; 38, p. 161].

5.1. Non-Standard Procedures. Newcomb undoubtedly
understood that formal rules should not be strictly adhered to Thus
[28, p. 372], observations are made “under widely different
conditions”, they have‘ “very different moduli of precision”, and the
MLSq “as usually applied, will not give the best result”. Here is an
example.
    Bond (1857) adopted certain approximations when calculating [av],
[bv], …, , but I saw only one contribution, [36‚ p. 31], whose author,
Newcomb, applied his recommendations. Interesting enough, Bond
followed and referred to Gauss (1809, § 185) who had dropped a few
pertinent lines. Gauss remarked that it was often possible to apply
factors more convenient for calculation and little differing from those
indicated by the theory for transition to the normal equations.
    When dealing with nine thousand equations in 20 unknowns,
Newcomb [32, p. 48] recommended to drop “all superfluous
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decimals” in their coefficients and claimed that “no serious harm
would result”. This statement should have been better formulated; in
essence, however, the influence of rounding off on the end results of
such calculations was then not yet studied, cf. § 5.2.
    Newcomb (Ibidem, p. 52) also stated that small coefficients in the
systems of normal equations might be neglected, but he did not come
up with any definite criterion.
    Newcomb [13, p. 167] formed 89 observational equations, solved
the corresponding normal system in five unknowns and remarked that
he, likely wanting to eliminate some systematic influences, made “a
farther approximation … by solving the equations given by the
residuals”. Without justifying this approach, he only provided the
least-squares, and the final solutions. During the second stage of this
work, Newcomb apparently treated the observational, rather than the
normal equations: once the latter are solved, a further attempt with the
v’s replacing the free terms si in the sums [as], [bs], … leads to a zero
solution.
    Newcomb had not explained either the method of performing the
second stage of his calculations, or even why was the first stage
insufficient. In any case, however, as he stated, the final residuals
[nevertheless] testified to some unrevealed systematic errors of
observation.
    Until now, all the weights, pi, of the normal equations were
supposed equal; otherwise, however, these equations should be
multiplied by ip  respectively so that the coefficients of these
equations become [paa], [pab]. … In one instance Newcomb [55‚ p.
208] stated without explanation that an equivalent procedure was only
necessary when the probable errors and the coefficients of the
equations were large.
    Another unusual case concerned an unknown, λ, subject to
fluctuations. Newcomb [55‚ pp. 124 – 125] subdivided his equations
into time-groups and assumed that in each of these the real λ did not
essentially differ from its value increasing uniformly with time.

5.2. Ill-Conditioned Systems. Marian Kowalski, a Professor at
Kazan University, published his study of the movements of Neptun
(1856)27, and Newcomb [8] made use of his work. Kowalski (p. 179)
formed four normal equations whose terms he calculated with six
significant digits. The first two provided (in my notation)

x1 = α1x3 + β1x4‚ x2 = α2x3 + β2x4‚

and he used these expressions to form

[ac]x1 + [bc]x2 and [ad]x1 + [bd]x2.

    Kowalski noted that, with minor discrepancies, he thus derived the
third and the fourth normal equations respectively and he reasonably
concluded that his normal system included only two independent
equations.



68

    Newcomb [8, p. 4] stated that the outcome of Kowalski’s
calculations was “the necessary result of the mode of treating
equations by the MLSq”. On his next two pages he presented his
further comments. Suppose, he began, that a non-redundant
system in k unknowns is

a1x + b1y + … + n1 = 0, a2x + b2y + … + n2 = 0, …

then

1 2 1 2
1 2 1 2..., ...,A A B Bx n n y n n

R R R R
= + + = + +

where R is the determinant of the system and Ai and Bi are the
appropriate “partial determinants”. For a redundant system, he
continued, R should be replaced by the sum of the squares of all the
determinants corresponding to the solution of all the subsystems of k
equations each, and A1, A2, … become “certain powers and products
of the partial determinants”.
    Only then Newcomb mentioned the MLSq and stated that the
partial determinants, when applying it, will be

Very small if the equations are nearly equivalent to a number less
than that of the unknown quantities; that is, if they can be put into the
form

X = n1‚ Y = n2‚ …,
    α1X + ß1Y+ … + ρ1 = n4‚ α2X + ß2Y + … + ρ2 = n5‚ …

where the set {X, Y, …} consists of less than k elements.
    Newcomb next calls a system in k unknowns identical if it contains
less than k independent equations and formulates the following
theorem:

If a system of equations differs from identity by a very small
quantity, the normal equations derived from them will be identical to
small quantities of the second order.
    Their solution, he continues, should then be carried out with “nearly
twice as many decimals as are necessary in the original coefficients”.
In such cases Newcomb recommended to transform the observational
equations by introducing new unknowns instead of the initial ones. As
usual, he expressed himself loosely (“equations … equivalent to a
number”)28 and described his thoughts much too concisely.
    Now, Jacobi (1841) had proved what Newcomb stated, viz., that the
least-squares solution of the initial equations was the same as the
solution derived from the partial subsystems when taking the
appropriate weighted means; such coefficients as Ai/R, Bi/R, …
should allow for the weights of the partial solutions. Again, Newcomb
correctly maintained that the MLSq might aggravate the situation: in
case of ill-conditioned observational equations it is better to proceed
without forming the normal equations, applying for example
successive approximations (Gentle 1998, p. 111). It is also known that
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the determinant of a system of normal equations is necessarily
positive, but that for ill-conditioned observational equations it might
become small, and, owing to the unavoidable “play” of the last
significant digits, even negative (Idelson 1947, p. 39). According to
my calculation, the determinant of Kowalski’s normal equations was
R = – 60!
    Again, Faddejew & Faddejewa (1970, p. 151) state, without
however, offering any quantitative rule, that if R is much less than its
boundary
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where aij are the coefficients of the normal system (the Hadamard
inequality), the system is ill-conditioned.

5.3. A Mechanical Representation. In 1873, Newcomb had
published a note on the mechanical representation of the MLSq
verbatim reproduced and discussed by Farebrother (1999, pp.
168 – 169). The latter also dwelt on Newcomb’s companion note of
the same year and linked both notes with some previous work of other
authors. A mechanical interpretation of the treatment of observations
appeared in 1722 (Roger Cotes) and his methodological approach led
to the so-called method of geodetic relaxation one of whose forms is
due to Gauss. See Sheynin (1963).

6. Some Conclusions
    In addition to what I had to say in § 1, I note that Newcomb worked
during the period when the theory of probability had been largely
neglected and this explains his careless terminology and clumsy
calculation of expectations (§ 2.3). Worse, he (§ 3.1-2) did not
indicate that in probability theory the notion of limit should be
specified29. On the other hand, he (§§ 4.1 – 4.2) made some interesting
stochastic findings.
    Newcomb certainly mastered the theory of errors and applied it
(including its MLSq) non-formally and successfully. He himself noted
that the assigned weights of the observations were “the result of
judgement more than of computation” [32, p. 21], cf. the subjective
nature of his generalized law of error (§ 3.4)‚ and that (p. 85) his
“policy”was to obtain as many as possible independent observations
of the quantities sought; by implication, these statements meant that
the collection of sound observations followed by their reasonable
treatment was the essence of his pertinent work.
    I do not understand however why he was obviously satisfied with
some of his results providing the quantities sought with great probable
errors (§ 3.5) and I also remark that he had not mentioned Helmert’s
classical treatise (1872). Much later Newcomb [55, p. 41] expressed
his gratitude to the German scientist for acquainting him with the
latest values of the parameters of the geoid.

7. Appendix
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7.1. Newcomb and Pearson. I mentioned Pearson in §§ 2.1, 3.1
(Note 14) and 4.2. Here, I discuss other relevant issues, again drawing
on Newcomb’s correspondence with him.

l. Newcomb – Pearson, 27.6.1903, 21.11.1904 and l.11.1907,
respectively.
    a) I believe you are the one living author whose productions I
nearly always read, when I have time and can get at them, and with
whom I hold imaginary interviews while I am reading.
    b) I know of no one more competent than yourself to appreciate this
attempt [see my § 4.2]; and any opinion or discussion of the paper
which you might express would have great weight. If favourable, it
might be decisive in enabling me to develop and extend general
methods in dealing with statistical data in all the sciences where they
are available.
    c) I am getting more and more interested in almost every branch of
the work you are pursuing, and postpone taking an active part in it
only because I have to complete some astronomical investigations.
     Newcomb would have been pleased to know whether Pearson had
any new information about the “grouping in the results of the roulette
at Monte Carlo”, cf. Pearson (1894).

2. Newcomb – Pearson, 21.11.1904. Newcomb enlarges on his idea
Of an institute for reducing and working out the results of scientific

observations … In meteorology, for example, we should begin with the
observation most appropriate to test meteorological theories, or the
general phenomena of meteorology, their periodicity and their
dependence on any such terrestrial cause as the sun’s radiation.
    No other details are presented. Did Newcomb envisage a national,
or international institution? In 1915, or early 1916, the Russian
statistician Chuprov thought about the creation of an institute for the
statistical study of Russia (Sheynin 1990/2011, p. 130).

3. Newcomb – Pearson, 1.11.1907
When … you published [communicated] Miss Gibson’s paper … I

was minded to write you expressing my pleasure that you were
extending your statistical methods into astronomy, but pointing out
that the method adopted … was not likely to lead to any conclusive
result. This,… from the meagreness and uncertainty of the data and
the omission to consider relations known a priori among the
quantities classified. … having noticed the recent discussion in Nature
I venture to submit a few remarks …
    When we seek to find a correlation between two systems of observed
quantities, it is requisite to a certain result that the quantities of each
series be not in the nature of purely accidental ones and that there be
something we can consider definite. Examples are when either system
is the result of random sampling, or when the number of quantities is
sufficiently large to establish some law among the magnitudes, even
when pure accidental.
    In the case of stellar parallaxes regarded simply as observed
quantities without reference to known conditions affecting their value,
neither of these requirements is satisfied. …
    In order to reach definite results in this field, the known relations
between magnitudes, distances, and parallaxes must be taken as the
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basis of the investigation. Moreover, the adopted method must be that
of trial from hypotheses, by deduction and comparison with
observation rather than by pure induction. … It seems to me the only
method by which we can obtain results is that of making hypotheses as
to the several distributions, and comparing the results with our
observations, so as to derive the system of hypotheses which will best
accord with what we learn from observation. No general result
applicable to the totality of the stars, or to any portion of the universe
outside our very limited means of measurement, can be reached by
pure induction from the extremely imperfect results of observations
which are so far available. …
    I am sending you ... some short and rather desultory papers of mine
… especially [46]. May I invite your attention to the results of this
paper, especially as set forth in the last two problems? Can we not
obtain a coefficient of correlation from the relations between parallax
and proper motion given by the two equations [46, pp. 168 – 169]

for any parallax π, mean proper mot. = 6.78π,
    for any proper mot. μ, mean parallax = 0.064μ,
that will be more definite than any to be derived inductively from the
observations?
    I (1984, § 9.2.2) discussed this topic and provided the necessary
references but I did not then see the Newcomb paper [46]. Now, I
note, first of all, that no answer to the last-quoted letter is available,
perhaps missing. Second, Newcomb’s criticism carries weight. True,
however, his remark about the knowledge of the relations between
magnitudes, distances and parallaxes was difficult to understand: the
concept of mean distance (or parallax) of the stars of a given
magnitude hardly made sense. Then, before calculating the
coefficients of some correlations one should decide whether he is
dealing with random variables and specify his hypotheses about their
laws of distribution.
    Newcomb’s desire to apply the newest statistical findings is
commendable, but the correlation theory was then not sufficiently
developed.

 7.2. Natural Scientists and the Treatment of Observations.
When treating observations, Newcomb often applied non-standard
tricks (§§ 3.3, 3.4, 5.1) and I hold that he thus followed a certain
tradition. Indeed,
    l) Ptolemy is notorious for his free use or rejection of observations.
However, if they are heavily corrupted by error, it might happen that
their mean is no better than any one of them selected at random, recall
the Cauchy distribution.
    Ptolemy’s cartographic work apparently testifies that he was
attempting to present plausible results rather than secure mathematical
consistency (Berggren 1991, pp. 135 – 136). A related fact pertains
even to the Middle Ages (Price 1955, p. 6):
  Many medieval maps may well have been made from general

knowledge of the countryside without any sort of measurement or
estimation of the land by the ‘surveyor’.
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    2) Kepler (Sheynin 1993, p. 167) adjusted the Tychonian
observations by corrupting them by small arbitrary quantities and thus
possibly made use of some elements of statistical simulation.
    3) Fechner, who originated psychophysics, outlined a theory of
treating observational series in natural sciences. His tools and his
mathematical approach were primitive, but he influenced von Mises
(1972, p. 26).
    4) Gauss was a natural scientist as well as a mathematician. He
certainly applied various roundabout methods; in § 3 I mentioned his
remark about the possibility of a non-strict formation of the normal
equations. Then, Gauss did not adhere to any definite rules when
measuring angles in the field: he rather continued his work until
feeling sure that further attempts were futile (Sheynin 1994, p. 263).
Finally, Gauss did not unquestionably apply his own formula for
estimating precision of observations. At least once, noting that
the conditions of observation were the same for several stations, he
added together the data for all of them and calculated a common mean
square error (Ibidem, p. 266).
    Modern statisticians and astronomers (Marsden 1995, p. 185) doubt
that Gauss had actually applied (as he claimed he did) the MLSq
before Legendre. I (1999, § 4.1) have somewhat disproved these
doubts and I also indicated that several factors could have made any
reconstruction of his calculations hardly possible. Now I emphasize
the significance of one of those factors (use of short cuts) and stress
that for Gauss the application of least squares was not at all a cut and
dried procedure.
    Acknowledgement. I am grateful to Professor Curtis Wilson who
kindly sent me photostat copies of some of Newcomb writings and to
the scientific bodies mentioned in Note 1 for permission to quote their
archival sources.

Notes
1. Staatsbibliothek zu Berlin – Preussischer Kulturbesitz, Handschriftabteilung,

Darmstaedter J 1871 (l1), Newcomb; University College London, No. 773/7. Below,
I quote the letters from both these sources. Ludwig Darmstaedter (1846 – 1927) was
a chemist and a collector of autographs some of which (usually, short
autobiographies) were sent to him in response to his requests. Thus it apparently
came about that the Newcomb papers in Berlin include the following form/letter
(without date): “American Journal of Mathematics. Johns Hopkins University.
Baltimore, MD. I like to make everyone happy when I can. Simon Newcomb".
Nevertheless, his readers could have hardly felt themselves happy with his style and
I do not agree with Brown (1910, p. 344) according to whom “clearness and
freedom from unessential detail” characterized “everything” Newcomb had written.

2. Cf. Quetelet (1845, p. 225): “Le but principal de la statistique” is to render
different materials comparable.

 3. 1 quote from one of his last papers [53, p. 544]: “a serious problem is that of
summing perhaps 100 periodic terms with coefficients not differing greatly from
0”.01. I have devised a machine for this purpose the description of which must form
the subject of another publication”.

4. I should have considered his opinion [22, p. 20] when discussing the debates
around that great astronomer (Sheynin 1993, § 3.8): “ all of Ptolemy‘s Almagest
seems to me to breathe an air of perfect sincerity”.

5. His presidential address before the American Mathematical Society in 1893
testified that he had “devoted some thought to modern ideas on hyperspace, group
theory, projective geometry, and the like” (Brown 1910, p. 351).
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6. Here and below, the bibliographic information is chiefly due to Archibald
(1924).

7. In a letter to F. A. T. Winnecke of Aug. 7, 1871, Newcomb wrote: “If you …
want to laugh, read Proctor[’s] Sun [that appeared in the same year], chapter 1”. The
same volume of Nature (vol. 4, 1871) contained Proctor’s answers to Newcomb and
in one of these he (p. 183) commented on Newcomb’s determination of the solar
parallax: “Not only I, but Sir John Herschel, as well as the Council of the
Astronomical Society would seem to have done Prof. Newcomb less than justice.”

8. The Congress was successful; from the scholars who reported there I mention
Boltzmann and Kapteyn. Newcomb vainly invited Pearson to speak on
“Methodology of science” (his letters to Pearson of June 27 and July 3, 1903),
undoubtedly on the strength of Pearson’s Grammar of Science published in 1892
and further work. The letters were written in spite of Pearson’s earlier (June 26)
refusal to come caused by his financial difficulties and fear of leaving his
Department under “less complete supervision”. At the time, Pearson held the chair
of applied mathematics and mechanics; he became head of the Department of
applied mathematics, University College London, in 1907.

9. In a few cases Newcomb [49, pp. 29 and 30] used other careless expressions as
method, or theories of probabilities.

10. Instead of “expectation” Newcomb [l, vol. 3, p. 343] once used the
unfortunate expression “value of probability”.

11. Here and below, I use the Gauss notation

p1x1 + p2x2 + … + pnxn = [px].

12. Whitworth (1901, p. 205) provided this formula; I have not seen the previous
editions of his book.

13. Newcomb’s final result, as estimated by Dorsey, was v = 299.71 – 299.86·103

km/sec in vacuo. In 1924 – 1926, Michelson, who had also participated in
Newcomb’s work, arrived at v = 299.774·103 km/sec.

14. The treatment of observations in [12] conformed to the classical error theory.
Nevertheless, on June 27, 1903, in a letter to Pearson, Newcomb wrote that the latter
“sixteen months ago” (apparently, in Pearson (1902)) “had developed so fully some
ideas which I had enumerated in general form … but only incidentally, in a paper on
the Right Ascensions of the Fundamental Stars” [12]. Pearson (1902, pp. 291ff)
concluded that a very considerable correlation of judgements between two observers
can arise even when they were working independently. He briefly discussed the law
of error and the applicability of the “current theory of errors” without however
changing it. The classical error theory is still with us.

15. I shall therefore call the relevant checks or tests, founded on reasonable
considerations, qualitative. In most cases, quantitative criteria were not yet
discovered.

16. Blunders and insufficiently definite registration corrupted many observations,
especially in ancient times. Newcomb [20, pp. 402ff], for example, rejected seven
out of the 19 lunar eclipses reported by Ptolemy, and concluded (p. 404) that even
the records of Tycho Brahe of the same phenomenon “are so confused that it is
impossible to obtain any definite result from them”. Mendeleev (Sheynin 1999b,
pp. 61 – 62) acted in a similar way.

17. Newcomb [35] was one of the first to use that term, normal distribution, cf.
Sheynin (1984, p. 183, note 47).

18. After deriving the probable error characterizing his series by utilizing only its
middlemost part, Newcomb [35, 36] compared his observations with appropriate
normal distributions.

19. The latter term was called mean square error, which astronomers “generally
designated … as the mean error" (Newcomb [53, p. 540]). He [30, p. 49] even made
use of a loose and unfortunate expression “probable mean error" bearing in mind
some reasonable common estimate of several mean square errors. He [48, p, 14;
52‚ p. 324] fared no better when introducing a “probable mean deviation” or even a
“probable equation” (obtained by least squares) [52, p. 322].
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20. When providing an example Newcomb (p. 359) stated that he chose four
values of h “by several trials” and that, although the precision parameter was really a
continuous magnitude, it was possible to keep to the discrete case.

21. In accord with a venerable but illogical tradition (Sheynin 1984, p. 183, note
47), Glasenapp calculated the errors to four significant digits!

22. Mendeleev applied the same criterion at least from 1860 onward (Sheynin
1996b, p. 64). From 1877 onward geodesists have been using the celebrated three-
sigma rule.

23. On p. 166 Newcomb defined “as the unit of distance that of a star having a
parallax of 1”.

24. Newcomb (p. 166) also made use of the expression “usual exponential law of
error”.

25. He mentioned an Andrew Newcomb who had died “about 1650” but did not
expressly connect himself with that person.

26. Later Newcomb [55, plate facing p. 210] reproduced these graphs.
27. It appeared in a collection of papers that also included Lobachevsky’s

Pangéomètrie.
28. Elsewhere Newcomb [9] had even written “probability of 589”, “of 411”, etc.,

but perhaps the German compositor paid no attention to the decimal dots without the
zeros, likely inserted by Newcomb.

28. Appropriately referring to Laplace’s memoir of 1786, Molina (1930, p. 386)
remarked that the Master “had in mind the fundamental difference between the idea
of a limit as used in pure mathematics” and in probability.
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Afterword
Comment on § 7.1-2. See Methods for promoting research in the

exact sciences. Carnegie Instn of Washington, Yearbook No. 3 for
1904, 1905, pp. 179 – 193.
    On § 7.1-3. Newcomb’s reasoning applies to science in general
rather than only to astronomy. It is a destructive argument against the
empirical approach to science characteristic of Pearson and should be
known to historians of statistics and probability.
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IV

Mathematical Treatment of Astronomical Observations
(Historical Essay)

Archive Hist. Ex. Sci., vol. 11, 1973, pp. 97 – 126

1. Introduction
    Mathematical treatment of astronomical observations has been
considered by numerous authors, but usually within the framework of
astronomy proper. I consider this subject from the point of view of the
classical theory of errors and mathematical statistics.
    The classical theory of errors is separated into two parts, the
determinate and stochastic. The former aims at securing most reliable
experimental results by means of specially designed experiments (by
the choice of best time intervals and other conditions for astronomical
observations). Formally, this is the theory of prior calculation of errors
of functions of measured quantities, which properly originated with
the differential calculus. It is now included in the prehistory of the
design of experiments and it is precisely in this, the determinate part
of the theory of errors, that various errors of measurements were first
mentioned, implicit statements about the inevitability of errors in
general were made and methods for their elimination described.
    Some authors1 believe that the bifurcation of errors into random and
systematic is crude and cannot be justified from the metrological point
of view. However, it is extremely important at least for other branches
of science as well as for a historian because, intuitively understood, it
led to the first notions of the ways in which various errors influence
measurements. I shall use this bifurcation of errors understanding the
systematic errors as those that, depending upon the circumstances of
observation, vary according to one or another determinate but
unknown law (or, in particular, remain constant). This division is in
accord with the point of view of at least some physicists2 and was
adapted by GAUSS3 who denoted the two kinds as irregulares seu
fortuiti and constantes seu regulares.
    A detailed description of observational errors would have been a
research in itself, hardly possible here. One such research pertaining to
antique astronomy is due to P. COLLINDER4‚ to whom I refer below.
Also, some important primary sources pertaining to the 17th and 18th

centuries are mentioned in § 4.
    § 2 is devoted to the design of experiments (in the meaning
explained above), § 4, to the stochastic treatment of observations
while § 3 is an account of the “intermediate” problem of selecting
observations. Even from this explanation it is evident that such a
separation is not devoid of defects and, in particular, the general
chronological description becomes divided between these main
sections. A synopsis (§ 5) may serve as a means for overcoming this
division.
    The subject-matter of the main sections is carried through to the
middle of the 18th century, and a sketch of subsequent events is given.
It is my belief that the general outline of this paper with prominence
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given to such scholars as PTOLEMY, AL-BIRUNI and KEPLER may
be considered sufficiently new and that the argumentation thereof as
sufficiently sound.

2. Design of Experiments
2.1. Ptolemy. The simplest notions pertaining to the determinate

part of the theory of errors are found in PTOLEMY’S Almagest5.
(a) PTOLEMY emphasized the need of applying observations

separated in time (Book 3, § 1, pp. 78 and 81):
 The sun’s year is found by as many observations as possible taken

over a rather long interval.
The period of return will be gotten the more accurately the longer

the time between the observations compared (because the error of the
length of the year is divided by the corresponding time interval).

(b) PTOLEMY repeatedly noticed the preference of one method of
observation and/or one set of circumstances of observation over
another and, also, the shortcomings of certain types of observation. To
quote him (Book 4 § 1 p. 108; Book 5, § 2, p. 144; Book 8, § 6,
pp. 269 and 271 respectively):

1. It is only by means of (observations of lunar eclipses) that the
positions of the moon can be found in an accurate way, since the other
kinds of observations … can, because of the moon’s parallaxes, be
very deceptive.

2. At conjunctions and full moons there was either little or no
appreciable discrepancy and only such as the moon’s parallaxes
could account for; and ... about the first and third quarters ... most (of
the discrepancy occurs) when the moon in its mean courses effects the
greatest difference of first anomaly … we see … that it is necessary to
suppose the moon’s epicycle is borne on an eccentric circle ...

3. The observers and the atmosphere for the places observed can
make the time of the first glimpse unlike and unsure (as I know from
trial and from the differences in the observations).

4. The same angular distances appear to the eye greater near the
horizon and smaller near the culminations.
    (c) PTOLEMY also demanded that various errors (actually, both
systematic and random) be eliminated as completely as possible
(Book 4, § 9, p. 135 – 136):

In the correction of the (moon’s) mean course we first looked for
lunar eclipses from among those accurately recorded, as far apart in
time as possible, in which the magnitudes of the shadows were equal,
near the same node with both shadows either on the southern or
northern side, and in which, moreover, the moon was at the same
distance from the earth.
    However, continues PTOLEMY (pp. 136 – 137), eclipses were also
used where the nodes were no longer the same but opposite.
Elsewhere (Book 9, § 2, p. 273) he states:

We have used for the demonstrations of each planet only those
observations which cannot be disputed, that is those taken at contact
or great proximity with the stars …, and above all those taken with the
astrolabe where the eye is lined up with the diametrically opposite
sights in the circles, sees on every side equal angular distances by
means of similar arcs.
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    In particular, PTOLEMY noticed (Book 6, § 9, p. 215) that
The periodic return (in HIPPARCHUS’ observations) would have

erred by the 2° of both mistakes together if both had happened to
involve a difference towards the greater or towards the less. But … by
happy chance the one makes the return fail of completion and the
other makes it exceed …
    PTOLEMY himself would have therefore designed his observations
so as not to rely on happy chance.

