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Notation
    Notation S, G, n refers to downloadable file n placed on my website
www.sheynin.de   which is being diligently copied by Google
(Google, Oscar Sheynin, Home). I apply this notation in case of
sources either rare or those in my translation into English.
    I omit the unnecessary adjective in the term mathematical expectation
    L, M, R = Leningrad, Moscow, in Russian
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I

Newton and the Classical Theory of Probability

Arch. Hist. Ex. Sci., vol. 7, 1971, pp. 217 – 243

To the memory of my mother,
Sophia Sheynin (1900 – 1970)

Summary
    Probabilistic ideas and methods from NEWTON’S writings are
discussed in § 1: definition of probability, probabilistic method in
chronology, his ideas and method in the theory of errors and his
probabilistic reasoning on the system of the world.
    NEWTON’s predecessors and contemporaries and his influence
upon later scholars are dealt with in § 2. The section ends with
LAPLACE, whose determinism is seen as a development of the
NEWTONIAN determinism.
    An Addendum is devoted to LAMBERT'S reasoning on
randomness, to MAXWELL’s thoughts and to the influence of
DARWIN on statistics.

Abbreviations: PT abridged = Phil. Trans. Roy. Soc. 1865 – 1900
abridged. London, 1809.
    Todhunter = I. TODHIUNTER, History of the mathematical theory
of probability. Cambridge, 1865; New York, 1949, 1965.

1. Probabilistic Ideas and Methods in Newton’s Writings
    NEWTON left no direct contributions either to the theory of
probability, or its applications in games of chance1‚ demographic
statistics (or political arithmetic in general) or the theory of errors.
However, probabilistic ideas and methods enter his writings.

1.1. Definition of Probability. The so-called classical, prior
probability of an event (p), which had been actually introduced even
before the 17th century and by Newton, see below, is

,mp
n

=                                                                                (1)

where m is the number of chances (of cases) whereby the event can
happen‚ and n is the number of all possible chances (cases), and all the
chances are supposed equally possible.
    The posterior‚ statistical definition of probability of an event

μ ,
υ

p =                                                                                (2)

where μ is the number of observed occurrences of the event in ν
independent trials, had also been in general usage, at least beyond the
classical problems of games of, chance.
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    Definition (1) can only be applied when m and n are known which
is a severe limitation. Then all the n cases ought to be equally possible
(equally probable!) so that we find ourselves in a vicious circle. And,
for good measure, (1) is not a definition but a formula for calculation.
The second argument also applies to definition (2). Se also § 2.3.3.
    The concept of probability (2) is foreshadowed in GRAUNT’S
classical study2 and extensively used by HALLEY3. Lastly, geometric
probabilities, i. e. prior probabilities (1) with m and n being areas of
corresponding figures, had been in use as well as an extension of the
case of a finite number of outcomes. The first to use geometric
probability in a published work was possibly HALLEY. In the
memoir just mentioned (1693) he deduced probabilistic formulas
analytically and then, possibly following ancient mathematicians,
repeated his reasoning geometrically even in the three-dimensional
case. Nevertheless, he only considered figures which corresponded to
natural numbers whereas this restriction had not existed in Newton’s
earlier manuscript written sometime between 1664 and 16664.
    Newton does not mention Huygens, but WHITESIDE believes that
Newton discussed his De Ratiociniis5.
    If a ball randomly falls on a circle divided in two parts whose areas
are as 2:√5, then, as immediately follows from Newton’s reasoning,
these numbers are the terms of formula (1). NEWTON showed that
the geometric probability was capable of treating irrational
proportions of chances.
    Then NEWTON discussed the casting of a non-regular die but only
stated that

It [still] may bee found how much one cast is more easily gotten
than another.
     WHITESIDE reasonably believes that NEWTON

Clearly opts for a frequency theory of probability, that is, the
absolute probabilities are not given a priori but are to be determined
as the asymptotic limit of the numerical probabilities observed over a
succession of occurrences of a state.
    I disagree with the asymptotic limit which is only associated with R.
MISES6. But WHITESIDE’S opinion about NEWTON’S
recommendation of using probability (2) seems proper. Thus it seems
that in both examples NEWTON is concerned with generalizing the
concept of probability.
    The second example was followed by HAM (or by one of the
earlier anonymous translators of HUYGENS7) who inserted the
irregular die absent in the original text, then by SIMPSON8 who was
the first who analytically calculated the sought probabilities.
    The irregular die later appeared in the contributions of other
authors9.
    1.2. Probabilistic Method in Chronology. NEWTON
systematically used two methods for verifying the chronology of
ancient events. One of these was the classical method of computing
the dates of various astronomical phenomena put on record by ancient
chronologists. The other one, the first method mathematical in the
proper sense which was used in chronology and original with
NEWTON, was based on probability and both methods are applied in
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NEWTON's posthumously published book10 although I only discuss
the latter:

The Greek Chronologers … have made the kings of their several
Cities … to reign about 35 or 40 years a-piece‚ one with another;
which is a length so much beyond the course of nature, as is not to be
credited. For by the ordinary course of nature Kings Reign, one with
another, about 18 or 20 years a-piece: and if  in some instances they
Reign, one with another, five or six years longer, in others they Reign
as much shorter: 18 or 20 years is a medium.
    The length of reigns as derived by NEWTON from ancient
chronology are the mean lengths for the given dynasties, and
apparently NEWTON was unable to correct these lengths by allowing
for the correlation of the lengths of reign of consecutive kings. The
last interval (18 to 20 years) derived by NEWT0N from trustworthy
sources is essentially a statistical estimate of the corresponding
expectation. NEWTON used the same idea which underlies the law of
large numbers: a random variable (the time interval) should be
approximately equal to its expectation.
    The rejection of a 35 to 40 years’ length of reign on the basis of a
twice shorter expectation is quite reasonable. But of course NEWTON
did not possess a general statistical rule for the rejection of excessive
time intervals.
    NEWTON’S reasoning was not forgotten: he was quoted by
CONDORCET11, then by ELLISI2 and, lastly, by PEARSON13. The
last-mentioned provided two alternative methods (one of them is used
in the mathematical theory of life insurance and described by C. F.
TRUSTAM to whom a separate part of PEARSON’s article is due) of
developing NEWTON’S probabilistic idea, though owing to the lack
of relevant statistical data neither could be successfully employed
(PEARSON’S own remark).
    The whole story of NEWTON’S work on chronology and of the
scientific war between him and the French chronologists which began
with a pirate French edition of some of NEWTON’S chronological
calculations and NEWTON’S subsequent remarks14 is described by
MANUEL15, who, however, leaves the probabilistic argument hardly
noticed. So here is MANUEL (p. 34):

 The bombshell Newton hurled into the staid world of the
chronologists largely depended for its effect upon the scientific
prestige which he had won elsewhere.
    MANUEL (p. 35) also implies that the astronomical method in
chronology is largely due to NEWTON.
    1.3. Random and Systematic Errors. In one of his letters18

NEWTON explained the occurrence of discrepancies between
different experiments:
  There may be many various circumstances which may conduce to it

(to the discrepancy); such as are not only the different figures of
prisms, but also the different refractive power of glasses, the different
diameters of the sun at divers times of the year, and the little errors
that may happen in measuring lines and angles, or in placing the
prism at the window; though … I took care to do these things as
exactly as I could.
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    In the same letter (pp. 339 – 341) NEWTON notices the change of
the length of the sun’s spectrum with the brightness of the sky. Being
satisfied, however, with a crude estimate, he did not conduct special
experiments. (For one thing, there was no numerical measure of the
brightness of sky at his disposal.)
    In his astronomical correspondence NEWTON19 predicted the
dependence of the vertical refraction on the air temperature and
suggested corresponding corrections to observed altitudes.
    In other words, NEWTON clearly understood the inevitability of
random and systematic errors but did not explicitly distinguish
between them.
1.4. Design of Experiments. NEWTON’S Experimentum Crucis20

was the proof that the observed disproportion of the length and
breadth of the sun’s spectrum cannot be explained by unevenness in
the glass or other irregularities. This became evident after NEWTON
used a combination of two reciprocally located prisms.
The experiment is described in the Lectiones opticae (part 1, sect. 1)21,
and NEWTON repeatedly referred to it in his writings, especially in
connection with the ensuing discussion in which NEWTON’S
achievements were questioned. Strictly speaking, NEWTON’S proof
is of a physical, not statistical nature and therefore bears no direct
connection with the theory of errors. However, it is relevant to the
general idea of the design of experiments.
    NEWTON’S writings abound with reasoning on the design of
experiments. In his Lectiones22 NEWTON describes the measurement
of refractions ex Aere in quaelibet Media and notes that his mode of
measurement