(d) Lastly, PTOLEMY repeatedly considers the effect of various
(systematic) errors (Book 5, § 10, p. 162, Book 6, § 9, p. 214 and
Book 9, § 2, p. 271, respectively):

1. It is reasonable to suspect that at times an appreciable difference
occurs at the conjunctions, full moons, and eclipses accompanying
them, because of the moon’s eccentric circle … we shall try and show
that (though the epicycle’s centre does not always fall exactly on the
eccentric’s apogee, this difference) can produce no error worth
mentioning.

2. The time from the beginning of the eclipse to the middle is not
always equal to the time from the middle to the end. … But supposing
these times not unequal would work no discrepancy perceptible to
sense in the appearances.

 3. The stations cannot indicate the exact time, since the planet’s
local motion remains imperceptible; and the apparitions not only
make the places immediately disappear along with the stars as they
are seen for the first or last time, but also can be utterly misleading
because of the differences in the atmosphere and in the eye of the
observer.
    One more passage on systematic errors from the Almagest is quoted
below.
    PTOLEMY did not distinguish explicitly between random and
systematic errors, a bifurcation due to D. BERNOULLI6; neither did
he formulate the stochastic properties of random errors. Lastly‚ he did
not devote a special section of his book to this subject. However,
PTOLEMY did possess a clear-cut notion about various errors of
observation and about the different effects which they produce and did
leave proposals for selecting methods and circumstances of
observations and for combining different observations.
    A. AABOE and D. J. DE SOLLA PRICE7 considered antique
astronomical observations:

In the pre-telescopic era there is a curious paradox that even a
well-graduated device (their estimate of the error of graduation is 5')
for measuring celestial angles is hardly a match for the naked and
unaided eye judiciously applied when, for example, an observation
consists of registrating that a certain planet falls so-and-so many
moonwidths from some other star or from … the midpoint of a line
joining two stars.
    The function of smaller antique instruments, they suppose, was to
serve as a means for avoiding calculations while

The characteristic type of measurement depended not on
instrumental perfection but on the correct choice of crucial
phenomena.
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    This is an extremely interesting article. However, I object to their
regard of antique observations as qualitative. Counting the number of
moonwidths (see above) is, after all, a purely quantitative procedure.
Also, neither the authors nor COLLINDER8 who refers to their article,
notices that, as regards the effort toward accuracy, observational
methods in antique astronomy do not present any peculiarity. In
particular, if PTOLEMY did not follow the principle of regular
observations (the authors' conclusion), he at least strove for accurate
results by other methods at his disposal. However, PTOLEMY does
mention regular observations, including those of HIPPARCHUS
(Book 3, § 1, p. 78 of the Almagest):

But since a suspected inequality in the periods of … this return (of
the sun), suspected through continuous and successive observations,
more or less worried Hipparchus, we shall try … to show … by the
continuous … observations we have made … that these periods are
not unequal. For we find them differing by no appreciable amount
from the additional quarter day, but at times by about as much as
could be attributed to the error due to the construction or position of
the instruments.
    A passage on systematic errors continues thus (p. 79):

Even if the position or discrimination of the instruments is
inaccurate by only 1/3,600 of the circle … the sun makes up for this
advance in latitude by shifting 1/4° in longitude along the ecliptic.
    For some twenty centuries PT0LEMY’S observations have been an
object of discussion. This is the first reason why I discuss KEPLER’S
opinion of PTOLEMY. The second is, of course, KEPLER’S own
position in experimental science.
    First, KEPLER9 appreciates PT0LEMY’S observations:

Wenn ich aber … geglaubt habe, Ptolemäus sei bei seiner Annahme
einer blinden Vermutung gefolgt, so verhält sich dies anders. Denn er
hätte sie mit einem vortrefflichen Beweis auf Grund einer geeigneten
Beobachtung erhärten können, … nur das möchte man bei dem
Meister vermissen, dass er nicht jene Beobachtungen mit einem
Beweis der Nachwelt überliefert hat.
    Even if evidence is lacking, KEPLER10 is ready to support
PTOLEMY (and HIPPARCHUS):

Ich kann mich freilich nicht davon überzeugen, dass Hipparch und
Ptolemäus ihr Augenmerk auf den Moment des Eintritts (der Sonne in
den Krebs) selber gerichtet haben, ohne auf die Zwischenpunkte zu
achten. Ich glaube eher, dass sie den ganzen Sommer über fleißig die
Deklinationen der Sonne miteinander verglichen und den zeitlichen
Mittelpunkt zwischen den Momenten gleicher Deklination für den
wahren Eintritt … gewählt haben.
    At least this would have been KEPLER'S own mode of action. See
also similar methods of treating observations by AL-BIRUNI (§ 2.2).
To return to KEPLER’S account (p. 387):

Wenn er (PTOLEMÄUS) also auch nur eine einzige Beobachtung
überliefert, um die Methode aufzuzeigen (!), so dürfen wir doch
glauben, dass er mehrere Beobachtungen in Betracht gezogen hat.
    However, KEPLER simultaneously accuses PTOLEMY of
following presupposed ideas and even, in one case, of falsification
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(Kap. 14, pp. 132 – 133, Kap. 66, pp. 373 – 374 and Kap. 70, p. 396,
respectively):

1. Um Fehler durch Fehler zu stützen, verrenkte er seinen Epizykel
aus der parallelen Lage und wählte sich, nicht im Vertrauen auf
Beobachtungen, die ihm in nicht sehr großer Zahl vorlagen, noch
nach den Größenangaben, wo Beobachtungen vorlagen (da er ihrer
Zuverlässigkeit misstraute), mittlere Werte aus, indem er extreme
Werte im Zweifel zog.

2. Ptolemäus sowie seine Nachfolger höchst verwickelte Neigungs-,
Beugungs- und Drehungsbewegungen ausgedacht haben. Das heißt
aber nicht, die Wahrheit durch Beobachtung ermitteln, sondern
vielmehr nach einer falschen vorgefassten Vorstellung Beobachtungen
erfinden. Man muss ihm das freilich hingehen lassen, weil ihm nur
wenige Beobachtungen zur Verfügung standen.

3. Man … bedenke, dass Ptolemäus das Verhältnis seiner Bahnen
so gefälscht hat, dass diese Beobachtung gedeckt ist.
   KEPLER’S account with its declarations in favour of PTOLEMY
and the accusatory ones, with their freilich hingehen lassen, seems to
be accurate. One may well ask how to reconcile PTOLEMY’S regular
observations with ihm nur wenige Beobachtungen zur Verfügung
standen. A possible explanation is that most observations (the worst
ones, which PTOLEMY mißtrauent) were usually made for
corroboration only (see the opinion of AABOE and DE SOLLA
PRICE above and, also, AL-BIRUNI’S mode of action, § 3).

2.2. Al–Biruni. Statements that regular observations had been made
or were needed occur also in AL-BIRUNI11. In several places this
author tells us about his own regular observations; on p. 65 he testifies
that AL-BATTANI declared that he had repeated his observations
over many years. Possibly more interesting though is that AL-BIRUNI
maintains that regular observations are needed so as to predict
dangerous landslides etc., an aim far from possible even nowadays
(p. 32):

Latitudes may be changed sensibly by that movement (of masses
over the earth's surface) … or a dangerous displacement may be
produced which can cause havoc and destruction. Therefore latitudes
should be continually observed and examined.
    It is my opinion that, with the naked and unaided eye (§ 2.1) or
otherwise, regular observations had been a common feature even of
antique astronomy. However, the observer usually enjoyed an
unrestricted liberty about the use or tacit rejection of any of his
observations (§ 3). As to the avoidance of calculations in antiquity
(§ 2.1), AABOE and DE SOLLA PRICE seem to be completely right.
As even AL-BIRUNI says, calculations are difficult and introduce
additional errors, besides (a new feature), they are forbidden by the
Islamic law. So (p 51), measurements are only approximate, and the

 Approximation is also due to the extraction of square roots in the
calculation … and the lack of refined methods for the calculation of
some quantities … hence very minute defects, in operations including
sines, lead to defective composite approximations. I do not use
(methods requiring computations) except for exploring the truth
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behind the veils, and for comparing results arrived at by different
methods, to feel more confident about a derived result.
    Similar statements are made at least in seven other places (pp. 58‚
96, 105, 115, 152, 191 and 237), and I quote from the first and the
fifth of them, respectively:

1. The first method is more reliable, because it depends on direct
observation and does not involve any computation.

2. The use of sines engenders errors which become appreciable if
they are added to errors caused by the use of small instruments, and
errors made by human observers.
    It seems that AL-BIRUNI was the first to reason on the propagation
of computational (random!) errors (see also § 4) and on the combined
effect of observational and computational errors, though of course he
was unable to evaluate numerically such combined effects.
    Lastly comes the passage about the Islamic law (p. 259):

When one determines accurately the longitude and the latitude of
one’s town, one can compute the (moment of the) rise of the dawn
which ushers in the beginning of the fast. ... Further, one can
determine the times for the visibility of the new moons, though the
Islamic law commands their determination with the naked eye and not
by computation, because the Prophet said: “We are people who
neither write nor compute.” Hence, the month is so, and so, and so,
showing out his ten fingers thrice.
    Hardly any astronomer wholly complied with such restrictions, but
at least here is an additional general argument against computations.
Now I notice additional passages from Al-BIRUNI who also (a)
demands elimination or decrease of systematic errors, (b) compares
the accuracy of different methods of observation, and (c) reveals an
error of astronomical calculations due to the inaccuracy of the
mathematical model used.

(a) On p. 39 AL–BIRUNI comments on time intervals between
observations:

The wider the intervals … the more reliable the (end) result. A
similar passage from the Almagest is in § 2.1.
    On pp. 76 – 77 Al-BIRUNI discusses the consequences of an
instrumental error and concludes that observers should keep alert,
pursue research without impatience or boredom etc.
    Bearing in mind determinations of longitudinal differences between
cities he notices (p. 155) that both

Observers of an eclipse should obtain all its times (phases) so that
every one of these, in one of the two towns, can be related to the
corresponding time in the other. Also, from every pair of opposite
times, that of the middle of the eclipse must be obtained.
    AL-BIRUNI is here concerned with obtaining comparable results
from every pair of opposite times, a problem methodologically similar
to that of isolating systematic influences from repeated measurements
(§ 2.4). Also, the impression of the lunar eclipse in both cities, AL-
BIRUNI concludes on p. 131, is almost or completely identical, which
means that systematic errors of observation are almost eliminated. He
also comments on the elimination of systematic errors from distances
between cities (p. 199):
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    By common consent, the calculators increase the distance by its
sixth. It should not necessarily be so, because the amount of this
increase depends on deviations whose number is not definitely known,
and whose extents are also undetermined.
    He himself increases the distances concerned by various amounts
rather than by a predetermined fraction, which more consistent with
common sense (p. 191):

 He, who has experienced the technicalities of observations, knows
that the correction (of terrestrial longitudes) by the method of
distances, when they are assessed carefully by distinguishing between
level and mountainous ones, and by studying the nature of the slopes,
the number of curves und the extent of their curvatures, – if it is not
superior to the correction obtained by observation of lunar eclipses‚ it
is not inferior to it.

(a) and (b) Discussing observations of eclipses, AL–BIRUNI
(p. 129) concludes that, because of various errors (mostly systematic)
peculiar to solar eclipses, one ought to prefer observations of lunar
eclipses.

(c) Discussing certain solar observations, AL-BIRUNI
(pp. 115 – 116) notices that

 The discrepancy between (one of them) and the established amount
of the constant sought is intolerable. It is partly due to the assumed
equality between (arcs), on account of the equality of the two time
intervals (between observations). That equality cannot hold unless the
middle observation is made when the sun is exactly in apogee, or in
perigee.
    2.3. India (12th century). This is a short aside from astronomy.
    An Indian writing12 contains a rule for calculating the volume of an
irregular earth excavation. The volume is considered equal to the
product of the mean measures of the length, width and depth of the
excavation with the measures taken at different places. A 16th century
comment by GÁNÉZA is that

The greater the number of the places (of measurement), the nearer
will the mean measure be to the truth and the more exact will be the
consequent computation.
    Another comment by the same author is that the rule applies to
excavations, whose sides are trapezia. Whatever is meant by the sides,
I am inclined to suppose that GÁNÉZA thought of irregular trapezia.
The rule itself seems to contain no stochastic reasoning, but it is very
possible that even ancient scholars did understand the general idea of
taking the mean, and adjusting observations of a series of quantities
(not of one and the same quantity) to decrease the influence of
systematic errors and of the inexactitude of the mathematical model.
    Applications of mean measures in calculations of areas can be
traced to ancient Babylonia13 where the area of a quadrangle was held
to equal the product of the half-sums of its opposite sides. This
method of calculation was used rather often (Ibidem) in cases either of
inexact rectangles (inexactitude of the mathematical model) or of
rough terrain with the measures of the opposite sides unequally
influenced by systematic errors.
    GÄNÉZA’S commentary is considered in § 4.
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2.4. European History. I pass to the 16th and 17th centuries and
describe considerations of different scholars, but see those of
NEWTON in Sheynin (1971), this Archive, vol. 7.
    W. GILBERT14 noticed the influence of temperature on one of his
experiments:

This experiment is best [better] made in winter and in a cold
atmosphere ... than in summer and in warm climates.
    Elsewhere in the same writing (Book 4, chap. 12, p. 86) he
mentions some errors of measurement:

 The whole trick consists in proper use of the instruments by which
the sun’s position is ascertained … for either the hand trembles, or the
eyesight is defective, or the instrument does not work aright.
    GALILEO15 several times reasons on the methodology of
experiments; in particular, he takes up experiments on the free fall of
bodies16. Also, comparing voyages over the Mediterranean, he17 says:

 Keeping a special record and account of the days of departure and
arrivals of ships ... I discovered … that the returns here (at Venice)
were made in proportionately less time than those in the opposite
direction, in a ratio of 25%. Thus we see that on the whole the east
winds are stronger than those from the west.
    His inference does not seem penetrating, but it is obviously made in
accord with the rules of the then non-existent classical theory of errors
(mathematical treatment of the so-called Wiederholungs-
measurements with the isolation of the mean value of a systematic
influence, of the unequal influence of winds on this occasion) and his
end result, on which it is of course difficult to check, is stated with a
reasonable degree of accuracy (25 rather than, e. g.‚ 26%).
    But by far more interesting example is GALILEO’S treatment of
sun spots, see § 8.2 of Prehistory… in this collection.
    Some of KEPLER’S arguments from his Neue Astronomie are
described in § 2.1. Two other passages from the same source (Kap. 28,
p. 209 and Kap. 51, p. 311, respectively) testify also that he was
concerned with the design of experiments:

1. Denn auch bei der herkömmlichen Art, wie man auf der Erde die
Entfernungen von Dingen misst, erhält man die Entfernung eines
Punktes um so sicherer, je weiter die Standpunkte voneinander
abstehen.
    It would have been more accurate to discuss the shape of the
triangle formed by the three points, or the ratio of its sides.

2. Alle drei Beobachtungen sind angestellt worden, als Mars im
Osten stand, keine, wenn er im Westen stand. Es fehlen nämlich
weitere Beobachtungen.
    Other places of interest are two of KEPLER’S letters to
HERWART18 and, also, Part 3 of his Neue Stereometrie19 where he
offers recommendations about the measurement of the content of
barrels. Lastly, his Somnium20 contains recommendations to observers
of solar eclipses:

Observers should … be warned that the paper which receives the
image of the eclipsed sun must be protected from all disturbances and
must always be placed at the same distance from the hole and at right
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angles to the ray coming through it. For if the paper bends, the
circumferences of the bright image are distorted, and degenerate
from circles into ellipses. Accordingly, let the disputant verify whether
he took adequate precaution against this defect.
    C. HUYGENS studied possibilities for decreasing errors of
clockworks and for more accurately observing the free fall of bodies
(Ibidem, Part 4, Proposition 26).
    Rules for eliminating systematic errors are also given in writings
pertaining to nautical astronomy which became extremely important
by the beginning of the era of great geographical discoveries (end of
the 15th century). Thus22,

For knowledge of the true height of the Sun (the Astrolobe not
hanging upright), do thus: if the Astrolobe be truely marked, marke
the diversitie, that being knowne, rebate from the greatest heigth halfe
the diversitie, or else adde unto the lesser heigth halfe the diversitie,
and that shall be the true heigth of the Sunne, although that the
Astrolobe doth not hang upright.
    The foregoing description deals with the prehistory of my subject,
and it is only with the advent of the differential calculus that the real
history begins. The first special research is due to R. COTES23, who
calculated the errors of the different elements of plane and spherical
triangles calculated from their observed (and thus error-burdened)
angles and sides. For the era of arc measurements which commenced
in the first half of the 18th century, his writing appeared extremely
timely and, for example, C. M. DE LA CONDAMINE24 referred to
COTES:

Après d’assez longues reeherches, aux quelles j’ai appliqué la
théorie de M. Cotes ... je me suis convaincu ...
(a passage on the propagation of errors follows).
    The further history of this subject is directly connected with the
general geodetic activity in 19th century Europe and should be
properly considered in the framework of the history of geodesy.

3. Selection of Data
    3.1. Ptolemy. According to modern standards, each observation,
including those rejected, should be recorded and dealt with to ensure
the highest possible degree of objectivity. The history of selecting
observations begins at least from PTOLEMY who not only tolerated
but even recommended to select the best observations.
    Thus he25 will

Demonstrate this lunar anomaly … first using three of the oldest
eclipses and then again three from the present very accurately
observed by ourselves.
    Also, in other places (Book 4, § 6, p. 123 and Book 10, § 4, p. 316):

1. Of the three eclipses we have chosen from those most carefully
observed by us …

2. For the periodic movements of the star ... we took two sure
observations from among our own and from among the old ones.
    Did PTOLEMY select observations just for confirmation of
observations made by HIPPARCHUS? Some scholars thought so26,
although KEPLER (see § 2.1) was of a different opinion. In any case,
if this was sometimes PTOLEMY’S goal, it would mean he had a
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higher opinion of HIPPARCHUS’ observations than of his own.
Moreover, as implicitly follows from § 2.1, his general goal seems to
have been to select observations least influenced by random and
systematic errors or, to put it otherwise, to reject inferior observations
capable of corrupting the end results.
    PT0LEMY’S correct point of view gave birth to an established
tradition of freedom, excessive from a modern point of view, of
selecting observations while leaving the rejected (= unused)
observations unknown to anyone except the astronomer himself.

3.2. China (8th Century). It seems that a similar selection of
observations was carried out in the 8th century by Chinese
astronomers27 during

A large-scale attempt to define terrestrial units (li) of measure in
terms of an unvarying astronomical or geodetic constant (an early
attempt at a metric system!) … the ground distances between the more
distant stations were not measured but assessed by extrapolation on
the basis of the result for the short … line of stations.
    NEEDHAM similarly assessed the astronomical part of the work
and concluded (p. 51):

In all probability I-Hsing (one of the astronomers) thought it very
undesirable to admit a mass of raw data showing considerable
scatter, and not being able to assess it statistically, he used it only to
satisfy himself that his calculated values came about were they should,
indeed he probably believed that they were much more reliable than
most of the observations
(of the worst observations?).
    3. Falsification of Observations. Another source of falsification
(in the modern sense) of observations is mentioned by AL-BIRUNl28

whose account (pp. 169 – 170) seems to indicate that this source had
been far from unusual:

I have found in some books that the scientists measured the
longitudes of towns by observations of eclipses. … I am not sure
whether this is a genuine report of what was obtained by observation,
or whether it is just an example made up for illustration, after the
longitudinal difference had been obtained (by other methods).
    I emphasize, though, that astronomers hardly aimed at deliberate
deception; rather, they followed established traditions, and it is in this
context that the possible veneration of HIPPARCHUS’ observations
by PTOLEMY should be seen (see also § 3.1). Of course I do not
discuss extreme cases such as the one reported by AL-BIRUNI in
another source29:

Abu Muhammad al-Nasafi (?) pretended (?) that he had made
observations while, in fact, he is a plagiarising liar and an impostor to
the craft (of astronomy).
    The question marks were inserted by the translators.
    It is instructive in this connection to compare astronomy with
experimental science in general30:

The scientific literature of the 17th century, and not only of the 17th

century, is full of … fictitious experiments … that have not been made,
and are even impossible to make.
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    This comment is made in connection with PASCAL who has not
given a complete and exact account of the experiments that he made
or imagined. The author does not deny that PASCAL’S (hydrostatic)
experiments were actually carried out, but he supposes that as
compared with the account they were made on a rather modest scale.

3.4. European History (17th and 18th Centuries). Speaking of
these centuries, one naturally takes notices of FLAMSTEED31:

He does not appear to have taken the mean of several observations
for a more correct result where more than one observation of a star
has been reduced, he has generally assumed that result which seemed
to him most satisfactory at the time, without any regard to the rest.
Neither, in fact, did he reduce the whole (nor anything like the whole)
of his observations: many day’s work having been wholly omitted in
his computation-book. And, moreover, many of the results, which have
been actually computed … have not been inserted in any of his MS
catalogues.
    This is trustworthy evidence, but in my opinion it does not contain
the whole truth. First, FLAMSTEED experienced hardships32, a fact
which should well be taken into account. Second, foiling NEWTON’s
expectations, FLAMSTEED never hurried to publish his
observations33, and at least in one instance34 he intended to use his
observations for his own private use, then resolved to communicate
them to the ingenious (rather than to the scientific community at
large!). Third, FLAMSTEED35 repeatedly emphasized the need to
have trustworthy observations:

 I … give you the sun’s diameters, of which I esteem the first, third
and fourth too large, by reason of my impractisedness … the rest I
esteem very accurate, yet will not build upon them till I have made
some further trials with an exacter micrometer.
    The general impression seems to be that, in cases noticed by
BAILY, FLAMSTEED just did not consider his work finished. A
particular case of the use of the arithmetic mean by FLAMSTEED is
described by R. L. PLACKETT36 who, partly following J. L. E.
DREYER37, describes the practice adopted by TYCHO BRAHE.
It occcurs that, like FLAMSTEED, TYCHO disregarded some of his
observations.
    On the other hand, BRADLEY never failed to consider all of his
observations; in one case38 he even calculated the mean of 120 of
them, although this was not his general rule39:
   When several observations have been taken of the same star within

a few days of each other, I have either set down the mean result, or
that observation which best agrees with it.
    However, one way or the other, BRADLEY seems to be the first
staunch originator of the idea of using whole sets of observations, and
he said just this when introducing his new discovery, the phenomenon
of nutation (Ibidem, p. 17):

This (discovery) points out to us the great advantage of cultivating
(astronomy) as well as every other branch of natural knowledge, by a
regular series of observations and experiments.
    BRADLEY’s point of view did not immediately become
universally accepted, a fact proved by the appearance of T.
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SIMPSON’s memoir40 whose aim was to refute … some persons, of
considerable note, (who) have been of opinion, and even publickly
maintained, that one single observation, taken with due care, was as
much to be relied on as the mean of a great number (of them).
    SIMPSON did prove that, at least for the uniform and triangular
distributions, the arithmetic mean is preferable to a single
observation41. However, the first reasoning on the mean is due to
Cotes, according to whom42 the centre of gravity of the observations
(= of points in space) is the most probable and most reliable value of
the constant sought. Several authors have described his qualitative
reasoning, modernized it and noticed its relation to the method of least
squares (MLSq)43‚ while LAPLACE44 remarked that

La règle de Cotes fut suivie par tous les calculateurs.
3.5. European History (19th Century, Sketch). After the

construction of the classical theory of errors, which took place from
the middle of the 18th century until the beginning of the 19th century,
the ancient qualitative selection of observations had ceased to be
considered acceptable and became gradually superseded by rejection
of outlying observations according to certain quantitative criteria (the
first criteria were introduced by B. PEIRCE, 1852, and W.
CHAUVENET, in 1863) or by posterior weighting of observations, a
procedure known even in the 18th century.45

    Both the rejection of outlying observations and their posterior
weighting, which brought into account stochastic considerations, had
been time and again severely criticized, and the discussion of
observations still remains an extremely delicate problem. In particular,
modern counterparts of posterior weighted means are the so-called
best linear estimators of the location parameter.
    I begin the account with GAUSS46:

Zu einer erfolgreichen Anwendung der Wahrscheinlichkeits-
rechnung auf Beobachtungen ist allemal umfassende Sachkenntnis
von höchster Wichtigkeit. Wo diese fehlt, ist das Ausschließen wegen
größerer Differenz immer misslich, wenn nicht die Anzahl der
vorhandenen Beobachtungen sehr groß ist.
    Generally speaking, continues GAUSS, there is a case for rejection,
but

Halte man es wie man will, mache aber zum Gesetz, nichts zu
verschweigen, damit andere nach Gefallen auch anders rechnen
können.
    Also, wenn man mit dem Ausschließen zu schnell bei der Hand ist,
there exists a risk of overestimating the accuracy of observations.
    Actually GAUSS went much further, postulating the principle of
the arithmetic mean47:

It has been customary certainly to regard as an axiom the
hypothesis that if any quantity has been determined by several direct
observations, made under the same circumstances and with equal care
(this, then, is GAUSS’ definition of gleichgenaue observations, a
notion of post-GAUSSIAN classical literature. He continued):

The arithmetical mean of the observed values affords the most
probable value, if not rigorously, yet very nearly at least, so that it is
always most safe to adhere to it.
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    Lesser known is another GAUSS’ opinion on the mean48:
Pflegen die Erfahrungsdata selten in der reinen Gestalt sondern

fast immer mehr oder weniger behaftet mit Störungen oder
Schwankungen, die in ihrem Wechsel keiner Regel gehorchen, und
man sucht dann den daraus entstehenden Nachteil so viel thunlich zu
vermindern, dass man aus vielen einzelnen Resultaten das Mittel
nimmt. Man rechnet darauf, dass bei einer solchen Benutzung einer
großen Zahl von Fällen die zufälligen Schwankungen einander
größentheils compensiren, und legt dann dem Mittelwerthe eine desto
größere Zuverlässigkeit bei, je mehr partielle Resultate zugezogen
sind. Dieses ist auch im allgemeinen vollkommen richtig, und durch
consequente weitere Entwicklung und unsichtige Ausbeutung dieses
Princips sind besonders in der Naturwissenschaften nicht selten die
belohnendsten Früchte, selbst glänzende Resultate, gewonnen. Allein
die Sicherheit des Grundprincips beruhet auf einer wesentlichen
Bedingung, die häufig genug, auch von Gelehrten von Fach außer
Acht gelassen wird, und die darin besteht, dass die an den einzelnen
Beobachtungen haftenden regellosen Störungen oder Schwankungen
von einander ganz unabhängig sein müssen. Das Urtheil, ob eine
solche Unabhängigkeit vorhanden sei oder nicht, kann zuweilen sehr
schwierig und ohne tiefes Eindringen in das Sachverhältnis unmöglich
sein, und wenn darüber Zweifel zurückbleiben, so wird auch das den
Endresultaten beizulegende Gewicht ein precäres sein.
    Here GAUSS demands that the observations be mutually
independent. He formulated this restriction before, at least twice49, but
it seems that emphasis is added only in this instance.
    Thus, demanding equal rights for each observation, GAUSS was
moreover inclined against rejection. Other prominent authors of the
middle of the 19th century compared rejection of observations with
their downright falsification. Such was the opinion of G. HAGEN50,
C. L. GERLING51 and, possibly, V. YA. STRUVE52 whom I quote in
this order:

1. Die Täuschung, die man durch Verschweigen von Messungen
begeht, lässt sich eben so wenig entschuldigen, als wenn man
Messungen fälschen oder fingiren wollte.

 2. Jede Beobachtung, die nicht einen entschiedenen
protocollarischen Verdachtsgrund gegen sich hat, habe ich als einen
Zeugen für die Wahrheit zu betrachten, und eben so wenig wie ich den
Zeugen torquiren darf, bis er sagt, was ich gesagt haben will, ebenso
wenig darf ich auch ohne weiteres sein Zeugnis verwerfen, weil
dasselbe von den übrigen bedeutend abweicht.
    3. Discrepancies (in sums of the angles of triangles) furnish a
veritable measure of probable errors only in case observations have
been made without slightest prejudice and when no measurements
have been rejected and substituted for new ones to guarantee a more
satisfactory concordance in the sums of the angles.
    It would have been more accurate to take into account all
conditions, including those provided by astronomical observations and
base measurements. Struve continues:
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The history of geodesy really presents a few examples of such work
in which the concordance of the sums testifies to accuracy almost
impossible to attain.
    Strictly speaking, those were opinions against rejection as
accomplished on subjective grounds. The use of stochastic criteria of
rejection were also criticized time and again, but the climate of
opinion gradually became milder53:

The question of rejection reduces to a question of common sense.
Certainly the judgement of an experienced observer should be allowed
considerable influence. … The judgement can undoubtedly be aided
by one or more tests based on the theory of probability but any test
which requires an inordinate amount of calculation seems hardly to
be worth while, and the testimony of any criterion which is based
upon a complicated hypothesis should be accepted with extreme
caution.
   Now I quote MENDELEYEV’s54 negative opinion about posterior
weighting of observations:

A mean of various determinations could, and sometimes even
should, be taken, but only when the relative merits of the (separate)
determinations are either completely unknown or could in no wise be
distinctly deduced55; however, when one of the numbers (of the
determinations) certainly secures more guarantees of accuracy than
the other ones, it alone ought to be taken with complete disregard of
the (other) numbers which undoubtedly represent either worse
conditions of experiment … or leave room for doubt. … To consider
worse numbers, taking them with some (even small) “weight” is
tantamount to a deliberate corruption of the best of the numbers.
    But how to judge the accuracy of the various determinations? How
to know that this or that determination is worse? The cursed problem
is unsolved, but at least the general attitude of MENDELEYEV, the
director of Russia’s Bureau of weights and measures from 1893 until
his death (1907), possibly reflects the essential difference between
conditions of observations in astronomy and geodesy on the one hand
and in metrology on the other hand.

3.6. Conclusion. I give word to a modern author56:
    In former centuries the astronomer selected from among his
observations those that seemed the best; this made him liable to bias
or inclined to select such data as showed a possibly unreal agreement.
(An example concerning TYCHO BRAHE follows.) In the 17th

century scientists like Huygens and Picard realized that the average of
a number of equivalent measurements would be better than one of a
couple of selected from them, and in the 18th century this averaging
came more and more into use, all the more so since the concept of
chance or probability of errors as a quantitative character had
gradually become clearer. … A new attitude was brought into being,
typical of the nineteenth-century scientist toward his material: it was
no longer a mass of data from which he selected what he wanted, but
it was a protocol of an examination of nature.
    I deal with the stochastic nature of averaging in § 4 and notice
relevant qualitative opinions of a number of scholars. I also note that
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PANNEKOEK did not substantiate the reference to HUYGENS. Here
is the only instance known to me in which he57 took a mean of
numerical values:
    Il paraît après tout le plus raisonnable d’admettre que, comme la
Terre est placée entre Mars et Vénus par rapport aux distances, elle
occupe également une place intermédiaire par rapport a la grandeur.
… le diamètre de Mars est 1/166 du diamètre du Soleil, et celui de
Vénus 1/84. Prenant done pour diamètre de la Terre la moyenne
(arithmétique) de ces deux diamètres, nous trouvons qu’il est 1/111 de
celui du Soleil.

En vérité, le diamètre de la terre est a celui du Soleil comme 1 est a
109 environ.
    That was the (absolutely wrong) editorial comment on the
remarkable accuracy of a hardly justified prediction. The Earth is even
a bit larger than Venus.
    Here are my own general remarks. Astronomers always attempted
to deduce the “best” result from their observations; they more or less
intuitively thought that a deliberate omission of some of their
observations‚ stronger influenced by systematic and, possibly, random
errors, was sometimes desirable; also, in case a large systematic error
influenced each observation, which is a rather natural supposition,
astronomers would possibly infer, reasonably enough, that numerous
observations are just useless.
    Speaking now about the 17th century, it is my opinion that the
general improvement of observational techniques (invention of the
telescope, vernier, level and crosshairs) led to the increase in the
accuracy of observations by a whole order; thus, the errors of angle
measurements decreased from minutes to seconds. This could have
well influenced astronomers to regard the mean of a couple of
observations, or even one observation, as sufficient for any practical
purpose. Exactly this fact possibly explains why BRADLEY’S ideas
(see above) did not immediately become universally accepted.
    However, new and fundamental problems of the natural science, in
particular, the deduction of the figure of the earth systematically
studied from the middle of the 18th century, compelled astronomers to
reconsider their approach and make full use of their observations. A
second example of a problem, pertaining though to astronomy proper,
which equally demanded utmost accuracy in the treatment of
observations, was the problem of discovering nutation. It was in this
connection that BRADLEY, the discoverer of both aberration and
nutation, remarked58:

  Science … had acquired such extraordinary advancement, that
future ages seemed to have little room left for making any great
imrovements. But, in fact, we find the case to be very different; for, as
we advance in the means of making more nice inquiries‚ new points
generally offer themselves that demand our attention.
    As stated above, the quantitative, stochastic discussion of
observations remains an extremely delicate procedure. The knowledge
of corresponding laws of distributions (or at least of the nature of
various random errors) and of the systematic errors is essential, and
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the appropriate studies nowadays belong to the realm of mathematical
statistics.

4. Stochastic Treatment of Observations
    4.1. Ptolemy. I have shown (§ 2.1) that already PTOLEMY clearly
understood that obviously gleichgenaue observations (see GAUSS’
definition of this notion in § 3.5) can be rather unequally influenced
by systematic errors and that their elimination may be achieved at
least partially by an appropriate combination of observations. It is
more difficult to find out when combination of observations came to
be used for the simultaneous elimination of random errors.
    An example from PTOLEMY’S Almagest suggests that he thought
that the “true” value of his observed constant was between the values
of his two observations. Thus, supposing that the value of an
astronomical constant lies between 47°40' and 47°45’ (Book 1, § 12,
p. 26), he took this constant to be 11/833600 = 47°42′39″, a value
previously accepted by ERATOSTHENES and HIPPARCHUS. It is
an open guess at PTOLEMY’S choice in case of a lack of
predecessors. But, even as it is, his decision does not violate common
sense, differs but insignificantly from the choice of the arithmetic
mean of the two bounds, 47°42′30”, and is consistent with the
properties of usual random errors (equal probability of positive and
negative errors and greater probability of lesser errors).

4.2. Al-Biruni. Much more interesting are the remarks of AL-
BIRUNI59, notably (a) almost explicit statements about random errors
and (b) a reasoning on the adjustment of direct observations.

(a) On p. 51 is a statement on the inevitability of (random) errors:
The same thing comes out in different amounts (= observations

scatter), because celestial observation is a very delicate matter; it
requires precise measurements. … The approximation is also due to
the extraction of square roots etc., see § 2.2.
    On pp. 155 – 156 AL-BIRUNI repeats his assertion, on this
occasion in respect to time keeping:

Some measure (time) with precision by continuous motions which
are empirically equal in equal times and, as a rule, this has been done
by the use of water. But it is subject to variation in many respects. For
instance, the purity and density depend on its sources. ... Also, it is
subject to accidental variations (sic!), by variation in the quality of the
air. … Man has preferred the motions of sand to it.
    Lastly, it is AL-BIRUNI’S opinion (p. 83) that (random) errors can
be both in excess or in defect and it is really possible that he supposes
both these cases are equally likely:

Now all the testimonies that we have adduced point out collectively
that the (obliquity of the ecliptic) is 23° plus one third and one
quarter of a degree. The slight excess or defect in some of the
estimators is due to the instrument.

(b) The last passage also points to his general method of
adjustment. As I see it, it consists of collecting several observations,
discussing them qualitatively and choosing a more or less comfortable
and common-sense single value for the constant sought. Thus, on
p. 237 he says:
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I shall rely on this amount because it is close to the average
between the smaller amount and the larger amount and because the
indirect method produces an amount which is not far from that
amount and (thus) corroborates it.
    One or another corroboration of results is typical (p. 156):

If altitudes of fixed stars are observed (for measuring time), though
they are numerous, the corroboration of evidence obtained from some
of them with that obtained from others leads to better accuracy.
    As it seems, corroboration of evidence means here a consideration
of at least several observations. However, there is also a second use
for corroboration‚ viz., for rough checking only. Thus, on pp. 46 – 51
he records four observations of solar altitudes and azimuths at
Jurjaniya, the capital of Khwarism, from whence different values of its
latitude (φ) are computed. It is on this occasion that AL-BIRUNI
reasons on the inevitability of errors, see above item (a). Then he
(p. 51) puts on record a fifth observation, that of the altitude of
summer solstice. This crucial observation, simplest to be made and
requiring almost no calculations, leads to φ =42°17′‚ which, says AL-
BIRUNI disregarding his previous observations, is his reliable
estimate.
    Returning to actual adjustment, I notice that in at least two instances
AL-BIRUNI is more definite. Thus, on p. 168:

As to the halvng of the interval between the two times, it is a rule of
procedure which has been adopted by calculators for the purpose of
minimizing the errors of observation, so that the time calculated will
be between the upper and the lower bounds.
    He actually repeats himself (p. 203), this time, however, choosing
the half-range:

As to the latitude of Baghdad, different observations have found
that it is neither less than 33°20′ nor greater than 33°30′, and the
approved one is 33°25′, because it also the mean between those two.
    I do not think, however, that this was his general rule. Then follow
the actual adjustments of longitudes and latitudes of different cities.
AL-BIRUNI’S general presentation is rather obscure (tables are of
course lacking and explanations insufficient), but it seems that hardly
any essential further information can be gleaned. But we may say that
AL-BIRUNI’S were the first explicit (qualitative) statements about
propagation of computational errors, almost explicit statements about
the inevitability of random errors of observation whose typical
properties he possibly knew. Also, like PTOLEMY (§ 2.2), he clearly
understood the essence of systematic errors of observation and strove
to exclude their influence. Lastly‚ he repeatedly adjusted direct
observations. He did not seem to adhere to any definite rule (e. g., to
the choice of the arithmetic mean), but at least his general mode of
action was sufficiently sound (use of inferior observations for
corroboration only, choice of reasonable estimators, etc.).

4.3. India (16th Century). In § 2.3, I quoted a 16th century
commentary on Lilávati, a 12th century Indian writing. It is now
necessary to notice that the commentary lends itself to formalization.
Let (for a two-dimensional case) ξ and η be (independent) random
quantities, the (variable) length and width of an excavation, with
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expectations Eξ and Eη. Then, the more the number of measurements,
the closer, according to the law of large numbers, will be the mean
measures to those expectations, and the more accurate the calculated
expectation of the area, Eξη, the natural measure of the area of
excavation60.

4.4. European History (16th and 17th Centuries)
4.4.1. Galileo. He was the first to formulate the stochastic

properties of (random) errors and some ensuing propositions61.
    His reasoning, purely metaphysical (= ARISTOTELIAN) in form
of presentation, but no doubt substantiated by his own experimental
experience, is that errors are inevitable, positive and negative errors
are equally probable, lesser errors are more probable, the greater
portion of observations is concentrated in the vicinity of the true value
of the observed constant and that outlying observations should be
rejected. He also proposed a method of treating indirect observations
resembling the method of averages62.

4.4.2. Kepler. His achievements seem to be known even less than
those of GALILEO. It is generally known that KEPLER compared the
conformity of the two main systems of the world, those of PTOLEMY
and COPERNICUS (and the intermediate one, due to TYCHO
BRAHE) with observations. After deciding in favour of
COPERNICUS, he solved the second problem, viz., that of comparing
possible closed curves as orbits of planets. I do not mention here his
other two laws. However, KEPLER’S calculations, although discussed
by historians of astronomy, should also be explained from a formal,
mathematical point of view complete with statistical research. As it is,
however, I present only a glimpse of his work.
    KEPLER’S scientific outlook developed under the prevalent
influence of ancient science, which is also evident from his attitude
towards adjustment of direct observations. It is true that, in a
businesslike manner, he chose the arithmetic mean (of two
observations) as the estimator of constants sought in at least two
instances63. However, he did not seem to be a staunch adherent of any
definite estimator. In itself, this is no crime: from a modern point of
view there is a case for choosing different estimators in accord with
the corresponding laws of distribution. But KEPLER’S attitude, as
described below, seems to be determined by ancient traditions. Thus,
he says (Ibidem, Kap. 32, p. 219 with confirmation in Kap. 46,
p. 273),

Das arithmetische Mittel aber zwischen Größen, deren Unterschied
klein ist, ist nur um einen unmerklichen Betrag größer als das
geometrische Mittel.
    What KEPLER does not mention here is that the geometric mean is
not additive and difficult to compute. Elsewhere (Ibidem, Kap. 10, p.
113) he collects four observations of the right ascension of Mars and,
with no explanation given, assumes the Mittlerer Betrag recht und
schlecht (medium ex aequo et bono) to be 134°24′33″. This passage is
all the more interesting because on the very same page occurs one of
the mentioned above cases in which KEPLER used the usual
arithmetic mean.
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    Thus far the adjustment of direct observations. What I mean by
ancient traditions is the complete lack of any mention of this subject in
KEPLER’S deliberate account64 of a book published by BODINI in
1586 and devoted to a curious description of the use of the three chief
means (arithmetic, geometric and harmonic) in public life. Thus,
KEPLER (p. 178) says

Vergleicht Bodini die Demokratie mit der arithmetischen
Proportion, die Aristokratie mit der geometrischen und die Monarchie
mit der harmonischen.
Consider with KEPLER three series

    3, 9, 5, 10, 17‚ 38                                                              (1)
    6, 12, 8, 13, 20, 41                                                            (2)
    9, 27‚ 15, 30, 51, 114                                                        (3)

The differences between corresponding terms of (2) and (1), i. e.
6 – 3 , 12 – 9 etc., are all equal, which is a property of consecutive
terms of an arithmetic progression, a series directly connected with the
arithmetic mean. On the other hand, a similar connection holds
between the quotients of the corresponding terms of (3) and (1)
and the geometric mean. KEPLER’S commentary is that

1. If die Zuwüchse aller Zahlen … gleich sind, so will das Volk in
der Republik, dass Lasten, Vorteile, Ehre … für alle gleich seien.

2. But in an aristocratic society die Zuwüchse der Zahlen den
Zahlen selber angleicht.
    I am mentioning all this, to point out a heuristic connection between
BODINI’S discussion of the geometric mean and D. BERNOULLI’S
principle of moral expectation65 with its flavour of aristocracy, and,
second, to notice an example of KEPLER’S political views.
    More interesting is KEPLER’S reasoning on the adjustment of
indirect observations66. His data were the observations of TYCHO
BRAHE who was able to reveal errors of 8′:

Für uns, denen die göttlche Güte in Tycho Brahe einen so
sorgsamen Beobachter geschenkt hat, aus dessen Beobachtungen der
Fehler der Ptolemäischen Rechnung im Betrag von 8′ sich verrät,
geziemt es sich, dass wir dankbaren Sinnes diese Wohltat Gottes
anerkennen und ausnützen. … Da jener Fehler aber jetzt nicht
vernachlässigt werden durfte, so wiesen allein diese 8′ den Weg zur
Erneuerung der ganzen Astronomie.
    Even after establishing the heliocentric system of the world, a feat
finally achieved only by the discovery of annual parallaxes of stars,
KEPLER’S work still remained magnificent; for one thing, he had no
reputed procedure of adjustment, e. g.‚ the MLSq, at his disposal. He
had to manage otherwise, and manage he did. He adjusted
observations, correcting them by small arbitrary quantities compatible
with the accuracy of the TYCHONIAN observations (see above).
    Though KEPLER did not formulate any rules for this mode of
action, he clearly recognized the necessity of utmost discretion
(Ibidem, Kap. 26, p. 197):

Man könnte nun diese Freiheit, mit der ich an den gegebenen
Größen kleine Änderungen anbringe, beargwöhnen und glauben, mit
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dieser Freiheit zu ändern, was uns an den Beobachtungen nicht
gefällt, könne man schließlich auch auf die ganze Exzentrizitet Tychos
gelangen. Nun, man probiere das, und wenn man dann die
Änderungen mit den unsrigen vergleicht, urteile man, welche von
beiden innerhalb der Grenze der Beobachtungsfehler liegen. Ja, man
hüte sich wohl, dass man sieh nicht, durch den Erfolg eines einzigen
derartigen Schrittes gehoben, nachher bei den weiteren Schritten um
so mehr blamiert sieht, wenn man das Apogäum der Sonne in
entlegensten Örtern findet.
    Passages on the influence of errors occur in his Neue Astronomie at
least twice (in Chapters 47 and 53) and in many instances (Chapters
49, 50, 53, 69, etc.) discrepancies are shown with their signs. There is
no direct evidence of KEPLER’S thoughts about compensation of
errors, but he67 pronounced his opinion on a related topic:

Da bringe an ein gemein Orth zusammen 1900 alter ...
Guldenthaler … was nun etwan ein Thaler zu schwer, das ist der
ander zu leicht, dass es also auf … 100 Pfund … nichts auffträgt.
    This opinion is of course founded on what could be called the most
rudimentary form of the law of large numbers68 but KEPLER should
have mentioned the mean weight.
    Then, KEPLER noticed the inevitability of errors (Neue
Astronomie, Kap. 10, p. 114):

Die Unstimmigkeit … habe ich deswegen angeführt, um zu zeigen,
dass auch der Beobachtung selber eine Unsicherheit von etlichen
Minuten anhaftet, wenn sie nicht durchaus mit größter Sorgfalt unter
den günstigsten Umständen angestellt wird.
    What KEPLER does not say is that even then some Unsicherheit
still remains. Especially interesting is Chapter 51 of the Neue
Astronomie where KEPLER adjusted indirect observations, a
procedure possibly unheard of before even in usual land surveying.
Discussing his observations, he demands that every one of them be
taken into consideration (p. 313):
  Da beim ersten und dritten Ort nahezu Übereinstimmung besteht,

könnte jemand, der nicht weiter denkt, glauben, man müsse sich an
diese Örter halten und die (two) anderen auf irgendeine Weise mit
ihnen in Übereinstimmung bringen.
    This is a denunciation of tampering with observations and, therefore
an additional evidence of KEPLER’S discretion in treating
observations.
    When calculating corrections to angles of a quadrangle, he notices
(Ibidem) that all the angles are of the same order so that there is no
need to allow for very acute angles‚ whose small correction would
have largely influenced the linear dimensions of the figure. Similar
reasoning occurs also in Chapter 53, where KEPLER calculates
changes of linear dimensions corresponding to unit changes in angles,
and it really seems that he was prepared to discuss the advantages of
different ways of relative weighting of measured angles in geodetic
figures or at least the construction of the so-called base conditions in
triangulation chains.
    Problems pertinent to the theory of errors occur also in KEPLER’S
Mysterium Cosmographicum69. His idea, as is well known, was to
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explain the general construction of the system of the world by
inserting the five regular solids between the planet spheres of the six
then known planets. He thus explained (at least to himself) the
existence of just six planets and their mutual disposition. The greatest
difficulties KEPLER encountered were of course those occasioned by
the non-circularity of the orbits, which compelled him to introduce the
Dicke der Bahnen (Kap. 18, p. 111). In any case, KEPLER’S
calculations resulted in constructing the five solids and recording the
discrepancies of his scheme as compared with observations, see the
data from Kap. 21, pp. 134 – 135:

Discrepancies between calculations and observations
    1. Saturn-Jupiter (cube) 2
    2. Jupiter-Mars (tetrahedron) – 16
    3. Mars-Earth (dodecahedron) 36
    4. Earth-Venus (icosahedron) 43
    5. Venus-Mercury (octahedron) 4
    KEPLER noticed that four (out of five) discrepancies were positive
and one negative, and he divided all of them into three groups
according to their absolute values. Thus, two of them are small,
another two are large and one is intermediate. All this is sound, but
now KEPLER introduces duality: the cube and the octahedron are
dual, and therefore the corresponding discrepancies are positive (and
small); dual, also, are the dodecahedron and the icosahedron, and also
positive (and large) are the corresponding discrepancies; lastly, the
tetrahedron is dual to itself, and the corresponding discrepancy is the
only negative (and intermediate).
    This is hardly convincing, but clearly KEPLER attempts to interpret
qualitatively the results obtained, and at least he remains loyal to his
crazy theory of regular solids!
    It is of course possible to notice the absence of any quantitative
measure of the degree of fitness. However, measures of accuracy in
the theory of errors first appear in the works of J. H. LAMBERT70,
whereas mathematical statistics had to wait for such measures until the
end of the 19th century.
    4.5. European History (18th Century and Gauss). Further
achievements were due to LAMBERT and SIMPSON, neither of
whom referred to GALILEI or KEPLER. Separate passages related to
the stochastic theory of errors also exist in the writings of scholars
who participated in arc measurements, where, again, there is no
reference to GALILEI or KEPLER. In these writings, as also in those
of BOUGUER and MAUPERTUIS, which I do not cite, there is no
lack of numerous passages partly related to my subject but more
appropriate in studies of the history of astronomy and geodesy.
    Now, I quote the more relevant passages.
    J. PICARD71 explained discrepancies between observations as un
effet du hazard. However, he added, nous ne sommes pas fort éloignez
de la vraye mesure du degré (of the meridian). P. DE LA HIRE72

called the mean of three observations la vraye. PICARD in other
passages73 repeatedly took a weighted mean of several
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observations calling it la véritable. G. D. CASSINI74 noticed that
petites (random) erreurs sont presque inévitables. He could well have
omitted the presque.
     C. M. DE LA CONDAMINE75 inserted a special passage on the
mean:

En prenant … un milieu entre un grand nombre d'observations, on
court peu de risque de se tromper; et quand même il y a en auroit
dans ce grand nombre quelques-unes de sensiblement défectueuses, le
moyen résultat seroit à peine altere: puisque l’excès, ou le defaut de
celles-ci se partageant entr’elles et toutes les autres, changeroit peu le
résultat.
    Returning to the postulate of the arithmetic mean (§ 3.5), I ought to
add now that it was in actual use and even pronounced by at least
one scholar (CONDAMINE) prior to GAUSS. That the arithmetic
mean, to quote GAUSS (§ 3.5), affords the most probable value, is not
exactly so. That value is the mode, the point of absolute maximum of
the corresponding density curve. According to the law of large
numbers, the arithmetic mean of the observations converges in
probability to the expectation of the location parameter which,
generally speaking, does not coincide with the mode. However,
GAUSS actually restricted himself to unimodal symmetric densities76,
for which the two quantities coincide.
    GAUSS applied this postulate for deducing the normal distribution
and the principle of least squares (Ibidem, §§ 177 – 179). It is
generally known that he later abandoned this approach and gave a
different substantiation of the principle of least squares, independent
of the postulate of the arithmetic mean (and of the normal
distribution)77. Nevertheless, because of its elegance, of the extreme
difficulty of understanding his main memoir of 1823, and, of course,
because, generally speaking, the normal distribution did hold
(approximately) in astronomy and geodesy, his first approach came to
be widely known and even over-popularized so that possibly down
even to our time some astronomers and physicists believe that the
MLSq is inalienably connected with the normal distribution. The real
connection of this method with the distribution of the corresponding
observational errors is due to the statistical properties of the least
squares’ estimators.
    It is impossible to say whether GAUSS read one of D.
BERNOULLI’S memoirs on probability, published in St. Petersburg,
with a commentary by EULER78. This commentary includes what
amounts to a heuristic introduction of the MLSq, and, what is more,
both of these writings taken together contain ideas sufficient for
GAUSS’ first deduction of the principle of least squares. However,
EULER refutes BERNOULLI, so that if GAUSS did read their
writings it would have been necessary for him to separate the
ideas and to reassemble the whole reasoning. For a long time GAUSS
himself felt that the MLSq was due to someone else, but he was never
able to remember the reference79.
    GAUSS’ celebrated rival, A. M. LEGENDRE80, qualitatively
founded the MLSq:
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De tous les principes qu’on peut proposer pour cet objet
(adjustrment of observations), je pense qu’il n’en pas de plus général,
de plus exact, ni d’une application plus facile que celui ... Par ce
moyen il s’établit entre les erreurs une sorte d’équilibre qui
empéchant les extrêmes de prévaloir, est très-propre a faire connoître
l’état du système le plus proche de la vérite.
    Noticing the arbitrariness of the MLSq, LEGENDRE claimed
further that when using it the erreurs (residuals) extrêmes, sans avoir
égard à leurs signes, soient renfermées dans les limites les plus
étroites qu’il est possible.
    The LEGENDRE – GAUSS dispute over priority has been
described time and again, but it seems that this unfounded claim
regarding the erreurs extrêmes has been overlooked. Actually it is the
generalized principle of least squares

2 2 2
1 2lim( ... ) min,k k k

nv v v k+ + + = ®¥

where vi are the observational errors or, rather, the residuals of the
corresponding system of n linear equations, which lead to this
minimax principle82 due to EULER83.