Is easy and least prone to errors, especially if the prism’s angle is large and
accurately known, the quadrant large and accurate and the observations
(registrations) are made far from the prism where it is easier to distinguish the
greatly dilated colours.
    The boundaries between different colours of the sun’s Spectrum
were independently recorded by NEWTON and his friend23. The
discrepancies between these records were small, and NEWTON
obviously relied on his experiment.
     In his astronomical correspondence NEWTON24 expressed his
desire to receive unaltered, naked results of observations. One reason
for this was to secure for himself the possibility of subsequent
alterations in computations such as may be needed by a more
advanced theory. The other reason was to avoid possible mistakes in
computations undetectable if made by others.
    NEWTON also discussed the design of experiments in his various
letters25. Of some interest is the reasoning in his Lectiones26 where he
actually followed the practice of ancient astronomers of selecting
optimal conditions for observation, for observing the position of the
planets when they change their visible direction of motion.
    A short remark on the insignificant effect of small errors under
definite conditions is also contained in NEWTON’S Particular answer
to Linus’s objections27.
    1.5. Probabilistic Ideas in Astronomy. In the General scholium to
his Mathematical principles ...28 NEWTON asserted that the
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 Most beautiful system of the sun, planets, and comets, could only
proceed from the councel and dominion of an intelligent and powerful
Being.
    This idea is formulated more definitely in his treatise on Optics29:
  Whence is it that planets move all one and the same way in orbs

concentrick, while comets move all manner of ways in orbs very
excentric.
Then, in Query 31 (p. 261):

Now by the help of these principles, all material things have seem
to have been composed of the hard and solid particles … variously
associated in the first creation, by the counsel of an intelligent Agent.
For it became Him who created them, to set them in order.
    And, on the next page (p. 262):

 Blind Fate could never make all the planets move one and the same
way in orbs concentrick, some inconsiderable irregularities excepted,
which may have risen from the mutual actions of comets and planets
upon one another, and which will be apt to increase, till this system
wants a reformation. Such a wonderful uniformity in the planetary
system must be allowed the effect of choice. And so must the
uniformity in the bodies of animals.
    A reasoning follows (p. 263) which may well have occurred in
LAPLACE:
    As in Mathematicks, so in Natural Philosophy, the investigation of
difficult things by the method of analysis, ought ever to precede the
method of composition. This analysis consists in making experiments
and observations, and in drawing general conclusions from them by
induction, and admitting of no objections against the conclusions, but
such as are taken from experiments or other certain truths. For
hypotheses are not to be regarded in Natural Philosophy30. And
although the arguing from experiments and observations by induction
be no demonstration of general conclusions; yet it is the best way of
arguing which the nature of things admits of, and may be looked upon
as so much the stronger, by how much the induction is more general.
    To this reasoning, and to the reformation of the system of the world,
I return in § 2. I also add that if both directions of circulation are
supposed equally probable and if these directions are, for different
planets, independent, the probability that all the six planets known to
NEWTON should circulate in the same direction is (1/2)6 = 1/64. If,
finally‚ the existence of concentrick orbs is supposed independent
from the direction of circulation of the planets, the probability of the
simultaneous occurrence of both phenomena would not be higher than
(1/64)2 < 1/4000.
    An additional source of information about NEWTON’S reasoning
is a letter from W. DERHAM to CONDUITT dated July 18, 173331.
DERHAM wrote of a

Peculiar sort of Proof of God wch Sr Is: mentioned in some
discource wch he and I had soon after I published my Astro-Theology.
He said there were 3 things in the Motions of the Heavenly Bodies,
that were plain evidences of Omnipotence and wise Counsel. 1. That
the Motion imprest upon those Globes was Lateral, or in a Direction
perpendicular to their Radii, not along them or parallel with them.
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2. That the Motions of them tend the same way. 3. That their orbits
have all the same inclination.
    Probabilistic reasoning accompanied by calculations connected with
the wonderful uniformity in the planetary system were pursued by
DANIEL BERNOULLI and LAPLACE32. Neither referred to
NEWTON although both undoubtedly knew his point of view.