5. Synopsis
5.1. Design of Experiments. PTOLEMY possessed a clear-cut

notion about various errors of observations and about the different
effect they produced, and left proposals concerning the selection of
methods and circumstances of observations and the combination of
different observations with each other to exclude systematic errors.
    AL-BIRUNI advocated the use of regular series of observations
both for astronomy proper and for practical applications. Noticing the
existence of (random) computational errors and their propagation (see
also § 5.3), he preferred direct methods of observations with as little
subsequent computation as possible.
    In ancient Babylonia and in the 12th century India approximate
formulas for calculations of areas of land plots and volumes of
excavations were in use, and it seems possible that these formulas
were a means for allowing for the inaccuracy of the assumed
mathematical models and for partially excluding systematic errors of
measurement. In 16th – 17th century Europe a number of' scholars
including GALILEO and KEPLER noticed the effect of systematic
errors on observations and the necessity of “designing” experiments.
Rules for excluding systematic errors are also found in 15th century
writings pertaining to nautical astronomy.
    5.2. Selection of Data. PTOLEMY selected the best observations
disregarding those inferior which led to the excessive freedom of
treating observations.
   In 8th century China a part of observations made in connection with
an arc measurement were disregarded and replaced by estimates
computed from the other observations. This mode of action was not
restricted to astronomy: physical experiments in 17th century as
though carried out were often purely fictitious.
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    The first scientist of the new age to advocate the use of regular
series of observations was possibly BRADLEY. His point of view,
occasioned by his own fundamental discoveries in astronomy, did not
win general recognition, possibly because of a sharp increase in the
accuracy of observations in the 17th century. The advent of the era of
arc measurements with new fundamental problems and theoretical
research in probability proper, changed the climate of opinion so that
the principle of the arithmetic mean became even postulated (COTES,
CONDAMINE‚ GAUSS). Selection of observations in the framework
of the classical theory of errors had been tried out in accord with
stochastic, quantitative criteria (beginning from the second half of the
19th century) and with posterior weighting of observations (a milder
procedure used even in the 18th century). Based on stochastic criteria
or otherwise, the rejection of observations and also posterior
weighting of them have been repeatedly criticized, and the selection of
observations (and their treatment in general) remains an extremely
delicate problem.

5.3. Stochastic Treatment of Observations. The inevitability of
random errors had been noticed even by AL-BIRUNI. He also
adjusted direct observations by a qualitative approach which is not at
variance with stochastic properties of usual random errors of
observations.
    AL-BIRUNI used inferior observations for corroboration only, and
noticed the propagation of various (also computational) errors.
Adjusting direct observations, KEPLER used different estimators. He
adjusted the TYCHONIAN observations by corrupting them by small
arbitrary quantities. It seems that KEPLER understood the stochastic
properties of usual random errors and applied his corrections with
utmost discretion. A reasonable qualitative attempt at an explanation
of residuals in his Mysterium Cosmographicum is marred by a non-
sensical discussion in the framework of his crazy general theory of
regular solids.
    GALILEI was the first to formulate most important propositions
now regarded as the cornerstone of the classical theory of errors.
Some such propositions were also independently pronounced by a
number of French savants of the 18th century.

Addendum (added in proof)
    A Russian edition of AL-BIRUNI’s Qanun al-Masudi is about to
appear in Tashkent and I am indebted to Professor B. A.
ROSENFELD for the possibility of commenting on the manuscript of
this translation.
    AL-BIRUNI discusses treatment of observations (pt. 4, chap. 1,
pp. 364 – 367 of the manuscript), notices the existence of random
errors of observations (pt. 6, chap. 4, pp. 631 – 632 and chap. 6,
p. 636; pt. 9, chap. 2/1, p. 991), compares the accuracy of different
methods of observations (pt. 5, chap. 1, p. 509; pt. 6, chap. 2,
pp. 614 – 615 and chap. 7, pp. 657 – 658) and of course deals with the
design of experiments (pt. 4, chap. 15‚ pp. 446 and 449; pt. 6, chap. 6,
p. 637 and chap. 8, p. 669; pt. 7, chap. 5, p. 778).
    Acknowledgement. My subject has been considered by a number of
authors, some of whom are repeatedly mentioned. However, my
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paper is written from a more mathematical point of view and is of
wider scope. I did not use directly the two unpublished reports written
in the last few years by C. EISENHART84, but his work gave me
moral encouragement and I am indebted to him for sending me copies
of both his reports as well as of a provisional draft of a part of a
subsequent article, to whose publication I look forward to with great
interest.
    Special features of his second report are references to English
translations of the works of PTOLEMY and KEPLER about which I
did not know previously. As a matter of fact, it was after reading
EISENHART’S draft that I finally understood that the proper place for
a preliminary version of my own, a. rather short article on the same
subject, was in the dustbin. Lastly, I have used extensively my
unpublished candidate thesis (1967) on the history of the theory of
errors.
    Dr. EISENHART has kindly sent me comments on this paper, but
unfortunately they arrived too late to be taken fully into account,
although they have helped me correct or improve quite a few
passages. He objects that far too often I quote the texts only in part.
Indeed, in search of brevity I may have somewhat sacrificed clarity.
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Afterword
    I do not repeat some statements from the Afterword to Prehistory
… (in this collection) and begin by commenting on my text. First,
concerning Bradley’s opinion about new discoveries (end of § 3.6) I
quote Descartes (1637/1982, p. 63):

Je remarquais, touchant les experiences, qu’elles sont d’autant plus
nécessaires qu’on est plus avancé en connoissance.
    Kepler (see § 4.4.2) indirectly proved that in his time or perhaps
somewhat earlier the arithmetic mean became the letter of the law, see
Sheynin (2017, § 1.2.4, p. 32). Numerous new sources are included in
the Bibliography appended to that book of mine. Here, I only mention
new translations of Kepler and Gowing (1983). The problem of
outlying observations (§ 3.5) seems insoluble (Barnett & Lewis, 1978,
p. 360):
    When all is said and done, the major problem in outlier study
remains the one that faced the very earliest workers … what is an
outlier and how should we deal with it?
    Lastly, I recommend readers to look up Jakob Bernoulli and Bayes
(!) in the appropriate chapters of that same book.

Barnett V., Lewis T. (1978), Outliers in Statistical Data. Chichester, 1984.
Descartes R. (1637), Discours de la méthode. Oeuvr., t. 6. Paris, 1982.

Gowing R. (1983), Roger Cotes – Natural Philosopher. Cambridge.
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Sheynin O. (2017), Theory of Probability. Historical Essay. Berlin. S, G, 10.
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V

Gauss and geodetic observations

Arch. Hist. Ex. Sci., vol. 46, 1994, pp. 253 – 283

1. Introduction
1.1. The aim and the scope of this paper. I (1979; 1988) have

studied GAUSS’S work on the theory of errors, and my present aim
is to study methods of estimating the precision of observations and
related considerations (§§ 3 and 4) and the motion of dependence of
observations (§ 5). I devote a special section (§ 6) to attempts, made
by several authors, to present alternative views on the treatment of
observations. Consequently, I had to discuss the goals of the theory of
errors and to explain the present situation of its stochastic branch
relative to mathematical statistics (§ 2). In treating the second topic of
§ 2 I also found it advisable to consider the metrological point
of view.
    Naturally, I dwell on the results and opinions of many scholars of
the 18th – 20th centuries. However, since I (1971; 1973b, § 1.2.2,
1977) have already treated their work elsewhere, only a few words on
LAMBERT or LAPLACE are in order here. In summary, one may say
that:
    In the theory of errors, LAMBERT was one of GAUSS’S main
predecessors, but (understandably), in contrast to the latter, he did not
engage in, or study triangulation (VOGLER 1902, p. 14). This fact
obviously limited the scope of his studies.
    LAMBERT was one of the first to estimate the precision of
observations, but he did not relate his measures of precision to the
number of the involved observations.
    LAPLACE and GAUSS were the founders of the stochastic branch
of the theory of errors. LAPLACE centred his research on the limiting
case (see however § 6.3) whereas GAUSS studied the treatment of a
finite number of observations.

1.2. The precision of calculations was not yet studied. GAUSS
had to adjust large networks of triangulation (SHEYNIN 1979, p. 53),
but he did not publish anything on the propagation of errors in
geodetic calculations, nor, evidently, did he touch on this subject in
his correspondence. This testifies once again to the fact that numerical
analysis was not then really developed. For example, it was hardly
possible to estimate the loss of accuracy in calculations.
    Note that DELAMBRE (1814b, p. 309) solved systems of several
thousand equations repeatedly combining them to obtain his
unknowns. Elsewhere, he (1814a, p. iv) tells us that LEGENDRE’S
remark to the effect that the choice of the arithmetic mean is a
consequence of the principle of least squares

 Autoriser les astronomes à prendre la somme de plusieurs
centaines d’observations pour en former une équation finale …; à
réunir ainsi plusieurs groups d’équations pour en former autant
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d’équations finales qu’on le jugera convenable, et auxquelles enfin on
appliquera la méthode des moindres carrés … 1

Furthermore, HARTER (1977, p. 33) noticed that HAUBER (1832)
had recommended a hybrid method in which the number of equations
is reduced to a manageable number (still greater than the number of
quantities to be determined) by combining subsets of them as in the
method of averages, and then solving the resulting equations by the
method of least squares (MLSq).
    Finally, BREEN (1849) described a similar procedure. I shall only
say that calculations presented a formidable task not only for GAUSS
and that the application of the hybrid method obviously hindered the
estimation of precision.
    In geodetic calculations, GAUSS retained more digits than
necessary. Thus he (1828, § 23) calculated angles to within 0.″001
whereas their mean square error was 2. ″7 (he gave it as 2.″7440).2 I
am sure that GAUSS knew that the precision implied by such figures
was fictitious and I believe that he was simply striving for Schönheit
und Rundung (§ 5.3).
    My remarks are also valid with regard to BESSEL (1838, § 87).

2. The theory of errors
2.1. Its two branches. In the classical theory of errors‚ two

problems were studied:
One. To find most advantageous conditions and best methods for

performing experiments and/or observations in natural science.
Two. To find optimal stochastic methods of treating observations.

    The first problem was solved by determinate means by using
differential calculus, and the relevant branch of the theory of errors
was incorporated into the later experimental science in general. Thus,
astronomers had to find out how best to eliminate systematic errors,
and to study how the form of triangles in a chain of triangulation
influenced the error of the final result, the length of a meridian arc.
    The second problem, which demanded a stochastic approach,
involved the determination of the best mean value(s) of observations
and the estimation of their precision. LAPLACE and GAUSS were the
real founders of the theory of errors, although many scholars
(SIMPSON, LAMBERT, DANIEL BERNOULLI) preceded them.
Moreover, GAUSS and BESSEL initiated the determinate branch of
the theory of errors by putting forward the concept of the fullest
possible analysis of instruments, and by making allowances for the
influence of instrumental errors (SHEYNIN 1979, § 6.5). Now I note
that the new approach was not restricted to astronomy. Thus, GAUSS
investigated the errors of physical and geophysical instruments (see
vol. 5 of his Werke), and BESSEL had to pay attention to the
measurement of meteorological elements. While investigating
thermometers he (1826, p. 226) formulated a general statement:
  Im Allgemeinen verdienen die Berichtigungen aller Instrumente

durch Rechnung einen entschiedenen Vorzug vor den auf
mechanischen Mitteln beruhenden; ich glaube sogar, dass die
Verfertiger der Instrumente keineswegs verantwortlich sind für Alles,
was der Besitzer selbst prüfen und dessen Verbesserung er selbst in
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Zahlen bestimmen kann; … [Seitens der Verfertiger] muss aller Fleiß
angewandt werden, die Instrumente so einzurichten, dass ihre Prüfung
in allen Theilen möglich wird …
    I additionally quote three authors: BESSEL [letter to GAUSS
15.6.1818, GAUSS (1975, p. 272)]; OLBERS [letter to GAUSS
17.7.1821; SCHILLING (1909, p. 123)]; and NEWCOMB
(SCHMEIDLER 1984, pp. 32 – 33):
    1) Wir verdanken Ihnen den größten Theil der heutigen
Verfeinerung der Astronomie, nicht nur wegen Ihrer kleinsten
Quadrate, sondern auch wegen der Erweckung des Sinns für Feinheit,
der seit Bradley’s Zeit von der Erde verschwunden zu sein schien und
erst seit l8 Jahren wieder erschien. Wir sind erst jetzt auf den Punkt
gekommen, kleinen Fehlern oder Abweichungen außer den Grenzen
der Wahrscheinlichkeit mit derselben Aufmerksamkeit nachzuspüren
als früher großen …
    Did BESSEL single out the year 1800 just for the sake of
simplicity? Forbes (1978, p. 177) holds that after 1819 GAUSS
    Appreciated more than ever the need to subject every major
astronomical instrument to very careful investigations …
    He also mentions the British astronomer P0ND (cf. my Item 3
below).
    2) Auch praktische Astronomie, worin Sie und Bessel
gewissermaßen Epoche machen.
    3) NEWCOMB credited BESSEL with founding the German school
of practical astronomy:

 The fundamental idea of this school was that the instrument is
indicted … for every possible fault, and not exonerated till it has
proved itself correct in every point. The methods of determining the
possible errors of an instrument were developed by Bessel with
ingenuity and precision of geometric method.
NEWCOMB did not refer to GAUSS. He mentioned POND, but did
not elaborate. Of course, GAUSS and BESSEL had forerunners, such
as TYCHO and BRADLEY, and, in ancient times, HIPPARCHUS. '

2.2. Its present situation. The stochastic branch of the theory of
errors is now thought to be incorporated into mathematical statistics.
Accordingly, its results are interpreted in statistical terms and the
theory itself is hardly mentioned. Thus, the Enc. of Statistical Sciences
(Kotz & JOHNSON 1982 – 1988) refers to the error theory only
twice, each time in passing. Witness also the situation in technical
academic institutions. TAYLOR (1982, Preface) states that error
analysis (he does not use the classical term) is often the most abused
and neglected part of introductory college courses in experimental
physics of the sort usually taken … in the sciences of engineering.
Nevertheless, the theory of errors is still needed in geodesy (if not
astronomy) and is indispensable to metrology. In essence, the
peculiarity of the error theory largely results from the fact that there is
no clear-cut boundary between systematic and random errors (GAUSS
1823, § 1) and, consequently, between its two branches.
    COLCLOUGH (1987) recently stated that the theory of errors
cannot dispense with the motion of systematic error. Indicating that
there is another approach, whose partisans treat all errors in the same
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way, he denied this randomatic theory.3 He referred to GIACOMO
(1981) who had discussed the randomatic approach to the treatment of
observations at the Bureau Intern. Poids et Mesures.
    Much can be picked up from EISENHART (1963) who paid
attention to the study of systematic errors (cf. the quotation from
DORSEY & EISENHART in § 4.1) and stated, on p. 53, that the
obtained measures of precision and accuracy should be put on record
separately rather than combined in one or another way. GAUSS
(1823, §§ 8 and 15) held that, if possible, the constant component of
the total error should be isolated. In metrology, it is now indeed
customary to distinguish between precision and accuracy: the former
term relates to the internal consistency of observations (i.e.‚ to the
influence of random errors) whereas the latter is a measure of bias
(EISENHART 1968, p. 69).
    Another notion of the classical theory of errors is that of the true
value of the unknown constant. In the 19th century, astronomers used
this term without explanation. Although mentioning it on occasion
(§ 4.3), GAUSS, as it seems, did not favour it. COTES, in 1722
(posthumous publication), was the first to introduce it. Evidently, it is
difficult to say what, for example, is the true value of an angle in a
chain of triangles. Similar difficulties exist in metrology
(EISENHART 1963, pp. 30 – 31). Nevertheless, generally speaking,
when the number of observations is increased indefinitely, their
arithmetic mean approaches a certain value. By definition, when an
exemplary method of measurement is used, the true value sought is
considered equal to this limiting mean (Ibidem, p. 30). Thus, true
value has been specified rather than discarded.
    WHITTAKER & ROBINSON (1958, p. 215n) and GLEISBERG
(1964) offered the same definition without mentioning the exemplar.
However, it was FOURIER (1826, p. 534) who first stated that
  C’est cette quantité fixe … [the limit of the arithmetic mean] que

nous avons en vue comme le véritable objet de la recherche.
[On that notion see Sheynin 2007.]

3. The precision of observations
  3.1. Redundant observations increase precision (Mayer).

Suppose that li, i = l, 2, …, n are measured directly, that x, y, z, … are
the constants sought, and that

aix+biy+ciz + … + li = 0.                                               (1)

    Then, obviously, along with solving this system it is necessary to
estimate the precision of its unknowns.4 MEYER, in 1750 (STIGLER
1986, p. 23), was the first to estimate the precision of one of his
unknowns (the one which most interested him). Having 27 equations
(1) in three unknowns, he first solved some subsystem of three
equations calculating (xl; yl; zl). Then he aggregated all his equations
in three groups of nine equations each. He assumed that in each group
the sum of the residuals vanished and was thus able to solve these
three groups simultaneously,5 calculating (x2; y2, z2). The two values
of x (say) differed by Δx and MAYER concluded in essence that the
error of x was 27:3 = 9 times less than |Δx|.
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    MAYER’S inference was wrong: as STIGLER noted, precision
increased only √9 = 3 times. Nevertheless, to repeat, he had no
predecessors and, in addition, he attempted to solve his problem
without knowing how to estimate the precision of the li’s.

3.2. The error of the sum of observations (Daniel Bernoulli).
DANIEL BERNOULLI (1780) noted, although did not prove, that the
error of the sum of modulo equal errors, equally likely to be either
positive or negative, increased as the root of their number. He did not
say that the observations should be independent. Much later
FOURIER (1829, p. 568) made a similar statement assuming that the
errors were bounded rather than modulo equal.
    The proof was not difficult even for BERNOULLI. Given

H=h1+ h2 + … + hn

one has

    ΔH2=Δ 2
1h + Δ 2

2h + … + Δ 2
nh  + 2ΔhlΔh2+ … + 2Δhn–1Δhn

and, in the mean, since the mean values of Δhi vanished,

    |ΔH| = |Δh|√n.

    FOURIER (1829, p. 574) also derived the formula for the mean
error of a function of several observations. In § 3.6 I note that his
formula is due to GAUSS. Of course, similar relations were known
even to COTES, but the concept of the mean square error, properly
speaking, originated with GAUSS.

3.3. The weight of the arithmetic mean (Gauss). Supposing that
the measure of precision (gradus praecisionis, Grad der Genauigkeit)
of observations xi (notation changed) were proportional to ei GAUSS
(1809, § 173) wrote out the arithmetic mean of n such observations,

2 2 2
1 1 2 2

2 2 2
1 2

...
...

n n

n

e x e x e xx
e e e
+ + +

=
+ + +

                                                     (2)

and stated that its measure of precision was proportional to the square
root of the denominator of (2), call this root (3) so that
    Vier oder neun gleich genaue Beobachtungen erforderlich sind,
wenn sich das Mittel der doppelten oder dreifachen Genauigkeit
erfreuen soll, und so weiter.
    That the appropriate parameter of the normal distribution could
have been considered als das Maass für die Genauigkeit  (Gauss 1809,
§ 178) was, practically speaking, not so important.
    Of course, 2

ie  were the weights of the observations (pondus,
Gewicht), a term which GAUSS introduced later (letter to BESSEL
27.1.1819; GAUSS 1975, p. 294), GAUSS to OLBERS 14.4.1819;
SCHILLING (1900, p. 722); and GAUSS 1823, §7).
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    GAUSS did not prove his statement, but referred (at least with
regard to using the mean value of x ) to a later section of his work. He
introduced the notion of random error only in § 175 (although he did
mention this term earlier in § 173).
    The relevant later section was obviously § 181, where, in accord
with his general context, GAUSS considered the case of normally
distributed errors. If, again in changed notation, observations provide

eix=mi, i=1, 2, ..., n,                                                                     (4)

then

1 1 2 2
2 2 2
1 2

... .
...

n n

n

m e m e m ex
e e e
+ + +

=
+ + +

                                                             (5)

    Formula (5) might seem strange. If so, note that equations (4) lead
to a single normal equation

    [ee]x – [em]= 0.

    If the original observations are assumed to have unit precision, that
of x is equal to (3). In both formulas (2) and (5) the weight of the
unknown, given weights of xi, (or mi), is obviously the square of
expression (3).

3.4. The weight of indirect observations (Gauss). In the same
contribution GAUSS (1809, §§ 183 – 184) determined the relative
measure of precision of the unknowns of system (1) thus making an
important step in the right direction. His reasoning is not easy to
follow,6 and I shall therefore corroborate it using his own example.
GAUSS considered four initial equations in three unknowns and
formed the appropriate normal equations:

    27x+ 6y – 88=0
    6x+15y+ z —70 = 0

y+54z – 107 = 0

    He calculated the unknowns and estimated their relative precision
as 4.96; 3.69; and 7.34. According to a standard method of calculation
(GAUSS 1823, § 21; HELMERT 1872, pp. 81 – 89) the relative
weights of the unknowns are equal to

px =1/Q11, py =1/Q22, pz = 1/Q33.                                   (6)

With quantities Qii and Qij being determined from three systems:

    [aa]Qi1 + [ab]Q i2 + [ac]Qi3 = q
    [aa]Qi1 + [bb]Qi2 + [bc]Qi3 = r
    [aa]Qi1 + [bc]Qi2 + [cc]Qi3 = s
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(notation [aa], [ab], etc. is standard). In the first system, i = q = 1, r =
s = 0; in the second one, i = 2, q = s = 0, r = 1; and in the third system,
i = 3, q = r = 0, s = 1. Quantities Q with i ≠ j are also important, but
not in this case. According to my calculations,

px = 24.60 = 4.962, py = 13.65 = 3.692 and pz = 53.93 = 7.342.

In other words, GAUSS determined the square roots of weights.
    ENCKE (1834 – 1836, pp. 157 – 160) took up GAUSS’S example,
formed and solved the normal equations and calculated the weights of
the unknowns.

3.5. The probable error. After LAMBERT, the first to estimate the
precision of directly observed quantities, the li’s in system (1), was
DANIEL BERNOULLI. In 1780, assuming a normal distribution for
the errors of pendulum observations, he described the precision of the
measurements by their probable error although without defining or
naming it.
    BERNOULLI modelled his investigation on his earlier work on the
ratio of male and female births (1770 – 1771). It was there that he first
introduced the normal distribution and used probable deviation.7
    DELAMBRE (1814a, p. iii) mentioned the term (or was it a loose
expression?) l’erreur probable. Tout ce qu’on peut prétendre alors, he
stated, was that the errors remaining after adjusting observations [the
residuals] will not surpass l’erreur probable des observations.
DELAMBRE next wrote about least squares in such a way that
readers could have thought that this new method ensured the
fulfilment of his wish.8
    BESSEL (1816, pp. 141 – 142) formally introduced the probable
error and GAUSS (1816) studied various methods of calculating the
probable error of normally distributed observations. I have described
this material (1979, §4; 1983, p. 177) and quoted the latter’s opinion
to the effect that the probable error should be altogether abandoned.
At the time, this was a pipedream.
    GAUSS himself sometimes made use of the probable error; see his
letters to OLBERS of etwa 19.5.1819 (SCHILLING 1900, p. 726) and
to SCHUMACHER of 14.8.1825 and between 14.7 and 8.9.1826
(PETERS 1860 – 1865, pp. 30 and 65 of Bd. 2). Furthermore, in one
case, see letter to OLBERS 26 – 30.7.1825; SCHILLING (1909, pp.
424 – 425) GAUSS remarked that the probable error of his
observations was fast genau  ± 0.”140, so that 1 gegen 1 gewettet
werden kann etc.9
    I conclude that at least once GAUSS was unable to resist what I
would call the temptation of the probable error, but I cannot
understand why he applied this measure in his published paper of
1828 (S, G, 72).

3.6. The mean square error (Gauss). GAUSS (1823, § 38)
derived the formula for the mean square error of indirect observations

[ ]
ρ

vvm
n

=
-

                                                                        (7)
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where the vi’s were the residuals of equations (1) and ρ was the
number of the unknowns. Of course, ρ = 1 corresponded to the case of
direct observations.
    Note that in a letter to BESSEL 18.5.1814 GAUSS (1975, p. 191)
still incorrectly took the denominator of formula (7) as n.
    For the related work of LAPLACE see SHEYNIN (1977, § 7.1).
Note also that LAPLACE always estimated the precision of his
calculations. Thus (Théorie analytique, chapter 6; SHEYNIN 1977,
§ 2.5)‚ in studying the function

y = xp(1 — x)q

of an unknown probability x with observed p and q, he chose
a =p/(p + q) as the [asymptotically unbiased] estimator of x and
calculated P(|x – a| < α). The function y represented, for example, the
probability of p male, and q female births with very large p and q.
    GAUSS did not directly introduce the mean square error of the
arithmetic mean. FOURIER (1826, p. 541) stated that this measure
was equal to m 2/n  (his main estimator was thus m√2), but he
calculated m as GAUSS did previously, taking p = 0 instead of 1.
    Not being satisfied with his new finding, GAUSS (§ 40) estimated
the bounds for varm2. I have put on record (SHEYNIN 1979, p. 45)
that HELMERT, in 1904, had improved GAUSS’S estimate. In 1947,
three authors, including KOLMOGOROV, independently arrived at
HELMERT’S result.10

    LIAPUNOV (1975, posthumous publication) derived formula (7)
stating that it was not proven rigorously. Evidently he saw it in a later
treatise rather than in GAUSS’S Theoria combinationis. LIAPUNOV
did not publish his proof and his manuscript appeared posthumously.
His efforts were not lost: he showed that, in modern terminology, m2

was a consistent estimator of the variance, a proposition that can now
be proved simply by referring to an appropriate theorem due to
KHINCHIN.
    The date of LIAPUNOV’S discovery remains unknown, but
possibly it was made at, and marked the beginning of his fundamental
work on probability.
    In a letter to OLBERS 17.6.1824 (SCHILLING 1909, p. 317)
GAUSS remarked that his Theoria combinationis provided leichte
Mittel … die mathematische Güte eines Dreiecksystems methodisch zu
würdigen. Obviously he had in mind his § 21 where he derived
formulas for the precision of the unknowns of system (1).
    It occurred that for observations of equal weight

11 22 33,  ,x y zm m Q m m Q m m Q= = = ,

see my formulas (6) and (7). Indeed, GAUSS thus made it possible to
estimate the errors (or weights) of the unknowns. Moreover, it became
possible to calculate the Qii’s (and, therefore, to estimate the relative
precision of the unknowns) even before making the observations, just
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by using the rough measurements provided during reconnaissance.
Note that GAUSS could have said that the leichte Mittel became
available in 1809 rather than in 1823.
    Finally, the Theoria combinationis contained a proof of the now
known formula for the weight (P) of the arithmetic mean of
observations xl, x2, …, xn having weights pl, p2, …, pn:

P = pl + p2 + … + pn.                                                  (8)

    GAUSS (§ 22) derived this formula by noting that direct
observations (one unknown) constituted a particular case of indirect
observations (with several unknowns). He also provided an
independent demonstration (§ 18). In the same section (§ 18) GAUSS
derived the mean error of a linear function of several independent
observations. It is quite possible that even before the time of GAUSS
astronomers sensed formula (8), but it was GAUSS who substantiated
it. Cf. § 6.3.

4. Practical considerations
4.1. The Number of Observations. When should an astronomer

stop his work on a given station? May he guide himself, in estimating
the precision of his observations, by their internal consistency? I have
stated (SHEYNIN 1979, p. 51) that with respect to observations
GAUSS did not adhere to any definite rules, and that after his time,
striving to eliminate systematic errors, national geodetic
services in several countries have established rigid programmes of
observation.
    I shall now elaborate on my first remark, and begin by quoting
SCHREIBER (1879, p. 141) whose statement was noticed by
JORDAN (1882, p. 11):

Aus seiner [GAUSS’S] mir vorliegenden Protokollen geht vielmehr
hervor, dass er auf jeder Station so lange gemessen hat, bis er meinte,
dass jeder Winkel sein Recht bekommen habe. Er hat dann … die
hervorgehenden Richtungswerthe als gleichgewichtig und von
einander unabhängig in die Systemausgleichung eingeführt.
    SCHREIBER went on to agree with GAUSS’S attitude but did not
explain it. And he could have referred to the latter’s one-time student,
GERLING (1839, pp. 166 – 167) who declared that

Kommt man … früher oder später an die Gränze, um welche [the
result] in gewissen geringen Oscillationen herumschwanken, und
überzeugt sich, dass jedes weitere Fortsetzen der Repetition nur
verlorene Arbeit seyn würde.
  And, further, in the same context:

So aber habe ich es, nach dem Beispiel von Gauss, regelmässig
immer gemacht.
    COURNOT (1843, pp. 151 and 162) and even BAYES (STIGLER
1986, pp. 94 – 95; DALE 1991, pp. 313 – 315) were of the same
opinion. Both scholars indicated that the chances for the same error of
observation in excess or defect were not exactly equal [that systematic
errors were unavoidable]. Another reason was that, generally, the
observations were not strictly independent.
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    It is opportune to compare GAUSS’S attitude with a modern
opinion (DORSEY & EISENHART 1969, p. 53): the experimenter

Will proceed to change, one by one, every condition,11 ... that seems
by any chance likely to affect his result,
and thus eliminate known systematic errors as much as possible; and
he will take long series of observations to eliminate systematic errors
from unsuspected causes.12 They conclude: he will presently

Feel justified in saying that he feels, or believes, … that his … work
indicates that the quaesitum does not depart from his … definitive
value by more than so-and-so, meaning thereby, … that he has found
no reason for believing that the departure exceeds that amount.
    Previous authors (CLARKE 1880, pp. 18 and 52; CAMPBELL
1928, p. 164) came to a similar conclusion.
    Did GAUSS change the conditions affecting his observations? Did
he, for example, measure angles both in the morning and in the
evening? I have not been able to find an exhaustive answer to this
question. However, it is known, see for example his letter to BESSEL
29.10.1843; GAUSS (1903, pp. 494 ff) that, to eliminate a certain
instrumental error, GAUSS measured both the angle sought, A, and its
complement, 360° – A. Then, GERLING (1839, pp. 14 – 15) testified
that he had observed at least

Die Punkte, welche zu verschiedenen Tageszeiten oder bei heiterem
und bedecktem Himmel Lich -Phasen befürchten ließen, so viel
möglich auch unter diesen verschiedenen Umständen.
    I can also mention STRUVE (1824, p. 433), though his attitude was
probably independent. He measured angles 32 times each by a
repetition theodolite.

Ich aber nicht einen Winkel 32 Mal gleich nacheinander nahm,
sondern nach jedem 4 fachen Winkel ablass und mit der Beobachtung
der verschiedenen Winkel abwechselte und jeden unter verschiedenen
atmosphärischen Umständen beobachtet zu haben.
    GAUSS did not measure all his angles the same number of times;
indeed, there are instances even of striking differences between these
numbers (GAUSS 1903, pp. 278 – 281). But then, was it proper for
him to enter these angles in a general adjustment, as SCHREIBER
(above) noted, with equal weights? This is a delicate question and,
obviously, the observer himself should answer it. Also cf. GERLING
(1839, p. 167):

Insofern also ist allen Richtungen einerlei Gewicht beizugeben,
wenn gleich nach Verschiedenheit der Umstände mitunter eine sehr
verschiedene Anzahl von Beobachtungen dazu gehörte, um in ihrer
Festlegung die oben bezeichnete Grenze zu erreichen.
    See above his statement from the same source and page.

4.2. Estimating the precision. From the practical point of view,
formula (7) is not always sufficiently sensitive. BERTRAND (1888, p.
274), for example, indicated that inaccurate observations can be
internally consistent. GAUSS himself was fully aware of this fact. In
several letters (to OLBERS 29.1.1822; SCHILLING (1909, p. 164)
and 14.5.1826; GAUSS (1903, pp. 320 – 322), to BESSEL
15.11.1822; GAUSS (1975, p. 407), and to BOHNENBERGER
16.11.1823; GAUSS (1903, pp. 364 – 367) he noted that a small
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deviation of the sum of the angles in a triangle from its theoretical
value did not yet testify to the worthiness of the observations. It was
too easy to obtain small discrepancies by manipulating the
observations, GAUSS stated. In his letter to BESSEL he remarked that
this deviation

 Zuweilen dazu gedient haben mag, wenn auch nicht die
Beobachtungen zu verfälschen, doch etwas zu wählen (man bemerkt
eine Tendenz dazu selbst bei Delambre).13

    GAUSS added that falsification was easier to detect, and the
influence of systematic errors was more fully revealed, in the case of a
braced quadrilateral or of a system of triangles with a common vertex.
See also GAUSS (1826).
    STRUVE (1831, p. 86; 1860, p. 145), without referring to GAUSS,
corroborated his opinion concerning the selection of observations. He
added, however, that eccentric measurements, to which astronomers
often had to resort, led to a völlige Unbefangenheit.
    Another relevant point is the case of a small number of
observations. In a letter to BESSEL 19.4.1821 GAUSS (1975, p. 382)
stated that es immer misslich ist, auf wenige … Beobachtungen ein
Resultat zu gründen. He expressed his views more emphatically in
letters to GERLING 17.4.1844 and 29.1.1847 (SCHÄFER 1927, pp.
687 and 744). In the second case he wrote

Wo man nicht Rechnung auf eine große Anzahl von Erfahrungen
stützen kann, soll man sich lieber bloß an eine nur auf Kenntnis des
Sachverhältnisses stützende Schätzung halten.
    Perhaps even more interesting was his earlier letter to GERLING.
Here he tabulated the magnitudes (n – ρ), [vv], and m2, see formula
(7), for 18 triangulation stations. The 18 values of m2 ranged from
0.″19 to 5.″1‚ for which there was gar kein Grund … die Sache ist
lediglich die, dass aus einem so kleinen n [so kleinen (n – ρ), as it
happened on several stations] sich nichts Sicheres folgern lässt.
    GAUSS added together the data for stations 1 – 5; 6 – 9; and
10 – 18 obtaining (n — ρ) = 47; 48; and 47, and m2 = 3.″1; 3.″1 and
2.″8 respectively. In neither letter did he recall his formula for
estimating the variance of m2 (§ 3.6)! Cf. KU (1967, p. 309):

An estimate of the standard deviation based only on a small number
of measurements cannot be considered as convincing evidence.

4.3. The limits of security. ENCKE (1834 – 1836/1888, pp. 43 –
47) was (one of?) the first to use this short-lived term, Grenze der
Sicherheit. What he meant was the wahrscheinlichen Grenzen der
wahren Werthe (GAUSS 1816, §§ 4 – 7) so that the Sicherheit was
directly connected with the probable error.
    Both GERLING, in a letter to GAUSS 19.2.1838 (SCHÄFER 1927,
p. 522) and BESSEL, writing to OLBERS on 28.6.1839 (ERMAN
1852, Bd. 2, p. 441), mentioned the same term in a businesslike
manner, without any comment. What GAUSS used was a certain
confidence interval with confidence level 0.50.

4.4. Rejection of outlying observations. When should the
astronomer reject an outlying observation in the absence of any prior
evidence against it? Modern authors (DIXON 1962; KRUSKAL 1960,
p. 348) confess that they do not know any general answer. Obviously,
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statistical tests may help the astronomer to decide what to do, but no
test is better than its premises whose validity it is difficult to check. A
special inseparable problem is to decide whether or not to reject an
observation which does not (cannot) belong to the same population as
all the other ones. KRUSKAL concludes:
    My own practice is to carry out an analysis both with and without
the suspect observations. If the broad conclusions of the two analyses
are quite different, I should view any conclusions from the experiment
with very great caution.
    BARNETT & LEWIS (1984) contributed a whole book to Outliers
in Statistical Data. They conclude (p. 360) that the problem of treating
outliers obviously arous[es] more interest today than it has ever done,
and that

 When all is said and done, the major problem in outlier study
remains the one that faced the very earliest workers in the subject:
what is an outlier and how should we deal with it?
    I shall now briefly discuss the relevant developments in the early
19th century. GAUSS (1900, pp. 152 – 153), in a letter to OLBERS
dated 3 May 1827, stated:

 Zu einer erfolgreichen Anwendung der Wahrscheinlichkeits-
rechnung auf Beobachtungen ist allemal umfassende Sachkenntnis
von höchster Wichtigkeit. Wo diese fehlt, ist das Ausschließen wegen
größerer Differenz immer misslich, wenn nicht die Anzahl der
vorhandenen Beobachtungen sehr groß ist.
    Generally speaking, GAUSS continued, there is a case for rejection,
but

Halte man es wie man will, mache aber zum Gesetz, nichts zu
verschweigen, damit andere nach Gefallen auch anders rechnen
können. … wenn man mit dem Ausschließen zu schnell bei der Hand
ist,
the precision of the observations can be overestimated.
    It seems that KRUSKAL’S experience (above) is quite in line with
GAUSS’S attitude.
    GERLING (1843, p. 68) stated that with regard to rejecting
observations bleibt der Beobachter … ganz auf sein praktisches
Gefühl verwiesen.
    The difficulty of the problem of rejection is easy to understand: the
theory of probability applies only to what will happen after a great
number of trials whereas the observer has to decide what to do with a
single set of observations (corrupted by systematic errors as well).
    The first quantitative recommendations concerning the rejection of
observations were made by FOURIER (1824) and JORDAN (in
1877), see CZUBER (1891, pp. 207 – 211) and HARTER (1977).
JORDAN introduced the celebrated rule of three sigma whereas
FOURIER (1826, p. 543) believed that le triple de g [= m 2/n ‚ see
§ 3.6] est la limite des plus grandes erreurs. He did not mention
rejection. Furthermore, his statement had to do with the arithmetic
mean rather than with individual observations.

5. Dependence of observations
5.1. Independence of observations. Mathematicians of the 19th

century are known for tacitly assuming that they studied independent
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events. However, stronger statements (GNEDENKO & SHEYNIN
1992, p. 225) claiming that up to the end of that century no one
mentioned this assumption, were wrong. Indeed, DE MOIVRE (1756,
p. 5), for one, while formulating the multiplication theorem noted that
he considered independent events, but I restrict my study to the
treatment of observations.
    LAPLACE mentioned independence of observations in the
Duxiéme Supplèment to his Théorie analytique and in a memoir
published in 1827 (SHEYNIN 1977, p. 11). This is not to say that he
was infallible: STIGLER (1986, p. 151) noticed that, in a memoir of
1823, LAPLACE had failed to take into account the dependence of
certain observations.
    In several cases GAUSS (1809,§ 175; 1823, §§ 15 and 19; 1828,
§ 22) assumed that observations were independent. In other instances
(GAUSS 1823, § 39) he wrote that (in modern notation), for errors of
observations x and y,

    E(xmyn) = ExmEyn. Yet elsewhere GAUSS (1845, p. 143) declared
that independence was an essential condition die häufig genug . .. von
Gelehrten von Fach außer Acht gelassen wird.
    In 1805 LEGENDRE (STIGLER 1986, p. 59) had to solve a system
of four equations

    aix+biy+li = vi – vi+1‚ i = 1‚ 2‚ 3‚ 4

where the v’s were the errors of (five) observations. He did not
proceed directly (taking vi – vi+1 = wi,). Instead, he introduced a fifth
equation (identity), v3 = v3 and thus got rid of the physical dependence
of his equations, see Sheynin (1993, § 3.6).

5.2. Dependence of observations (Gauss). GAUSS understood
dependence in the same way as LEGENDRE tacitly did. Indeed he
(1823, § 18) stated that two functions of observations were not
independent if [at least] one of their arguments was common to both
of them.14 I have described his reasoning in connection with a
remarkable proposal made by KAPTEYN (§ 5.4). Now, in addition, I
can also refer to GAUSS (1845, p. 143):

Die Sicherkeit des Grundprincips [of taking the arithmetic mean]
beruhet auf einer wesentlichen Bedingung … die darin besteht, dass
die an den einzelnen Beobachtungen … haftenden regellosen
Störungen oder Schwankungen von einander ganz unabhängig sein
müssen. Das Urteil, ob eine solche Unabhängigkeit vorhanden sei
oder nicht, kann zuweilen sehr schwierig … sein, und wenn darüber
Zweifel zurückbleiben, so wird auch das den Endresultaten
beizulegende Gewicht ein precäres sein.
I have quoted this passage (SHEYNIN 1973, p. 112) without,
however, fully realizing its importance. Note that here GAUSS
considered observations themselves rather than their functions as in
1823 (above). Discussing dependence, GAUSS (1826; 1828, § 3)
singled out a special circumstance. I quote from the first source:
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Sind … auch die Fälle nicht selten, … wo … die gegenseitige
Abhängigkeit der beobachteten Grössen … durch gewisse
Bedingungsgleichungen gegeben ist.
    BESSEL (1838, p. 132), GERLING (1843, p. 26) and SCHREIBER
(1882, p. 134) concurred with GAUSS without mentioning him or
explaining their (common) attitude.
    Consider an example: all three angles of a plane triangle are
measured independently. However, since their sum should be equal to
180° (this is the condition), the angles are not independent. The only
explanation, or, rather, specification that seems possible is that the
observed angles remain independent whereas the adjusted angles,
being corrupted by a common residual error, are interdependent.
    On the heuristic level GAUSS’S understanding of independence of
observations coincides with the axiomatic definition of independent
events. In the axiomatic theory of probability events A and B are
independent if

P(AB) = P(A)P(B),

whereas, according to GAUSS, this formula means that observations
(not events) A and B have no common errors.

5.3. Dependence of observations (later authors and geodetic
practice). GAUSS’S implicit definition of dependence took root in
astronomy, geodesy and metrology (below). German authors likely
knew his ideas. Others, as I presume, came to the same conclusion all
by themselves, although PUISSANT (1832) might have noted
LEGENDRE’S treatment of dependent equations (§ 5.1).
    One of the essential problems confronting observers in geodesy was
station adjustment. Suppose that an observer, standing at a certain
point (station), measures the directions to points A, B, C, and D, and
that, owing to unfavourable meteorological conditions, he has to take
only two directions at a time.
    How then should he adjust his observations to present them as a
series of independent measurements? Indeed, only such measurements
should be entered in the general adjustment of his network. This is a
special problem and I discuss it insofar as it bears on my subject.
    The first whom I mention is HANSEN (1831, p. 191). He stated
that, in MAUPERTUIS’S triangulation, two angles were not
independent since each of them contained one and the same angle as
its separately measured component.
    BESSEL (1838, Chapter 3) noted that, in considering the general
adjustment of triangulation, GAUSS (1828) had restricted his study to
the case of independently observed directions. He then went on to
discuss the general case.
    Much more interesting is SCHREIBER’S explanation (l882,
p. 134):

Die beobachteten Werthe [directions A, B, … observed at a certain
station] sind unabhängig von einander, wenn jeder aus besonderen
Beobachtungen abgeleitet ist. Sind also eine oder mehrere
Beobachtungen, die zur Herleitung von A gedient haben, auch zu der
von B benutzt werden, so sind A und B abhängig von einander.
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    SCHREIBER’S terminology is not sufficiently precise:
beobachteten Werthe aus Beobachtungen. His idea is, however, clear.
He continues (p. 135):

Die durch Stationsausgleichung abgeleiteten Winkel- oder
Richtungswerthe sind demnach im Allgemeinen von einander
abhängig. Es sollen dann aber auch nicht diese, sondern die
unmittelbaren Beobachtungen oder die aus solchen gebildeten,
von einander unabhängigen Mittel mit den Bestimmungen A, B,
identifizirt werden.
    Thus, in adjusting networks or chains of triangulation, corrections
should be made to magnitudes which may be considered independent.
The same principle still governs the rigorous treatment of traverses:
their measured elements are angles and sides (legs), and exactly these
elements should be corrected in the adjustment.
    Another example was provided by the layout of the chains of
triangulation both in India (CLARKE 1880, p. 257) and in the former
USSR (though not in the USA): baselines were measured at the
vertices of the quadrilaterals formed by these chains. This practice
ensured a higher degree of independence (in GAUSS’S sense) of the
chains and lent Schönheit und Rundung to the whole system (Gauss’s
expression, which he used in a letter to OLBERS 8.7.1824 (GAUSS
1903, p. 371), in discussing his efforts to avoid acute angles in his
triangulation).
    I am unable to prove that the layout was planned in either case in
accordance with GAUSS’S views. However, having graduated (in
1951) from the Moscow Geodetic Institute, I remember well enough
that we, students, were told that common errors led to dependence of
observations and that, consequently, baselines should be measured at
the intersections of the chains of triangulation. The American practice
was justly looked down upon. True, GAUSS was not mentioned on
these occasions, but he was often remembered with utmost respect. It
is hardly amiss to add that two volumes of GAUSS’S Selected
Geodetic Works have since been published in Russian (in 1957 –
1958).
    I adduce pronouncements of several more authors and begin by
noting that AIRY (1879, pp. 51 and 60 – 70) invented a special term,
entangled measures, to describe observations corrupted, in part, by
common errors.
    1) PUISSANT (1832). On p. 125 he writes out the formula for the
error of a function of several observations whose errors are
indépendantes les unes des autres. Then, on p. 128, he applies this
formula (which is his seconde règle) to a certain case en supposant
qu’aucune loi ne lie ces erreurs [of the observations] entre elles, et en
se conformant par conséquent à la seconde règle ci-dessus.
    2) BERTRAND (1888, p. 264):

Ces valeurs ne sont pas indépendantes. Les erreurs commises …
sont liées l’une et l’autre. … La théorie des moyennes n’est pas
applicable.15

    3) CZUBER (1891, p. 2). While introducing zwei Gattungen von
Fehlerursachen, he stated:
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Der einen Gattung von Ursachen gegenüber erscheinen die
einzelnen Beobachtungen als völlig unabhängige Ereignisse, d. h. die
Wirkung dieser Ursachen ist durch Umstände bedingt, welche von
einer Beobachtung zur nächsten sich ändern und mit dieser selbst in
keinem nachweisbaren Zusammenhange stehen.
    Obviously‚ in adopting GAUSS’S definition CZUBER stretched it
mercilessly.16

    4) KU (1967, p. 311), a metrologist:
    A sequence of measurements showing a trend or pattern are not
independent measurements.

5.4. Dependence and correlation. Statisticians did share GAUSS’s
view in that common causes lead to dependence (LANCASTER 1972,
p. 300):

Galton, Weldon and Pearson all believed that correlation or lack of
independence in the distribution of attributes was usually brought
about by the possession of random elements in common.
    Indeed, PEARSON (1920, p. 199) quoted GALTON’S general
pronouncement read in 1888 to this effect:

Co-relation must be the consequence of the variations of the two
organs being partly due to common causes.
    The mathematical theory of correlation, as developed later,
necessarily shed all direct links with biology. Furthermore, when
studying correlation, modern statisticians are more likely to discuss
relations of cause and effect (spurious correlation brought about by
common causes is an exception). Thus, the problem of dependence
became one of the topics where statistics departed from the theory of
errors. PEARSON’S categorical statement (1920, p. 187) was
a step in the wrong direction. He declared that

There is no trace in Gauss’ work of observed physical variables
being, apart from equations of condition, associated organically
which is the fundamental conception of correlation.
    GAUSS did not study variables; furthermore, PEARSON’S phrase
is difficult to understand and I would restate it as follows: Equations
of condition unite the observed magnitudes; as considered by GAUSS,
however, these magnitudes were not connected with one another,
whereas statisticians study variables associated organically with each
other.
    PEARSON continued (p. 192):

We must … hold that they [GAUSS and BRAVAIS] contributed
nothing of real importance to the problem of correlation.
    Regrettably, statisticians of the 19th century did not notice
GAUSS’S idea of common causes leading to dependence and thus did
not arrive at correlation theory earlier than they actually did. In
offering this remark I am not thwarted by GALTON’S statement made
in 1908 that the error theory aims at getting rid of, or at allowing for
errors, whereas he, GALTON, desires to study them.17

    EISENHART (1978, p. 382), who quoted GALTON, adds that
When Karl Pearson and G. Udny Yale began to develop the

mathematical theory of correlation … they found that much of the
mathematical machinery that Gauss had devised for finding best
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values for the parameters of empirical formulas [?] by the method of
least squares, was immediately applicable in correlation analysis.
    In regretting PEARSON’S stiff attitude and the ensuing gap
between statistics and the error theory I have followed SEAL (1967, p.
208).
    In 1912, being dissatisfied with the (statistical) theory of
correlation, KAPTEYN made an attempt to introduce (after Pearson)
correlation theory into astronomy. Or, rather, he aimed at quantifying
the connection between two functions depending on partly coinciding
observations and, consequently, defined a new coefficient of
correlation (SHEYN1N 1984, § 9.2.1). KAPTEYN’S work remained
unnoticed, perhaps because he did not mention GAUSS. A second
possible reason is that World War I was about to begin. I do not think
that his attempt can lead to essential development, but, at the very
least, it can be used to estimate the degree of dependence of
observations in geodesy. Of course, it showed once again the viability
of GAUSS’S idea.

6. Alternative views
    Here I describe the attempts made by several authors to challenge,
or substantiate the initial propositions and the approaches to the theory
of errors. One such approach is stochastic; it is based on limit
theorems and is associated with LAPLACE. The other one, which I
venture to call astronomical, was initiated by GAUSS. It connects the
theory with optimal properties of statistical estimators and does not
depend on the number of observations. Furthermore, his Theoria
combinationis makes no use of the theory of probability at all.
    At least up to the 1920’s, most distinguished scholars spoke out
against the astronomical approach. Their pronouncements are virtually
forgotten, and, for the time being, I restrict my attention to one
example.
    LÉVY (1925, p. 74) maintained that certains auteurs had
committed a mistake by considering

 La notion de précision d’une mesure comme une notion première
sur laquelle ils prétendent fonder la théorie des erreurs.
    LÉVY thought that the initial notion was the law of probability of
observational errors. He did not refer to GAUSS at all, thus
perpetuating the nasty tradition of former French mathematicians, cf.
§ 6.3.

6.1. The Arithmetic Mean. GAUSS (1809, § 177), in his first
substantiation of the MLSq, assumed that the arithmetic mean of a
series of observations was the most probable value of the constant
sought. This postulatum (BERTRAND 1888, p. 176) met with
disapproval not only because it led to a single law of error (the normal
law), but on other grounds as well. DE MORGAN (1845) and
GLAISHER (1872, p. 102) held that extreme observations
were obviously worse than those in the middle of a series.
NEWCOMB (1886) voiced the same opinion adding that the mean
was sensitive to a possible rejection of an outlier. Such criticisms were
not new at all: even DANIEL BERNOULLI (1778, §§ 2 and 5)
asserted that the mean was advisable only in the case of equal
probability of all errors and assumed that small errors were more
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probable than large ones.
    PEARSON (1978, p. 268), while commenting on BERNOULLI,
aptly remarked that, being more probable, small errors would be more
frequent and have their due weight in the arithmetical mean. Note,
however, that NEWCOMB was right in that the median is, of course,
safer than the sample mean. For the comparison of these two
estimators see SHEYNIN (1977, § 8.3) and STIGLER (1973). I do not
discuss this comparison here. The more general problem of
introducing order statistics deserves to be considered separately.
    PEARSON’S remark effectively refutes the idea of posterior
weights (weights, assigned in accordance with the location of the
corresponding observations in the series). In addition, if the law of
distribution of the errors is symmetric, the introduction of such
weights will not essentially change the usual arithmetic mean.
   GLAISHER (1872, p. 87) put on record a previously neglected (and
still forgotten) point:

In effect, Gauss’s view [was] that the arithmetic mean is practically
the best mode of combining … observations. … he was very [?] far
from asserting … that the arithmetical mean is the most probable
value of the quantity observed.
    Indeed, here are GAUSS’S own words (1809, § 177):

Wie ein Axiom pflegt man nämlich die Hypothese zu behandeln …
dass alsdann das arithmetische Mittel … wenn auch nicht mit
absoluter Strenge, so doch wenigstens sehr nahe den
wahrscheinlichsten Werth gebe.
    ENCKE (1832) attempted to base the choice of the arithmetic mean
on deterministic axioms.18 KNOBLOCH (1985, pp. 580 – 586)
reviewed many similar attempts; also see ZOCH (1935 – 1937). The
constructive aspect of this approach laid the foundation for the modern
theory of invariant tests and estimators (LEHMANN 1959, chapter 6).
    The following passage from GAUSS’S letter to ENCKE of
23.8.1831 (GAUSS 1900, pp. 145 – 146) describes his opinion about
this line of development:
    Nicht ohne Interesse habe ich aus Ihrem Briefe den Gang gesehen,
den Sie zur Rechtfertigung des Verfahrens, das arithmetische Mittel zu
nehmen, eingeschlagen haben. Ich finde diesen Gang sehr
beifallswerth, insofern auf die Frage, was zu thun sei, eine von allen
Betrachtungen der Wahrscheinlichkeitsrechnung ganz unabhängige
Antwort gegeben werden soll. Nur kann ich nicht wohl einräumen,
das, was man auf diese Art erhält, den wahrscheinlichsten Werth zu
nennen. In der That ist die Aufgabe, den wahrscheinlichsten Werth zu
finden, eine mathematisch ganz bestimmte, die aber ihrer Natur nach
die Kenntnis des Fehlergesetzes voraussetzt und nur in dem einzigsten
Falle, wo dieses durch die Form e–kxx ausgedrückt wird, auf die
arithmetischen Mittel führt.

6.2. The Estimate of Precision. Denote the observations of
constant a by xl, x2, …, xn (xl ≤ x2 ≤ … ≤ xn). Then (BERVI 1899) it is
sufficient to estimate the precision by the equality

P(x1 < a < xn) =1 – (1/2)n–1.                                                  (9)
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    BERVI’S opinion was hardly justified. First, the length of the
interval [x1; xn] tends to increase with n so that formula (9) becomes
useless. Second, BERVI did not discuss indirect observations.
Obviously‚ he did not account for the single approach to estimating
precision in the two cases (direct and indirect observations) which is
characteristic of the GAUSSIAN theory of errors.
    KORNFELD (1955), whose note was communicated by an eminent
physicist (LEONTOVICH), repeated BERVI’S proposal without
referring to him.
    Of course, statisticians began to calculate confidence intervals for
quantiles (e. g, for medians of series of observations) long before
1955, but they did not suggest rejecting all other methods of
estimating precision. I do not mention such measures of precision as,
for example,

| |
,
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å å ,

notation as in formula (7). These were mostly recommended in order
to make computations easier. Of course, the use of one or another
estimator should be determined by the law of distribution of the
appropriate errors, but usually both the arithmetic mean and the mean
square error reign supreme.
    Nevertheless DELAMBRE (1912, pp. 39 and 235), in estimating
the precision of direct observations, introduced measures similar to
(10), only the denominators were n instead of (n – ρ). In spite of this
obvious mistake (also made by GAUSS in 1814, see § 3.6), his
measures were fit for comparing the precision of two or more series of
measurements of differing lengths. Since DELAMBRE (p. 258)
referred to a book published in 1818, he must have written his
contribution between 1818 and 1822, the year of his death.

6.3. The astronomical approach.
Gauss and Laplace are representatives of two absolutely different

opinions on [approaches to] the meaning of the method of least
squares [MLSq]. In Laplace’s work we find a rigorous [!] and
impartial study of this problem. His analysis shows that the results of
the MLSq enjoy a more or less substantial probability only when the
number of observations is large whereas Gauss attempted to attach
absolute meaning to this method [a damned lie!], using extraneous
considerations. If we turn our attention to the fact that all the essence
of the Theory of chances is contained in the law of large numbers,19

and that all the properties of random phenomena take real importance
only when the number of trials is large, it would not be difficult to
perceive the correctness of the Laplacean inference. However, when
the number of observations is limited, we cannot at all reckon upon
the mutual cancellation of errors and any combination of
observations can … lead as much to the increase of errors as to their
decrease.
    A detailed comment on this strange pronouncement made by
TZINGER (1862, p. 1), the future President of the Moscow
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Mathematical Society (1886 – 1891), is hardly needed. Nevertheless, I
emphasize two points. First, GAUSS’S approach (both in 1809 and
1823) was astronomical (§ 6) and nowadays we know that the
least-squares estimators possess certain optimal statistical properties.
Second, LAPLACE, in following the stochastic approach, did not
restrict his attention to the limiting case. Here are two statements from
his Essai (LAPLACE 1814/1995, pp. 45 and 47):

The total weight of the result of the various systems is the sum of
their individual weights.
    Each angle [of a triangle] should be decreased by the third of their
sum in order that the weight etc.
This second pronouncement was contained in the edition of 1816 of
the Essai, and it might have been said that LAPLACE even preceded
GAUSS in stating the principle of maximum weight. However, his
was only an elementary example and it is important to consider what
meaning did he attach to the notion of weight. Thus, the first statement
was accompanied by a remark to the effect that the appropriate density
was normal. Cf. my discussion of this point (1977, pp. 50 – 52).
    It is easy to contrast LAPLACE and GAUSS the way TZINGER
did, but it is much more correct to say that the Masters founded the
theory of errors by tacitly studying each other’s contributions and
filling in the missing pieces. TZINGER was not the only, or the first
one to reject the astronomical approach. In 1852 B1ENAYMÉ
(HEYDE & SENETA 1977, § 4.3) voiced a similar opinion. In
general, French mathematicians sided with LAPLACE; even
POISSON (1833), in his obituary of LEGENDRE, properly referred to
LAPLACE but failed to mention GAUSS.

6.4. The first substantiation of the MLSq. It is generally known
that GAUSS himself found fault in his earlier justification of the
method.The first, or one of the first to concur with him was
GALLOWAY (1839). However, as early as in 1825, IVORY (1825,
p. 7) spoke out in favour of substantiating least squares by the
principle of least variance. He (p. 9) remarked that it has been usual to
introduce the doctrine of probabilities in order to explain this theory.
Such explanations, as IVORY held, were impossible without knowing
the general function for expressing the probability of an error.
Furthermore (p. 81), there is even no proof that this function does not
change with time.
    Consequently, he attempted to demonstrate the MLSq without
having recourse to the doctrine of probabilities. This remark is also
important. As I indicated in § 6, GAUSS was another who, in 1823,
did not base his work on the theory of probability.
    LAPLACE’S stochastic approach (§ 6) obviously evades IVORY’S
criticism. However, IVORY (1825, p. 10), not failing to mention it,
somehow brushes it aside, and on pp. 164 – 165 attempts to prove that
LAPLACE’S derivation of least squares (in spite of its professed
invariance with respect to the law of distribution of the errors of
observation) leads to the normal law. This is a misunderstanding. It is
known that LAPLACE based his work on the principle of minimal
absolute expectation of errors in the unknowns sought, whereas
IVORY attributed to him the principle of maximum likelihood.20 No
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wonder that he successfully arrived at his conclusion! Later authors
dismissed IVORY’S contribution. CZUBER (1891, pp. 301 – 304),
partly supporting his work on ELLIS’S remark (below), correctly
pointed out his logical mistakes. I would add that IVORY did not
make any use of GAUSS’S “Theoria combinationis”, perhaps not
having read it yet.
    GAUSS himself, in a letter to OLBERS of 15.3.1827, see
SCHILLING (1909, p. 475), called IVORY’S demonstration a petitio
principii. He considered IVORY’S paper (1825) unter aller Kritik and
continued: Welche Verworrenheit, Unklarheit und völliger Mangel
logischer Bündigkeit. GAUSS adduced only one definite argument
(the one later voiced by ELLIS and repeated by CZUBER) to the
effect that IVORY’S derivation of the principle of least squares on pp.
163 – 164 could have just as well led to an indefinite number of other
principles.21

I turn now to a certain point in GAUSS’S Theoria motus. GAUSS
(§ 179) stated that, just as his postulatum, the principle of least squares
muss überall … als Axiom gelten. Quoting this pronouncement‚ I
(1979, p. 31) called it a certain deviation from his [Gauss’s] main
train of thought. WATERHOUSE (1990, pp. 45 – 46) insists,
however, that GAUSS made a

Quite accurate summary of his argument and indeed proved that
the assumption about arithmetic means implies the more general
statement.
    He also admonishes me for omitting GAUSS’S words mit
demselben Recht from the quotation above. I cannot agree, and for my
part I should believe that Gauss was never really satisfied with his first
substantiation. Cf. GLAISHER’S remark ((§ 6.1) from which it
follows that the normal law emerges as the law of error only in some
ideal case.
    From the later criticisms of GAUSS’S substantiation I single out
MERRIMAN’S comment (1877, p. 165). He noticed that GAUSS’S
[normal] distribution was not strictly a law of facility of error but only
a law of distribution of residuals. Indeed, and, in addition, GAUSS
(1809, § 175) formulated the properties of usual random errors, but
made use of them only indirectly, through the principle of the
arithmetic mean.
    At least one author (HENKE 1894, p. 44) stated that the principle of
least squares vielleicht nicht mit Unrecht might be left unjustified. On
p. 67 he added:

Würde ich für zweckmässig halten wenn man zur Begründung der
Methode der kleinsten Quadrate die Wahrscheinlichkeitstheorie
überhaupt nicht mehr in Anspruch nehmen würde.22

    Finally, CAMPBELL (1928, pp, 156 – 167) published a fierce
attack against the Gaussian theory of errors [against the MLSq as
developed by GAUSS]. lt seems, however, that he never heard of the
second substantiation of the method by GAUSS. Accordingly,
CAMPBELL was hopelessly late, but his mistake shows once again
how popular was GAUSS’S Theoria motus.

6.5. The second substantiation of the MLSq. This contribution,
Theoria motus, had introduced the principle of least squares in such an
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elegant way that, despite GAUSS’S mature thoughts, astronomers
continued to adhere to it since, by and large, their observations did
obey the normal law. [See also Sheynin (2017, § 9A.4-10, p. 148)].
    BERTRAND (1888, p. 267) noted that GAUSS’S second
substantiation still demanded a fixed density function φ(x) of errors.
Indeed,

    φ(x) = φ(0) + xφˊ(0) + ½x2 φ″(0) + …

and, for small errors x and even densities,

.    φ(x) = φ(0) + ½x2 φ″(0) = a + bx2.

    The only answer to this remark is that, obviously, nothing better
than GAUSS’S second substantiation had as yet been offered. Later
objections to this substantiation, of which I mention two, are
interesting at least by themselves. POINCARÉ (1896, p. 188), a
natural scientist as well as a mathematician, called GAUSS’S change
of mind assez étrange. And recently HAR'IER (1977, p. 28) stated
that

Gauss’s second exposition seems … to be no more satisfactory than
his first. In each case he starts from a postulate, plausible but not
universally valid, which leads inexorably to the foregone conclusion.
The author is perhaps justified in his criticism and, as is clear from the
title of his book, he was hardly obliged to add that the least-squares
estimators nevertheless possess certain optimal statistical properties;
cf. § 6.3.
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Notes
1. The corollary which DELAMBRE mentioned indeed had intuitive appeal, but

he evidently made too much of it.
2. KARL PEARSON was also in the habit of computing an excessive number of

digits. In 1936, E. B. ROESSLER (Science, vol. 84, pp. 289 – 290) pointed out that
among statisticians no uniformity of practice exists in the retention of significant
figures and that, accordingly, a very misleading impression of the accuracy of the
results can be created. He offered several examples, one of them pertaining to R. A.
FISHER. A discussion in the same volume of Science followed, see pp. 437, 483 –
484, and 574 – 575.

3. In a special note prefixing COLCLOUGH’S paper, the Editor (p. 167) called
his subject controversial and promised to publish an article by R. COLLE presenting
the alternative view. Obviously, however, this contribution did not appear either in
the same periodical or elsewhere.

4. Or, rather, the precision of the estimators of its unknowns. I shall not repeat this
remark anymore.

5. Cf. the hybrid method of solving systems (1) in § 1.2.
6. Readers can follow up KOLMOGOROV’S non-parametric substantiation

(1946) of least squares which made use of the notions of the n-dimensional vector
geometry. KOLMOGOROV (pp. 59 – 60) attributed to GAUSS the statement that,
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for normal errors of observation with known variance, the normed errors of the
least-squares estimators have standard normal distribution. He did not provide a
definite reference and I believe that it should have been GAUSS (1809, § 182). It
seems, however, that this particular proposition is not really important since the
variance is seldom known. It was STUDENT who determined the appropriate
distribution in the usual case.

7. The case of equal probabilities of an event either happening or failing to
happen in a given number of trials interested DE MOIVRE (1756, e. g., Problem 5)
whereas LODEWIIK and CHRISTIAAN HUYGENS, in their correspondence with
each other, introduced the probable duration of life (1669).

8. STIGLER (1986, p. 140n) pointed out a downright mistake made by
DELAMBRE(1810, p. 182). LEGENDRE’S method, the latter maintained, consiste
à égaler à zéro la somme des carrés de toutes les erreurs …

9. Note the double sign. GAUSS also adduced the probable error of another group
of his observations and calculated the mean of the two errors, but in both these cases
he prefixed the error with the sign “plus”.

10. I also note that CRAMER (1946, § 27.4) derived the formula

2
2 4 2

2 22(μ μ ) μ 3μμ μ 4 42 2var 2 3m
n nn

- --
= - +

where m2 = [vv]/n and μ2 is the second central moment;
 11. This attitude was abandoned in FISHER’S design of experiments.
12. Here also the authors obviously thought of changing the conditions of

observation.
13. DELAMBRE’S historical research was mentioned in GAUSS’s

correspondence no less than nine times (on six occasions by GAUSS himself), each
time negatively. See my paper (1993, § 3.7, Note 33).

14. In § 19 he added that those functions were linear, otherwise his statement
contradicts the Student – Fisher theorem on the independence of the sample variance
and the arithmetic mean.

15. For a long time natural scientists including astronomers used this term rather
than theory of errors (SHEYNIN 1986, pp. 310 – 312). LAMBERT’S Theorie der
Fehler was forgotten, as I thought, until the mid-19th century, when it was put into
circulation anew. Now, I correct myself: our present term was also used by BESSEL
(1820, p. 166; 1838, p. 36), again independently of LAMBERT. In the second
instance BESSEL wrote Theorie der zufälligen Beobachtungsfehler.

16. CZUBER’S contribution is useful even now and I feel it necessary to add that
he was one of the first (after Poisson) to introduce, on p. 7, the integral distribution
function Ф(x) defining the density as the derivative of Ф(x). True, he did not make
any use of that function.

17. While estimating the precision and accuracy of observations, the theory of
errors thereby studies the relevant errors.

18. I also quote CHEBYSHEV (1936‚ p. 233):
If two observations are available, it is possible to assume as obvious that their

best combination will be the arithmetical mean, because in this case nothing allows
us to prefer one of the observed quantity to the other one. … However, it is not
possible to say the same about three or more observations.

19. This statement is much too strong.
20. IVORY (p. 164) states that LAPLACE, in his Théorie analytique (p. 319),

arrived at the MLSq by considering the matter a little differently. Obviously, he
referred to the edition of 1820 of LAPLACE'S classic. At present, the standard
edition is that of 1886 (Oeuvr. Compl., t. 7) and the corresponding reference should
be to p. 323. However, on p. 324 LAPLACE goes on to say On peut parvenir au
même résultat de cette manière and expounds his main train of thought. More:
IVORY’S claim that LAPLACE’S [preliminary] derivation of least squares was
similar to his own was also misleading.

21. In the same letter to OLBERS, GAUSS criticized, with some reservation,
IVORY’S contribution über die Pendellängen. In 1826 – 1830 IVORY published a
few papers (all of them in the same periodical, the London, Edinburgh und Dublin
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Philosophical Magazine und Journal) on the derivation of the earth’s eccentricity by
pendulum observations, but GAUSS’S criticism was once more justified.

22. That GERLING (1843) introduced the principle of least squares axiomatically
is not really interesting since he compiled his book as a practical treatise.

References
C. F. GAUSS: Works

(1809) Theoria motus … German transl.: Aus der Theorie der Bewegung der
Himmelkörper etc. In GAUSS (1887, pp. 92 – 117).
(1816) Bestimmung der Genauigkeit der Beobachtungen. Ibidem, pp. 129 – 138.
(1823) Theoria combinationis. German transl.: Theorie der den kleinsten Fehlern
unterworfenen Combination der Beobachtungen. Ibidem, pp. 1 – 53.
(1826) Selbstanzeige of GAUSS (1828). Ibidem, pp. 200 – 204.
(1828) Supplementum theoriae combinationis. German transl.: Theorie der
Combination etc., Ergänzüng. Ibidem, pp. 54 – 91.
(1845) Anwendung der Wahrscheinlichkeitsrechnung auf die Bestimmung der
Bilanz für Witwenkassen [2.] Nachlass. Werke, Bd. 4. Göttingen, 1880,
pp. 125 – 157.
(1887) Abhandlungen zur Methode der kleinsten Quadrate. Hrsg., A. BÖRSCH &
P. SIMON. Berlin. Vaduz, 1998.
(1900, 1903) Werke, Bde. 8, 9. Göttingen – Leipzig.
(1975) Werke. Ergänzungsreihe, Bd. 1. Hildesheim.

C. F. GAUSS: CORRESPONDENCE
[GAUSS, BESSEL] (1880), Briefwechsel zwischen Gauss und Bessel. Leipzig.
Reprinted: GAUSS (1975). Quotations in my text are from this reprint.
PETERS, C. A. F. (Hrsg.) (1860 – 1865), Briefwechsel zwischen Gauss und
Schumacher, Bde 1 – 6. Altona.
SCHÄFER, G. (Hrsg.) (1927), Briefwechsel zwischen Gauss und Gerling. Berlin.
SCHILLING, C. (1900 – 1909), W. Olbers. Sein Leben und sein Werk. Bd. 2,
Abt. 1 – 2, this being Briefwechsel zwischen Gauss und Olbers. Berlin.

OTHER AUTHORS
AIRY, G. B. ([1861] 1879), On the Algebraic and Numerical Theory of Errors of
Observations etc. London.
BARNETT, V. & LEWIS, T. ([1978] 1984), Outliers in Statistical Data.
Chichester a. o.
BERNOULLI, D. (1770 – 1771), Mensura sortis ad fortuitam successionem rerum
naturaliter contingentium applicata (BERNOULLI 1982, pp. 326 – 360).
BERNOULLI, D. (1778), Dijudicatio … English transl.: The most probable choice
etc. See KENDALL (1961).
BERNOULLI, D. (1780), Specimen philosophicum de compensationibus
horologicis etc. (BERNOULLI 1982, pp. 376 – 390).
BERNOULLI, D. (1982), Werke, Bd. 2. Hrsg., B. L. VAN DER WAERDEN.
Basel.
BERTRAND, J. (1888), Calcul des probabilités. Paris. Reprints: 1889, 1907, 1970,
1972.
BERVI, N. V. (1899), Determining the most probable value of the observed object
apart from Gauss’s postulate. Bull. Imp. Moskovskoe Obshchestvo Liubitelei
Estestvosnania, antropologii i etnografii, Otdelenie fizich. nauk, vol. 10, No. 1,
pp. 41 – 45 (in Russian).
BESSEL, F. W. (1816), Untersuchungen über die Bahn des Olbersschen Kometen.
Abh. Preuss. Akad. Wiss. [Berlin], math. Kl., 1812 – 1813, pp. 119 – 160.
BESSEL, F. W. (1820), Beschreibung des auf des Königsberger Sternwarte. Astron.
Jahrb. für 1823, pp. 161– 168. Berlin.
BESSEL, F. W. (1826), Methode die Thermometer zu berichtigen. Abhandlungen,
Bd. 3. Leipzig, 1876, pp. 226 – 233.
BESSEL, F. W. (1838), Gradmessung in Ostpreußen. Berlin.
BREEN, H. (1849), Correction of Lindenau’s elements of the orbit of Venus.
Monthly Notices Roy. Astron. Soc., vol. 9, pp. 49 – 51.
CAMPBELL, N. R. (1928), An Account of the Principles of Measurement and
Calculation. London a. o.



133

CHEBYSHEV, P. L. (1936), Theory of Probability. Lectures read in 1879 – 1880
as written down by A. M. LIAPUNOV. Ed., A. N. KRYLOV. Moscow –
Leningrad. (In Russian.)
CLARKE, A. R. (1880), Geodesy. Oxford.
COLCLOUGH, A. R. (1987), Two theories of experimental error. J. Res. Nat.
Bureau Stand., vol. 92, No. 3, pp. 167 – 185.
COURNOT, A. A. ([1843] 1984), Exposition de la théorie des chances et des
probabilités. Ed., B. BRU. Paris.
CRAMER, H. (1946), Mathematical Methods of Statistics. Princeton.
CZUBER, E. (1891), Theorie der Beobachtungsfehler. Leipzig.
DALE, A. I. (1991), T. Bayes’s work on infinite series. Hist. Math., vol. 18,
pp. 312 – 327.
DELAMBRE, J. B. J. (1810), Rapport historique sur les progrès des sciences
mathématiques depuis 1789 et sur leur état actuel. Paris. Reprint: Amsterdam, 1966.
DELAMBRE, J. B. J. (1814a), Analyse des travaux de la Classe des sci. math. et
phys. de 1’Institut, pendant l’année 1811. Mém. cl. math. et phys. Inst. Imp. de
France année 1811, pt. 2, first paging, i – lxxviii. Paris.
DELAMBRE, J. B. J. (1814b), Astronomie théorique et pratique, t. 2. Paris.
DELAMBRE, J. B. J. (1912), Grandeur et figure de la terre. Paris.
DE MOIVRE, A. (1718/1756), Doctrine of Chances. London.
DE MORGAN, A. (1845), Theory of probabilities. In Enc. Metropolitana. Pure
sciences, vol. 2, pp. 393 – 490. London.
DIXON, W. J. (1962), Rejection of observations. In: Contributions to Order
Statistics. Eds A. E. SARHAN & B. G. GREENBERG. New York – London,
pp. 299 – 342.
DORSEY, N. E. & C. EISENHART (1969), On absolute measurements. (KU
1969, pp. 49 – 55.)
DREYER, J. L. E. (1890), Tycho Brahe. Edinburgh.
EISENHART, C. (1963), Realistic evaluation of the precision and accuracy of
instrument calibration. (KU 1969, pp. 21 – 47.)
EISENHART, C. (1968), Expression of the uncertainties of final results. (KU 1969,
pp. 69 – 72.)
EISENHART, C. (1978), Gauss. In: Intern. Enc. of Statistics, vol. 1, pp. 378 – 386.
Eds. W. H. KRUSKAL & JUDITH M. TANUR. New York – London.
ENCKE, J. F. (1832), Über die Bergründung der Methode der kleinsten Quadrate.
Abh. Kgl. Akad. Wiss. zu Berlin, Math. Kl., 1831, pp. 73 – 78.
ENCKE, J. F. (183 – 1836), Über die Methode der kleinsten Quadrate. Ges. math.
und astron. Abh., Bd. 2, pp. 1 – 200. Berlin, 1888.
ERMAN, Ad. (Hrsg.) (1852), Briefwechsel zwischen Olbers und Bessel, Bde. 1‚ 2.
Leipzig.
FORBES, E. G. (1978), The astronomical work of C. F. Gauss. Hist. Math., vol. 5,
No. 2, p. 167 – 181.
FOURIER, J. B. J. (1824), Régle usuelle pour la recherche des résultats moyens
etc. Bull. sci. math., astron., phys. et chim. this being Bull. universelle des sci.,
premier sect., t. 2, pp. 88 – 89. A supplement written by DEFLERS (pp. 89 – 90)
contains a numerical example. DEFLERS also states that FOURIER read his note at
the Société philomatique le 3 juil, dernier.
FOURIER, J. B. J. (1826), Mémoire sur les résultats moyens etc. (FOURIER 1890,
pp. 525 – 545). S, G, 88.
FOURIER, J. B. J. (1829), Second mémoire sur les résultats moyens etc.
(FOURIER 1890, pp. 551 – 590). S, G, 88.
FOURIER, J. B. J. (1890), Oeuvres, t. 2. Paris.
GALLOWAY, T. (1839), A Treatise on Probability. Edinburgh.
GERLING, Ch. L. (1839), Beiträge zur Geographie Kurhessens etc. Cassel.
GERLING, Ch. L. (1843), Die Ausgleichungsrechnung etc. Hamburg – Gotha.
GIACOMO, P. (1981), News from the BIPM. Metrologia, vol. 17, pp. 69 – 74.
GLAISHER, J. W. L. (1872), On the law of facility of errors of observations etc.
M.em Roy. Astron. Soc., vol. 39, pp. 75 – 124.
GLEISSBERG, W. (1964), Zur Begründung des Auftretens zufälliger
Beobachtungsfehler. Sterne, Bd. 40, No. 5 – 6, 105 – 108.



134

GNEDENKO, B. V. & O. B. SHEYNIN ([1978] 1992), The theory of probability.
In: Mathematics of the Nineteenth Century, [vol. 1], pp. 211 – 282. Eds, A. N.
KOLMOGOROV & A. P. YUSHKEVICH. Basel. Transl. from Russian.
HANSEN [P. A.], (1831), Über die Anwendung der Wahrscheinlichkeitsrechnung
auf geodätische Vermessungen etc. Astron. Nachr.‚ Bd. 9, No. 202, pp. 189 – 204.
HARTER, H. L. (1977, date of preface), A Chronological Annotated Bibliography
on Order Statistics, vol. 1. No place. Publ. by the US Air Force and several of its
sub-units.
HAUBER, C. Fr. (1832), Theorie der mittleren Werthe. Z. f. Phys. Math., Bd. 10,
pp. 425 – 457.
HELMERT, F. R. (1872), Die Ausgleichungsrechnung etc. Leipzig.
HENKE, R. (1868/1894), Über die Methode der kleinsten Quadrate. Leipzig.
HEYDE, C. C. & E. SENETA (1977), I. J. Bienaymé. New York.
HUYGENS, C. ([1669] 1895), Correspondance. Oeuvr. compl., t. 6, pp. 531 – 532.
La Haye.
IVORY, J. (1825 – 1826), On the method of least squares. Lond., Edinb. Dublin
Philos. Mag. & J., vol. 65, pp. 1 – 10, 81 – 88, 161 – 168; vol. 68, pp. 161 – 165.
JORDAN, W. (Hrsg.) (1882), Höhere Geodäsie und Topographie des Deutschen
Reiches. Stuttgart.
KAPTEYN, J. C. (1912), Definition of the correlation-coeflicient. Monthly Notices
Roy Astron. Soc., vol. 72, No. 6, pp. 518 – 525.
KENDALL, M. G. (1961), Daniel Bernoulli on maximum likelihood. Incorporates
English transl. of BERNOULLI (1778). Biometrika, vol. 48, pp. 1 – 18. (E. S.
PEARSON & M. G. KENDALL 1970, pp. 155 – 172).
KENDALL, SIR MAURICE & R. L. PLACKETT (Eds) (1977), Studies in the
History of Statistics and Probability, vol. 2. London.
KNOBLOCH, E. (1985), Zu Grundlagenproblematik der Fehlertheorie. In:
Festschrift für Helmuth Gericke. Hrsg. M. FOLKERTS et al. Stuttgart,
pp. 561 – 590.
KOLMOGOROV, A. N. (1946), On the substantiation of the method of least
squares. Uspekhi math. nauk, vol. 1, No. 1, pp. 57 – 70 (in Russian). From 1945 that
periodical is being translated as Russian Math. Surveys.
KORNFELD‚ M. (1955), On the theory of errors. Doklady Akademii Nauk SSSR,
vol. 103, No. 2, pp. 213 – 214 (in Russian).
KOTZ, S. & N. L. JOHNSON (Eds) (1982 – 1988), Encyclopedia of Statistical
Sciences, vols 1 – 9. New York.
KRUSKAL, W. H. (1960), Some remarks on wild observations. (KU 1969,
pp. 346  – 348).
KU, H. H. (1967), Statistical concepts in metrology. (KU 1969, pp. 296 – 330).
KU, H. H. (Ed.) (1969), Precision measurement und calibration. Selected Nat.
Bureau of Standards; papers on statistical concepts and procedures. NES Sp. Publ.
300, vol. 1. Washington.
LANCASTER, H. O. (1972), Development of the motion of statistical dependence.
(KENDALL & PLACKETT 1977, pp. 293 – 308.)
LAPLACE, P. S. ([1814] 1820), Essai philosophique sur les probabilités. The
edition of 1820 was reprinted in LAPLACE’S Oeuvr. compl., t 7, No. 1. Paris, 1886,
with separate paging. In my text, I refer to the Oeuvr. compl. English transl. by A. I.
Dale: New York, 1995. Philosophical Essay on Probabilities.
LEHMANN, E. L. (1959), Testing statistical hypotheses. New York – London.
LÉVY, P. (1925), Calcul des probabilités. Paris. '
LIAPUNOV, A. M. (1975), On Gauss’s formula for estimating the measure of
precision of observations. Istoriko-mathematicheskie issledovania, vol. 20,
pp. 319 – 328, in Russian. Posth. publ. with my comments.
MERRIMAN, M. (1877), List of writings relating to the method of least squares
etc. Reprint: Stigler (1980, vol. 1).
NEWCOMB, S. (1886), A generalized theory of the combination of observations
etc. Amer. J. Math., vol. 8, pp. 343 – 366. Reprint: Stigler (1980, vol. 2).
PEARSON, E. S. & M. G. KENDALL (Eds) (1970), Studies in the History of
Statistics and Probability, vol. 1. London.
PEARSON, K. (1920), Note on the history of correlation. Biometrika, vol. 13,
pp. 25 – 45. (PEARSON & KENDALL 1970, pp. 185 – 205.)



135

PEARSON, K. (1978), The History of Statistics in the 17th and 18th Centuries.
Lectures 1921 – 1933. Posthumous publ. by E. S. PEARSON. London.
POINCARE, H. (1896) Calcul des probabilités. Paris, 1912, 1923, 1987.
POISSON, S. D. (1833), Discours prononcé aux funérailles de M. Legendre.
J. reine und angew. Math., Bd. 10, pp. 360 – 363. S, G, 58.
PUISSANT, L. (1832), Deuxiéme mémoire sur l’application du calcul des
probabilités aux mesures géodésiques. Mém. Acad. Roy. Sci. de l’Inst. de France,
t. 11, pp. 123 – 156.
SCHMEIDLER, F. (1984), Leben und Werk des Königsberger Astronomen F. W.
Bessel. Kelkheim/T.
SCHREIBER, [O.] (1879), Richtungsbeobachtungen und Winkelbeobachtungen. Z.
für Vermessungswesen, Bd. 8, pp. 97 – 149.
SCHREIBER, [O.] (1882), Die Anordnung der Winkelbeobachtungen im Göttinger
Basisnetz. Ibidem, Bd. 11, pp. 129 – 161.
SEAL, H. L. (1967), The historical development of the Gauss linear model.
Biometrika, vol. 54, pp. 1 – 24. (PEARSON & KENDALL 1970, pp. 207—230.)
SHEYNIN, O. B. (1971), J. H. Lambert’s work on probability. Arch. Hist. Ex. Sci.,
vol. 7, No. 3, pp. 244 – 256.
SHEYNIN, O. B. (1973), Mathematical treatment of astronomical observations etc.
In this collection.
SHEYNIN, O. B. (1977), Laplace’s theory of errors. Ibidem, vol. 17, No. 1,
pp. 1 – 61.
SHEYNIN, O. B. (1979), C. F. Gauss and the theory of errors. Ibidem, vol. 20,
No. 1, pp. 21 – 72.'
SHEYNIN, O. B. (1983), Corrections and short notes on my papers. Ibidem,
vol. 28, No. 2, pp. 171 – 195.
SHEYNIN, O. B. (1984), On the history of the statistical method in astronomy.
Ibidem, vol. 29, No. 2, pp. 151 – 199.
SHEYNIN, O. B. (1986), Quetelet as a statistician. Ibidem, vol. 36, No. 4,
pp. 281 – 325.
SHEYNIN, O. B. (1988), C. F. Gauss and the chi-square distribution. NTM
Schriftenreihe Gesch. Naturwiss., Technik, Med., Bd. 25, pp. 21 – 22.
SHEYNIN, O. B. (1993), Treatment of observations in early astronomy. Arch. Hist.
Ex. Sci., vol. 46, pp. 153 – 192.
SHEYNIN, O. B. (2007), True value of a measured constant and the theory of
errors. Historia Scientiarum, vol. 17, pp. 38 – 48.
SHEYNIN, O. B. (2017), Theory of Probability. Historical Essay. Berlin. S, G, 10.
STIGLER, S. M. (1973), Laplace, Fisher, and the discovery of the concept of
sufficiency. Biometrika, vol. 60, pp. 439 – 445. (KENDALL & PLACKETT 1977,
pp. 271 – 277.)
STIGLER, S. M., Ed. (1980), American Contributions to Mathematical Statistics in
the 19th Century, vols. 1 – 2. New York. Lacks single paging.
STIGLER, S. M. (1986), The History of Statistics. Cambridge, Mass.
STRUVE, F. G. W. (1824), Über das Universalinstrument etc. Astron. Nachr.,
Bd. 2, pp. 431 – 440.
STRUVE, F. G. W. (1831), Breitengradmessung in den Ostseeprovinzen
Russlands, Tl. 1. Dorpat.
STRUVE, F. G. W. (1860), Arc du méridien, t. l, Pétérsbourg.
TAYLOR, JOHN R. (1982), An Introduction to Error Analysis. Mill Valley, Calif.
TZINGER, V. YA. (1862), Method naimenshikh kvadratov. [Method of least
squares.] Thesis. Moscow, in Russian.
VOGLER, C. A. (1902), Lambert und die practische Geometrie. Berlin.
WATERHOUSE, W. C. (1990), Gauss’s first argument for least squares. Arch.
Hist. Ex. Sci.,vol. 41, No. 1, pp. 41 – 52.
WHITTAKER, E. T. & G. ROBINSON (1924/1958), Calculus of Observations.
London – Glasgow.
ZOCH‚ R. T. (1935—1937), On the postulate of the arithmetical mean. Annals
Math. Stat., vol. 6, pp. 171 – 182; vol. 8, pp. 177 – 178.



136

VI

Gauss, Bessel and the adjustment of triangulation

Historia Scientiarum, vol. 11, No. 2, 2001, pp. 168 – 175

    I am dwelling on Bessel’s indirect conflict with Gauss over the
adjustment of triangulation, a subject overlooked by Biermann [1966]
and other commentators, e.g., May [1972]. I begin by touching on
Biermann’s paper who discussed the relations between the two
scholars and provide my own relevant material in §§ 3 and 4. I also
have to explain the two main patterns of adjusting geodetic
measurements (§ 2), to formulate some conclusions and offer related
considerations (§ 5). Finally, I devote § 6 to several new unexpected
dramatis personae.

1. Biermann [1966]
    Bessel, as well as other scientists, felt that Gauss should have
publicly acknowledged the work done by his predecessors. In my
context, the evident example concerns Legendre’s priority in
discovering the principle of least squares (PrLSq)1, and Bessel (Felber
1994, p. 174, this being Bessel’s letter to Humboldt of 19.4.1844)
rhetorically asked, “Warum citiren nun viele Gauss und schweigen
von Legendre?” True, he did not fail to note either the [much] greater
significance of Gauss’s publication [of 1809], or that Gauss had
communicated the PrLSq to him (to Bessel) before Legendre’s
memoir appeared in print.2
    Bessel was disappointed at Gauss’s delays in publication and at his
devoting time to geodetic work in the field; moreover, in 1837 and
1839 Bessel spoke his mind and thus embittered Gauss.
Only in passing Biermann (p. 15) mentions the meeting between
Gauss and Bessel in 1825. Without documenting his remark, he states
that Gauss’s “herbeigewünschten Aussprache” did not take place “da
noch mehrere Astronomen anwesend waren”. Bruhns (1869, p. 108n)
reported something else:

Das Zusammentreffen zwischen Gauss und Bessel wird weder in
dem Briefwechsel zwischen Gauss und Schumacher, noch zwischen
Olbers und Bessel erwähnt; ich habe die Nachricht von einem
Ohrenzeugen, der auch erwähnte, dass Gauss Bessel wegen
wissenschaftlicher Meinungsverschiedenheit sehr hart angelassen
hätte.
    The subject of disagreement remains however unknown.

2. Adjustment of geodetic observations
    Two main versions of adjusting redundant geodetic observations in
accord with the PrLSq were elaborated in the early 19th century. Since
the approximate values of the magnitudes sought were almost always
known, both issued from linear systems of “physically” (hence,
linearly) independent equations.
    1. The pattern of indirect observations [Legendre 1805]. Given, a
system of equations
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 Li = aixl + bix2 + … + si = 0, i = l, 2, …‚ n                   (1)

with coefficients indicated by the appropriate theory and measured
free terms. An acceptable solution will render

aixl + bix2 + … + si = vi                                                  (2)

with small residuals vi  The least-squares solution is obtained from the
condition

W = ∑vi
2= min                                                              (3)

which leads to the “normal” equations

1 2

... 0.W W
x x

¶ ¶
= = =

¶ ¶

    Two examples are: a) Determination of the two parameters of the
earth’s ellipsoid of rotation by redundant meridian arc measurements;
    b) Determination of the unknown coordinates of a station in the
field by redundant measurements of angles at this station between
other stations with given coordinates (the so-called Potenot problem)
[Gauss 1823].
    2. The pattern of conditioned observations. Equations (1) and
additional linear conditions

Mj = αjxl + ßjx2 + … + qj = 0 , j = l, 2, …, + r            (4)

are given, and the requirement (3) now becomes

W+ ∑λjMj =min.

    The problem is thus solved by the classical method of Lagrange
multipliers. When describing his forthcorning pertinent contribution
(of 1828) Gauss [1826‚ p. 200] had indeed noted that

Dieser Fall von dem anderen [see Item 1] nicht wesentlich, sondern
bloß in der Form verschieden ist.
    The free terms in (4) are the calculated discrepancies between
observation and theory; for example, between the sum of the three
measured angles of a triangle and the theoretical sum, or a similar
difference between the measured length of the second baseline
(considered error-free) and the same length calculated from the first
baseline through the connecting chain of triangles.
    When adjusting a triangulation, most or even all the equations (1)
are of the form

xj – qj = 0                                                                     (5)
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where qj > 0 is the measured (but not yet adjusted) value of angle j and
pattern 2 becomes simple enough which explains why it became
popular in geodesy.
    Strange as it seems, the first to describe the adjustment of
conditional observations as shown above was apparently Helmert
[1872, p. 197]. Neither Gauss, nor Bessel (my §§ 3 and 4) provided a
readily understandable account.
    I ought to emphasize that Adrain [1808], described an adjustment of
a traverse with measured azimuths and lengths of sides. In actual fact,
he issued from equations of the type (4) with equations (5) being
implied. His notation and exposition were clumsy; his
contribution became known only by the end of the 19th century; and
most commentators reasonably paid attention to Admin’s main result‚
to his (not at all rigorous) derivation of the normal law of error rather
than to his adjustment procedure. Hogan [1977] apparently proved
that Adrain’s paper had actually appeared in 1809. Also see Hammer
[1900], Sheynin [1965] and Dutka [1990].

3. Galloway [1844]
    Thomas Galloway (1796 – 1851) was a mathematician, astronomer
and actuary, Fellow of the Royal Society. Here is his letter to Bessel.
London, March 12, 1844.

My dear Sir, I have had the pleasure of receiving your kind letter
dated the 22nd of January last,3 and I beg to thank you, very sincerely,
for the remarks with which you have honoured my Memoir on a
portion of our English Survey. I[n] drawing up this paper I have no
hope of being able to throw any new light on a subject which had
passed through your hands; but it occurred to me that at this
particular time I might possibly do some small service to Geodesy by
calling the attention of my countrymen, through the Astronomical
Society, to your methods, and giving an easy example of their
application.
    At present the results of the observations made in the course of our
Ordnance Survey for determining the British Arc of Meridian, through
its whole length from Dunnose to Balta (in Shetland) are preparing
[are being prepared] for publication; and we have a Survey going
forward at the Cape of Good Hope from which we may expect to have,
ere long, a considerable extension of Lacaille’s Arc.4 As there is every
reason to expect that in these two great operations the observations,
both astronomical and geodetic, will have a very high degree of
precision, it is particularly desirable that the computations should be
made in such a manner as to preserve to [for] the results all the
weight which the excellence of the observations is capable of giving
them; and this, I am of opinion, can only be done by adopting the
methods of computation which you have so fully explained in the
Gradmessung [Bessel 1838a]. Fortunately, these two Surveys are
under the direction of men who understand their subject too well to
require any assistance, but it is of some advantage to computers to
have the method explained in their own language, and an example
worked out at length from Observations with which they are familiar.
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With respect to the two passages which you have been so good as to
point out as not quite accurate, I must beg to apologize for them as
follows: In alluding to Struve’s5 method of observing my object was
simply to call attention to the important advantage which arises from
observing every signal visible from the station where the instrument
is placed, instead of taking only particular angles, as was the usual
practice in the early part of our Survey. Having little practical
acquaintance with these matters, and this mode of observation not
having been used with respect to the observations I have undertaken
to calculate, I did not perhaps sufficiently advert to the difficulty which
will immediately arise when the signals are not all visible
contemporaneously, and which is only to be overcome by having
recourse to the method you have explained in §§ 22 and 26 of the
Gradmessung [see my § 5].

As to my citation of your measure of the Prussian degree as an
Example of Gauss’s formula, it is very clear that I have carelessly and
inadvertently used the words Gauss’s formula for “general method”. I
feel greatly obliged to you for noticing this error, for as the volume of
the Memoirs in which the paper will appear is not yet published, the
mistake may be corrected in the Errata. Such mistakes are
unfortunate, inasmuch as the[y] tend to introduce confusion into the
history of discovery.
    At the last meeting of the Royal Astronomical Society the
translation of a Letter from you to Sir John Herschel, on the effect of
gravity in obtaining the shape of a meridian circle, was read and [one
word undecipherable] with great interest by the members present.

    I quote now from Galloway’s memoir [1846, pp. 28, 29 and 60n]
respectively.
    a) … previously to the publication of Gauss’s Supplementum
[1828], an equivalent and similar method was applied by Rosenberger
[1827] … and he … states that the method which he followed had
been long before communicated to him by Bessel.6
    b) The best example of the application of Gauss’s formulae is given
by Bessel, in his invaluable work on the measure of the meridional
degree in Prussia [Bessel 1838a], a work in which every thing
connected with the subject of geodetic measurements, and the
comparison of celestial and terrestrial arcs, is treated in the fullest
detail, and according to the best methods at present known. Another
example has also been recently given by Bessel in the calculation of
the triangles for extending the French arc of meridian through Spain
[Bessel 1841].7
    c) The form in which theory is here stated is the same as given by
Rosenberger [1827] …; a fuller development is however given by
Gauss [1828].
    This note seems to have been superfluous. Finally, here is the
Errata to the volume of the Memoirs, concerning p. 29:

for Gauss’s formula, read the general method. The formulae in the
work referred to are due to Bessel.
    In the last instance, Galloway again apparently thought of
Rosenberger.
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4. Gerling [1861]
    Gauss’s student, Christian Ludwig Gerling (1788 – 1864), was an
astronomer and geodesist. In 1861, about 15 years after Bessel’s
death, he commented on two priority conflicts concerning the MLSq.
First he touched on the Legendre – Gauss strife and mistakenly
accused von Zach of failing to defend Gauss [Sheynin 1999, pp.
257 – 258 and p. 264, note 7].
    Gerling then went on to describe Bessel’s attempts to establish his
priority over Gauss in the adjustment of triangulation by least squares.
It occurs that in 1843, soon after Gerling’s treatise [1843] had
appeared, he became involved in an “ausführliche polemische
Correspondenz" with Bessel. The latter did not even mention Gauss
and claimed that “er [Bessel] doch zuerst über die Sache habe drucken
lassen”. He was offended by Gerling [1843, p. 32] who had adduced a
list of literature mentioning Legendre and Gauss and noting that
Encke had published an essay8 studying their work “mit Rücksicht auf
Arbeiten von Bessel und Hansen”.
    Gerling reasonably explained to Bessel that his list only contained
the sources which he had used in compiling his treatise, but Bessel
remained unsatisfied. Gerling also correctly indicated that although
[Gauss 1828] certainly appeared later than [Rosenberger 1827], the
description of the pertinent method was contained already in [Gauss
1826], and in Gauss’s letter to Gerling of 30.10.1823 [Gauss 1927, pp.
300 – 302], as I would add.
    Lastly, Bessel was vexed at Gerling’s failure to note his merits “um
Entwickelung der Wahrscheinlichkeits-Theorie". Gerling explained
that he had not required the use of the probable error (applied by
Bessel in 1815 and formally introduced by him in 1816) but Bessel
apparently remained_unhappy.9 Bessel hardly mentioned his attempt
at proving the central limit theorem (my§ l, note 1) to Gerling because
the latter’s treatise did not dwell on such topics at all, and it could be
doubted whether Bessel’s final complaint had anything to do with
probability theory excepting the probable error.

5. Conclusions and Related Considerations
    Thus, both Galloway (§ 3) and Gerling (§ 4) referred to Bessel
himself through Rosenberger [1827], and to Gauss [1828] with
Galloway properly mentioning “an equivalent and similar method”
and Gerling additionally citing [Gauss 1826]. Bessel’s claim seems
therefore unfounded or nearly so. In addition, he applied the PrLSq
much more formally than Gauss did; and he could have well
emphasized this difference instead of stressing the identity of their
methods.
    Such an attitude would have not however be advantageous for him.
Indeed, when measuring angles, Gauss hardly ever kept to any definite
number of observations, but he assigned equal weights to all the
angles.10 On the other hand, Bessel [1838a, §§ 15 and 34] measured
directions and included every visible (but therefore not every
adjacent) signal in one single set [Ibidem, §§ 22 and 26; mentioned by
Galloway, see my § 3]. He then formally calculated the (differing)
weights of the observed directions, and, unlike Gauss, jointly adjusted
all the measurements of a given network. His calculations thus had to
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be more difficult whereas the unavoidable systematic errors likely
corrupted the final results more than they did when the triangulation
was being adjusted in two stages (first, the stations, and then the
network as a whole).11

    Because of obvious organizational considerations, other
practitioners never followed the Gaussian method of observations.
The number of necessary measurements had to be established
beforehand. An additional argument here was that otherwise
systematic errors would have been excluded to a lesser extent.
However, networks continued to be adjusted in two stages, and in this
respect Bessel had, figuratively speaking, lost to Gauss; his approach
was all but forgotten.

6. New figures
    Gerling [1861], see my § 4, concluded his report by stating that
Schleiermacher in Darmstadt … auch selbstständig die
Ausgleichungsformeln aufgestellt hat.
    He referred to Eckhardt without providing an exact bibliographic
description. Here, however, it is [Eckhardt 1835, pp. 131 – 132]:

    Die Formeln zur Einführung der kleinsten Quadrate bei
geodätischen Rechnungen waren von Schleiermacher, nach eigenen
Ansichten, mit einer Genauigkeit und Eleganz, entwickelt worden, wie
man sie von diesem gewandten Analysten nicht anders gewohnt ist,
und der Wahrheit zur Steuer muss ich bekennen, ohne jedoch ein
Prioritätsrecht für meinen Freund hierdurch in Anspruch nehmen zu
wollen, dass alle diese Formeln bereits längst in meinen Händen
waren, ehe diese Anwendung öffentlich zur Sprache kam. Nur die
überaus weitläufigen Rechnungen, welche die Methode der kleinsten
Quadrate bei Dreiecksnetzen von einiger Ausdehnung verursacht,
hatten mich abgehalten, früher davon Gebrauch zu machen, bis ich
endlich so glücklich war, in Herrn Dr. Hügel einen Gehilfen zu
erhalten, der mit den nothwendigen theoretischen Kenntnissen
ausgerüstet, die erforderliche Gewandtheit im Zahlenrechnen verband
und Beharrlichkeit genug besaß, sich einer so langwierigen Arbeit mit
Ausdauer hinzugeben.

    After consulting the relevant volumes of two celebrated sources,
Poggendorf’s Biographisch-Literarisches Handwörterbuch and the
Royal Society Catalogue of Scientific Papers, I think that
    1. Hügel (whoever he was) hardly published anything on my
subject.
    2. The same holds for Ludwig Schleiermacher (1785 – 1844), an
author of a contribution on the influence of refraction on
“Kreismicrometer Beobachtungen” which appeared in 1808.
    Anyway, Eckhardt did not say that Schleiermacher (or he himself)
had introduced the pattern of conditional observations, whereas the
pattern of indirect observations was first publicly described by
Legendre [1805]. Nevertheless, recalling that Gauss published a
methodological note [1823] on the adjustment of a simple geodetic
construction, it is worthwhile to put on record that Schleiermacher
was apparently one of the first to work successfully on such problems.
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Notes
l. Hardly remembered is Legendre ’s later article [1814] where he reprinted his

original text. Bessel himself could have well been annoyed by Gauss’s response to
his study [1838b] of the behaviour of observational errors. Gauss (letter to Hessel
28.2.1839, W-8, pp. 146 – 147) indicated that he had read it “mit grossem
Interesse“ largely caused by the “Darstellung" rather than by the “Sache selbst”
which was familiar to him since many years ago. Bessel’s work was mainly devoted
to proving a version of the central limit theorem (a later term); according to modern
standards, it was proved by Chebyshev (not in full rigor)‚ then by Markov and
Liapunov. W-i is, generally, my abbreviation for Gauss’s Werke, Bd. i.

2. With regard to the latter statement I repeat [Sheynin 1993, p. 51] that Bessel
first made it in 1832, publicly. Bessel ’s attitude towards Gauss had indeed changed
over the years. On 29.9.1812, in a letter to Olbers (Briefwechsel zwischen W. Olbers
und F. W. Bessel, Bd. 1, Leipzig, 1852, p. 345. Hrsg., Ad. Erman), he stated that
Gauss “war doch der Erfinder der moindres quarrés.”

3. Sent to John Herschel, also see below. In my context, the published extract
from this letter is not interesting.

4. N. L. Lacaille (1713 – 1762), a French astronomer. In 1739 – 1740 he verified
the measurement of the meridian arc from Dunkirk to Perpignan.

5. Vasily Jakovlevich, or (Friedrich Georg) Wilhelm, von Struve (1793 – 1864), a
Russian astronomer and geodesist of German extraction.

6. 1 quote this author from his p. 1:
Bereits vor längerer Zeit teilte mir mein hochverehrter Lehrer, Herr Professor

Bessel, eine ihm eigenthümliche Methode mit, aus geodätischen Vermessungen die
wahrscheinlichsten Resultate herzuleiten.

7. With regard to adjustment procedures this contribution contained nothing new.
8. Encke [1834 – 1836, p. 186] mentioned Rosenberger [1827] and Gauss [1828]

on a par but followed the latter.
9. Now, in 1861, Gerling was able to mention Gauss's negative opinion about the

probable error voiced in a letter to Schumacher of 2.2.1825 (W-8, p. 143). On its
history see Sheynin [1979, § 4.4]. I did not find a single reference to this error in the
Gradmessung [Bessel 1838a]; on the contrary, it contained computations of the
mean square error not less than in eight sections.

10. See extracts from his field observations in Bd. 9 of his Werke. I discussed this
point elsewhere [Sheynin 1979, § 6.2; 1994, § 4.1; 1996, pp. 97 – 99]. And at least
in one instance Gauss [1927‚ p. 687, this being his letter to Gerling of 17.4.1844]
estimated the overall precision of his observations at several stations rather than at
each of them separately. Not trusting his own formula when the number of
observations was small (and, in any case, systematic errors were also present), he
preferred, apparently with due justification, to consider all of them equally reliable.

11. For large networks it is therefore better to accomplish this second stage step
by step: adjust each chain and replace it by the appropriate geodetic line; adjust all
these lines taken together; go back to the chains and adjust them definitively, cf.
Sakatov [1957, p. 438]. The introduction of geodetic lines instead of chains is
due to Helmert [Sheynin 1995, § 3.3].

Bibliography
Adrain, R., 1808: “Research concerning the probabilities of errors which happen in
making observations.” Reprinted in Stigler [1980, vol. 1]. S, G, 111.
Bessel, F. W., 1838a: Gradmessung in Ostpreussen. Berlin.
Bessel, F. W., 1838b: “Untersuchungen über die Wahrscheinlichkeit der
Beobachtungsfehler”. Abh., Bd. 2, pp. 372 – 391.
Bessel, F. W., 1841: “Über einen Fehler in der Berechnung der französischen
Gradmessung. Abh., Bd. 3, pp. 55 – 62.
Bessel, F. W.. 1876: Abhandlungen, Bde 1 – 3. Leipzig.
Biermann, K.-R., 1966: “Über die Beziehungen zwischen Gauss und Bessel”. Mitt.
Gauss-Ges. Göttingen, No. 3,  pp. 7 – 20.
Bruhns, C., 1869: J. F. Encke. Leipzig.
Dutka, J., 1990: “Adrain and the method of least squares”. Arch. Hist. Ex. Sci. vol.
41, pp. 171 – 184.



143

Eckhardt, C. L. P., 1835: “Vorläufige Nachricht von den geodätischen Operationen
zur Verbindung der Observatorien”. Astron. Nachr. Bd. 12, pp. 129 – 134. Also in
1834: Arch. ges. Naturlehre, Bd. 26 (= Arch. Chem. Meteorol., Bd. 8), pp.
297 – 308 which contained nothing else on my subject.
Encke, J. F., 1834 – 1836: Über die Methode der kleinste Quadrate”. Reprinted in
author’s Ges. math. und astron. Abh., Bd. 2. Berlin, 1888, pp. 1 – 200.
Felber, H.-J., Editor, 1994: Briefwechsel zwischen A. von Humboldt und F. W.
Bessel. Berlin.
Galloway, T., 1844: “Letter to F. W. Bessel of 12.3.1844”. Archiv, Berlin-
Brandenburgische Akademie der Wissenschaft. Bessel papers, No. 229.
Galloway, T., 1846: “On the application of the method of least squares to the
determination of the most probable error of observation in a portion of the Ordnance
Survey of England". Mem. Roy. Astron. Soc., vol. 15, pp. 23 – 69.
Gauss, C. F., 1823: “Anwendung der Wahrscheinlichkeitsrechnung auf eine
Aufgabe der practischen Geometrie". Abh., pp. 139 – 144
Gauss, C. F, 1826: “Supplementum Theoria Combinationis, Selbstanzeige”. Abh.,
pp. 200 – 204.
Gauss, C. F., 1828: “Supplementum Theoria Combinationis". German translation:
Abh., pp. 54 – 91.
Gauss, C. F., 1870 – 1930: Werke, 12 Bde. Göttingen a.o.
Gauss, C. F., 1887: Abhandlungen zur Methode der kleinsten Quadrate. Hrsg, A.
Boersch, P. Simon. Latest reprint: Vaduz, 1998.
Gauss, C. F., 1927: Briefwechsel zwischen C. E Gauss und Ch. L. Gerling. Hrsg., C.
Schaefer. Reprinted in Gauss’s Werke, Ergänzungsreihe, Bd. 3. Hildesheim, 1975.
Gerling, Ch. L. 1843. Die Ausgleichungsrechnung etc. Hamburg – Gotha.
Gerling, Ch. L. 1861: “Notiz m Betreff der Prioritäts-Verhältnisse in Beziehung auf
die Methode der kleinsten Quadrate". Nachr. Georg-August Univ. und Kgl. Ges.
Wiss. Göttingen, pp. 273 – 275.
Hammer, E., 1900: “Zur Geschichte der Ausgleichungsrechnung”. Z.
Vermessungswesen, Bd. 29, pp. 613 – 628.
Helmert, F. R., 1872: Die Ausgleichungsrechnung nach der Methode der kleinsten
Quadrate. Leipzig. Later editions: 1907 and 1924.
Legendre, A. M., 1805: Nouvelles méthodes pour la détermination des orbites des
comètes, Appendice. Paris.
Legendre, A. M., 1814. “Méthode des moindres quarrés”. Mém. Cl. sci. math. et
phys. Acad. Sci. Paris, t. 11, pt. 2, année 1810, pp. 149 – 154. Lu 24 Sept. 1811.
May, K. O., 1972: “Gauss”. Dict. Scient. Biogr., vol. 5, p. 298 – 315.
Rosenberger, O. A., 1827: “Über die, auf Veranstaltung der französischen
Academie, während der Jahre 1736 und 1737 in Schweden vorgenommene
Gradmessung”. Astron. Nachr., Bd. 6, No. 12,  pp.1 – 32.
Sakatov, P. S., 1957: Lehrbuch der höheren Geodäsie. Berlin. Orig. published in
Russian, in 1953.
Sheynin, O., 1965: “On the work of Adrain in the theory of errors”. In Russian.
S, G, 1.
Sheynin, O., 1979: “Gauss and the theory of errors”. Arch. Hist. Ex. Sci. vol. 20, pp.
21 – 72.
Sheynin, O., 1993: “On the history of the principle of least squares”. Ibidem,
vol. 46, pp. 39 – 54.
Sheynin, O., 1994: “Gauss and geodetic observations”. In this collection.
Sheynin, O., 1995: “Helmert’s work in the theory of errors”. Arch. Hist. Ex. Sci,
vol. 49, pp. 73 – 104.
Sheynin, O., 1996: The History of the Theory of Errors. Egelsbach.
Sheynin, O., 1999: “The Discovery of the principle of least squares”. Hist.
Scientiarum, vol. 8, pp. 249 – 264. S, G, 112.
Stigler, S. M., Editor, 1980: American Contributions to Mathematical Statistics in
the 19th Century, vols. 1 – 2. New York. No general paging. Reprints of original
papers of many authors



144

VII

The Theory of Probability:
Definition and Relation to Statistics

Arch. Hist. Ex. Sci., vol. 52, 1998, pp. 99 – 108

l. Introduction
    How did the founders of the theory of probability define it and its
aims? What were, and what are its relations with statistics? I discuss
these questions in §§ 2 and 3; and, in § 4, I dwell on the stochastic
theory of errors, which was once a chapter of probability and a source
of ideas for statistics, but later, as I shall argue, became a separate
entity under the dominion of statistics.

2. The Theory of Probability
2.1. The First Definition. Pascal (1963, pp. 101 – 103) was the

first to suggest a name for the new discipline whose elements emerged
as a scientific topic in his correspondence with Permat. In a letter of
1654 to the Académie Parisienne des Sciences (the predecessor of the
official Academy) he wrote about his desire to compile a treatise
devoted to the geometry of chance (La Géométrie du hasard).
However, he did not mention any other applications of the new ideas
and methods than the problem of points.
    Huygens prophetically remarked that the study of games of chance
lays the fondements d’une spéculation fort intéressante et profonde
(1657), but he was unable to provide a definition. Nevertheless his
correspondence and manuscripts, published during 1888 – 1920,
included discussions of games of chance and dealt with important
problems in the statistics of mortality.
    Montmort, before reading Jakob Bemoulli’s Ars Conjectandi
(1713), mentioned games of chance and les autres choses de la vie
and indirectly formulated his aims as offering des règles infaillibles
pour calculer les différences qui se trouvent entre diverses
probabilités (1713, p. ix). In addition he noted that [mathematical]
analysis is used only to discover des rapports constans & immuables
entre des nombres & des figures, whereas he will apply this discipline

Pour découvrir des rapports de probabilité entre des choses
incertaines & qui n’ont rien de fixe, ce qui semble fort opposé à
l’esprit de la Géomètrie (p. x).
    Jakob Bernoulli expressly defined the Ars Conjectandi sive
stochastice as the

Kunst so genau als möglich die Wahrscheinlichkeiten der Dinge zu
messen und zwar zu dem Zwecke, dass wir bei unseren Urteilen und
Handlungen stets das auswählen und befolgen können was uns besser,
trefflicher, sicherer oder rathsamer erscheint.

Darin allein beruht die ganze Weisheit des Philosophen und die
ganze Klugheit des Staatsmannes (1713, Ch. 2 of Part 4, p. 75).
    Bernoulli hardly thought of calculating the probabilities of events
by directly enumerating the appropriate favourable and unfavourable
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cases, or of equating, on the strength of his law of large numbers, the
theoretical probability of an event to its statistical counterpart. Yet we
may say that he was feeling his way to our modern definition (cf.
§ 2.4). His statement about the application of stochastic reasoning was
also in keeping with modern ideas.1
    If Bemoulli had any thought of applying the Ars Conjectandi to the
natural sciences, we have no documentation of that. Nevertheless the
above passage is important since it was the first definition of the
theory of probability.2 In agreement with this formulation Bemoulli
intended to apply the new theory to bürgerliche, sittliche und
wirthschaftliche Verhältnisse (see the title of the fourth Part of his
treatise), but he had no time. Some of his preliminary deliberations on
the issue can be found in his diary (1975)3.

2.2. Chance and Design. De Moivre called his main book on
probability The Doctrine of Chances (1718). The aims of this doctrine,
he stated, were to serve, in Conjunction with the other parts of the
Mathematics, as a fit Introduction to the Art of Reasoning (p. ii); to
help to cure a kind of Superstition, viz, that there is in Play such a
thing as Luck, good or bad (p. iii); but mainly to establish a due
comparison between Chance and Design (p. v).
    In 1718 he emphasized the last aim in his Dedication of the first
edition of his book to Newton. Although he did not consider any other
applications of probability than to games of chance and population
statistics (mortality and sex ratio at birth), De Moivre concluded his
Dedication by expressing the hope that the isolation of chance from
design will

Excite in others a desire of prosecuting these studies, and of
learning from your [Newton’s] Philosophy how to collect, by a just
Calculation, the Evidences of exquisite Wisdom and Design, which
appear in the Phenomena of Nature throughout the Universe. (1756,
p. 329).
    Yes, for De Moivre the Doctrine of Chances was indeed a tool for
distinguishing between chance and design by a just Calculation (and
comparison of the appropriate probabilities). Quite a few scholars can
be mentioned in this connection (e. g.. Derham, or Süssmilch) and
Pearson (1926, p. 552) correctly noted that
  De Moivre expanded the Newtonian theology and directed statistics

into the new channel down which it flowed for nearly a century.
    Unlike Montmort before him (§ 2.1), De Moivre, like Bayes after
him, considered probability as a part of pure mathematics, about
which his version of the ‘De Moivre – Laplace’ limit theorem clearly
testifies.

2.3. The Modern Term. Laplace dwelt on the use of probability in
his earlier memoirs stating that le plus grand nombre des phénomènes
can only be studied stochastically.

Dans l’impossibilité de les connaitre leurs différents degrés de
vraisemblance can be determined, en sorte que nous devons a la
faiblesse de l’esprit humain une des théories les plus délicates et les
plus ingénieuses des Mathématiques, savoir la science des hasards ou
des probabilités (1776, pp. 144 – 145, cf. 1786, p. 296).
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    It would be more natural to attribute the origin of the theory of
probability to positive rather than to negative circumstances, viz. to
the existence of stochastic laws. It was the impossibility of studying
most natural phenomena deterministically (as mentioned by Laplace
himself), and not the feebleness of the mind, that led to the
introduction of logical and subjective probability.
    Like De Moivre (§ 2.2), Laplace had to isolate chance from design;
more precisely, from order (he never mentioned divine will or
intervention). He had to study small effects to decide, for instance,
whether or not a certain observed magnitude significantly
differed from zero, i.e. whether it really existed (Laplace, 1812, p.
361; Sheynin 1976, Epigraph).
    Laplace coined the term Théorie des probabilités, for instance in
the title of his treatise (1812)4, but he did not define it; his celebrated
sentence, la théorie des probabilités n’est, au fond, que la bon sens
réduit au calcul (1814, p. CLIII), could just as well have been
formulated with respect to mathematics of his time in general.
    Laplace explained that the theory gave rise to new analytical
methods (largely invented by himself), demanded fine et délicate logic
and was extremely useful for studying the Philosophie naturelle et des
Sciences morales (Ibidem). And, of course, he actually proved the last
point by making important contributions to natural science (astronomy
in the first place) as well as, to a lesser extent, to demography.
    Laplace’s theory of probability belonged to applied mathematics,
although, as is the case with De Moivre (§ 2.2), some of his results are
of utmost importance for pure science. First, he apparently considered
himself an applied mathematician; thus, while introducing integrals of
complex functions, he expressed the hope that the géomètres
(1812/1886, p. 304) will become interested in this topic. Similar
passages occur elsewhere (1774, p. 62, 1812/1886, p. 365) and
Poisson justly remarked that for Laplace l’analyse  mathématique était
un instrument qu’il pliait aux applications les plus variées (1827, p.
20). Second, Laplace’s theory of probability was insufficiently
abstract. He did not introduce, even on a heuristic level, any notion of
a random variable; hence he was unable to study densities or
characteristic functions per se, so that his results did not admit of
development and the theory had to be created anew.
    By 1850 it had become clear that the contemporary theory of
probability did not belong to pure mathematics (Öttinger 1852 , pp. iii
and iv).5 Poisson proved most important theorems non-rigorously, just
as Laplace, but at the same time he (1812, p. 161) called Laplace’s
Théorie analytique (1812)

 Un Traité complet de la théorie des hazards dans lequel on
trouvera des méthodes uniformes et générales,
and even 25 years later he stated that the theory became une des
principales branches des mathématiques (1837, p. 1). With regard to
Laplace’s classic I note that, except for the central limit theorem, the
méthodes indeed pertained to mathematics in general.

2.4. The modern definition. According to a modern definition
(Prokhorov & Sevastianov 1971, p. 540) the theory of probability is a
mathematical science that enables one to determine the probabilities
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of random events if they are in certain ways connected with other
events whose probabilities are known. This is exactly what Chebyshev
(1845, p. 29) and Boole (1851, p. 251) stated more than a century
earlier, although Boole discussed propositions rather than events.6
    Von Mises (1928/1972, p. 36), the eminent critic of probability
theory, was of a somewhat different (and, regrettably, forgotten)
opinion: his definition mentioned collectives rather than events. At
present a collective is a random sequence, and I think that a modern
definition of probability theory should state that it studies random
variables, their sequences (e. g. Markov chains) and systems (e. g.
random vectors). After all, a random event is a particular case of a
random variable.
    Here I am going further than I went previously (1994, p. 337), I am
now stating in essence that from Chebyshev’s time mathematicians
have been developing the theory by ever more fully using the power
(Kolmogorov’s expression) of the concept of random variable.
    2.5. Pure or applied mathematics? Von Mises’ example is all the
more interesting since he insisted that the theory is eine
Naturwissenschaft gleicher Art wie die Geometrie oder die
theoretische Mechanik (1919b, p.58).7 He did have a point with
respect to probability, whose axiomatic construction occurred more
than two decades later, but his attitude towards geometry, which by
that time was axiomatized, was hardly sound. I also note that pre-
axiomatic probability theory was extremely useful for natural
sciences, civil life and demography.
    However, it belonged to applied mathematics. Chebyshev’s and
Boole’s definition of probability (§ 2.4) was not sufficient for
elevating it to the realm of pure mathematics, but its very appearance,
many decades before mathematics acquired its present more abstract
nature, is an interesting fact.

3. Statistics
    Poisson et al. (1835, p. 174) were the first to connect statistics
explicitly with probability by maintaining that the former was the
functioning mechanism of the calculus of probability. Quetelet, who
was the most influential statistician of his time, paid lip service to
probability theory; while advocating its use, he hardly ever applied it.
What is more, after his death (1874) German statisticians began
anathematizing him and declared that probability was not needed at
all. It was Bortkiewicz (1904) who opposed this line. It is true that
direct definitions of statistics did not (and do not) any longer
connect it with probability, but the link is still felt. Thus, Pearson
(1978, p. 3) stated that statistics is the application of mathematical
theory to the interpretation of mass observations.
    The relations between the two mathematical disciplines are fuzzy.
Von Mises (1964a, p. l) included statistics within probability theory:

Certain classes of probability problems … are customarily
designated as theory of statistics or mathematical statistics.
     Neyman (1950, p. 4) was of the same opinion, whereas
Kolnogorov (1948, p. 216) held that the theory of probability must be
considered its [he meant statistics] structural part. He (p. 218) added,
however, that
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The system of the main concepts of theoretical statistics … is still in
the making. Statistics only gradually ceases to be the applied theory of
probability.
    It is difficult to combine these two statements, but at in any case
Kolmogorov’s note (1948) was only an abstract of his report, and he
hardly ever repeated them. Drawing on my conclusion in § 2.4, I may
also venture to express Kolmogorov’s first statement in another way:
the study of random variables and their systems must be considered
the structural part of the interpretation of observations (of realizations
of the corresponding random variables).
    Nevertheless it is generally thought best to consider the two
disciplines as somehow separate, and m any case it is hardly natural to
unite entities differing from each other with respect to their
dependence or independence from induction or deduction. Indeed,
probability theory is based on deduction, but statistics, considered in
its entirety, is not altogether deductive since, for example, the
estimation of such magnitudes as statistical probabilities is inductive.
    No similar problem existed two hundred years ago when Laplace,
while actually discussing the statistical approach (but never using the
terms statistics or statistical), called it un nouvelle branche de la
théorie des probabilités (1781, p. 383). He repeated Lagrange’s
statement (letter to Laplace of 13.1.1775; Oeuvr., t. 14. Paris, 1892, p.
58).

4. The stochastic theory of errors
    The aims of the theory of errors include the choice of optimal
methods and circumstances of observations, the design of instruments
that enable us to use such methods, etc.; in other words, the theory, in
addition to its much better known stochastic branch, has a
deterministic branch as well. Below I discuss only the stochastic
theory of errors; I believe that the other branch belongs to
experimental design (understood in its wider sense).
    The stochastic theory of errors originated in the 18th century largely
at the hands of Simpson and Lambert. Simpson proved that, for
several laws of distribution, the arithmetic mean was preferable to a
single observation, and Lambert introduced the principle of maximum
likelihood. Thus, according to our modern point of view, the
stochastic error theory belonged, from its very beginning, both to the
theory of probability (Simpson) and to statistics (Lambert).
    The same statement is valid for the work of Laplace and Gauss as
well. Laplace applied a few different assumptions for deriving optimal
values of the constants sought. His main condition was that the
absolute expectation of the error should be minimal,
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    Here φ(x) was the density of the errors of observation, normal on
the strength of the central limit theorem whose several versions he
extremely non-rigorously proved. In 1809, after introducing statistical
considerations (the principle of maximum likelihood and the
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postulate of the arithmetic mean), he derived both the normal
distribution and the principle of least squares. In 1823, he applied an
alternative assumption (the condition of least variance) and again
arrived at the same principle (this time, the method of least squares).
    Thus, the stochastic theory of errors made use of its own theorems
and assumptions, but the theorems now belong to probability theory
and the assumptions were appropriated by statistics. My conclusion
that error theory (or treatment of observations) is a separate
independent discipline contradicts the opinion of several Russian
authors, e. g., Romanovsky (1955)8 or Bolshev (1989) who maintain
that the stochastic theory of errors belong to mathematical statistics9.
    Three circumstances strengthen my conclusion. First, the theory of
errors makes use of the notion of real value whereas statistics applies
it only occasionally. Second, contrary to the opinion of those authors
error theory has to study systematic errors.11 Statisticians attempt to
isolate them during exploratory data analysis which belongs to
theoretical but not to mathematical statistics. Bolshev not only
excluded this topic from error theory, but attributed it to data
processing which seems to be a stillborn counterpart of exploratory
analysis. Third, during the last few decades the theory of errors has
not developed as a chapter of statistics.
    I mention two contributions. Kemnitz (1957) noticed that many
actual series of geodetic observations possessed negative excesses
whereas Eddington (1933) had shown that the excess of a mixture of
normal laws was positive. Kemnitz explained the situation by
indicating that, complying with official manuals, practitioners had to
reject outlying observations and thus to make use of truncated normal
laws. This is an important conclusion although hardly interesting from
the theoretical viewpoint.
    The other writing is a survey Markuse (1985) of contributions on
the treatment of geodetic observations published in 1976 – 1984. It
convincingly proves that the theory of errors though certainly
important, is an applied discipline.
     Having originated as a chapter of probability theory, and remaining
extremely important for that discipline until the 1920s12, the theory of
errors does not belong to it anymore.

Later note
    I have mentioned Fourier’s (indirect) introduction of the notion of
true value. Now, I (2007) say that his innovation was left unnoticed
but that many authors independently from him and from one another
followed him. A corollary was also put on record: the unavoidable
residual systematic error is necessarily included in the true value.
    Second point. Pearson (1892, p. 15) stated that the unity of science
(I would say, of a definite science) consists alone in its method. For
statistics, it means that it is an independent science in spite of its
lacking a certain subject.
    Then, medical statistics is the application of the statistical method
to medicine, and the theory of errors, its application to the treatment of
observations (so that statisticians ought to be familiar with that
theory).
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    I have not found any definition of statistical method and I think that
it amounts to the arrangement and ordering of the statistical data and
that therefore that method is inseparably linked with statistical theory,
with mathematical statistics.

Notes

    1. Newton’s approach was much the same (Schell, 1960). '
    2. I am using this term because Bernoulli’s classical work embodied the first
elementary theory of probability.
    3. Recall also Leibniz’ celebrated opinion (1765, Bd. 2, p. 515):

Ich habe schon mehr als einmal gesagt, dass man eine neue Art Logik braucht,
die die Grade der Wahrscheinlichkeit behandelt.

4. He made use of other expressions as well. In the second livre of his book,
devoted to probability proper, the terms ‘Calcul’, and ‘Analyse des probabilités’ are
found as often as Théorie. In the Essai (1814) Calcul des probabilités occurs more
often than Théorie and Analyse taken together, whereas in the (later) Supplements
(1818c, 1819) to the Théorie analitique (1812) Calcul is already used almost
exclusively. On rare occasions (although not in these Supplements), Théorie‚ or
Analyse, or Science des hasards, and Science des probabilités, are also found.
    During 1888 – 1925 Bertrand, Poincaré and Lévy called their treatises Calcul des
probabilités, whereas its Russian equivalent, Ischislenie veroiatnostei, was the title
of Markov’s book (four editions, 1900 – 1924).
    5. Anticipating Hilbert by about 50 years, Boole argued that in order to “rank
among the pure sciences” probability theory should be “founded on principles of
axiomatic nature” (1854, p. 288). In 1880 Chebyshev (§ 2.4, note 6) made a small
heuristic step in the direction of an axiomatic theory.
    6 For that matter, Chebyshev himself (1880/1936, p. 148), perhaps in a somewhat
simplifying manner, argued that

The aim of the theory of probability is to determine the chances of the occurrence
of a certain event; the word ‘event’ means anything whose probability is being
determined.
    He continued: Thus, in mathematics, the term probability serves to denote some
magnitude that is to be measured. Note that he defined both terms, event and
probability, in an abstract manner.

7. Hilda Geiringer apparently did not convincingly describe Mises’ attitude; she
stated that, for von Mises, there were never two different theories [of probability],
one ‘pure’, the other ‘applied’, but one theory only, a frequency theory,
mathematically rigorous and guided by an operational approach. (von Mises 1964a,
p. v).

8. A prominent statistician and mathematician, creator of the Tashkent statistical
school.

9. In a previous note Romanovsky (1939, p. 726) argued, however, that the theory
of errors was a most important field of applying probability theory and did not
mention statistics at all. Western authors, whether statisticians or natural scientists,
hardly discussed this topic. They were apparently not interested in delimiting the
related scientific disciplines from each other or in defining their goals. Thus,
treatises on the adjustment of geodetic measurements published a few decades ago
(Rainsford 1957; Grossmann 1961) are highly disappointing in that they do not
dwell on the classical theory of errors.

10. Beginning with Fourier (1826, p. 564) whose definition was forgotten many
authors including von Mises (1919a, pp. 40 and 46) have stated independently that
this is the limit of the appropriate arithmetic mean. See Sheynin (2007).

11. It was Romanovsky’s considered view (1939b) that the error theory did not
study systematic errors.

12. Without the theory of errors Lévy’s main contribution on stable laws (1925),
as he himself had seen fit to remark, would have lost its raison d’être (Sheynin
1995, p. 104).
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