2. Newton’s Probabilistic Influence
    Almost the only pertinent reference to NEWTON is in
PEARSON’S33: the development of

Newton's idea of an omnipresent activating deity, who maintains
mean statistical values, formed the foundation of statistical
development through Derham, Süssmilch, Niewentyt, Price to Quetelet
and Florence Nightingale.
    And again:
    De Moivre expanded the Newtonian theology and directed statistics
into the new channel down which it flowed for nearly a century. The
causes which led De Moivre to his Approximatio34 or Bayes to his
theorem were more theological and sociological than purely
mathematical, and until one recognises that the post-Newtonian
English mathematicians were more influenced by Newton’s theology
than by his mathematics, the history of science in the 18th century, in
particular that of the scientists who were members of the Royal
Society, must remain obscure.
    That this reference to NEWTON is extremely important is obvious,
but to whom PEARSON referred when speaking about the deity,
who maintains mean statistical values? This idea certainly occurs in
DE MOIVRE (see below) and runs through all the works of
SÜSSMILCH, but mean statistical values just do not occur in
NEWTON? In 1971 E. S. Pearson answered my question on this
point:

 From reading [the manuscript of K. Pearson (1978)] I think I
understand what K. P. meant […]. He has stepped ahead of where
Newton had got to, by stating that the laws which give evidence of
Design, appear in the stability of the mean values of observations.
    2.1. Newton’s Predecessors. What is crucial in NEWTON’S
system of the world is his determinism, of which the LAPLACIAN
determinism is a further development. Most certainly NEWTON did
have predecessors. However, a really significant feature of
NEWTON’S determinism as opposed to the determinism of his
predecessors is the causality of NEWTON’S system of the world35.
    The concept of randomness was not foreign to ancient philosophers.
And a direct connection of necessity and randomness is a distinct
feature in EPICURUS and LUCRETIUS36. But starting with
ARISTOTLE37, it was generally accepted that random behaviour was
peculiar to the earthly domain, remote from perfection, and that as a
whole the world is ruled determinately. At the same time the
accursed problem of the free will arose. This was mentioned already
by LUCRETIUS (Ibidem), although without satisfactory explanation,
and, in post-classical times, by EULER38, JAKOB BERNOULLI (see
below), and LAPLACE, then by QUETELET (see below).
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    KEPLER also held that the world was determinate and strived to
establish the general deterministic laws of nature. Precisely the same
climate of opinion was characteristic of NEWTON and his
contemporaries. W. DERHAM (1657 – 1735), who was mentioned
above, held39 that the numerous examples of regularities observed in
nature could be explained only by an act of creation or, to put it
otherwise, by determinate laws:

Should we be so besotted by the devil, and blinded by our lusts, as
to attribute one of the best contrived (by the deity) pieces of
workmanship (i.e., man) to blind chance, or unguided matter and
motion, or any such sottish, wretched, atheistic stuff?
    Or (p. 194),  quoting GALEN, the Roman physician: the order of
teeth in man

 Must needs be the work of some wise, provident being; not chance,
nor a fortuitous concourse of atoms.
    The whole Astro-Theology40 of the same author was also conceived
as a demonstration of the being of God. And among other references
DERHAM repeatedly refers to CICERO'S De Natura deorum‚
apparently considering him as one of his predecessors.
    All of this in my opinion additionally testifies that not NEWTON
was the originator of determinism but, on the contrary, NEWTON’S
Principia had occurred at the right time and was mathematically
applied to supplement the general, prevalent idea of a determinate
world (see also below). And because of NEWTON’S general
influence, and, of course, because of the causality of his
determinism‚ this prevalent idea became associated with NEWTON.

2.2.1. Arbuthnot and De Moivre. JOHN ARBUTHNOT (1667 –
1735) was the first author to calculate (as NEWTON implicitly did
prior to him, see § 1.5) the odds of randomness versus necessity in a
problem later to become classical, about the probability of an
observed extreme pattern under a hypothesis of insufficient reason41.
    Had the probabilities of the births of both sexes been equal,
ARBUTHNOT argued, the predominance of the births of boys would
not have been observed in London 82 years in succession. He rejected
the hypothesis of a uniform distribution (equal probabilities, as he
understood it) of the birth of both sexes, not in favour of, say, a
binomial distribution (unequal probabilities, as he could have
understood it), since his conclusion was consistent with BERNOULLI
trials with a p slightly higher than 1/2, but in favour of a determinate
predominance of the birth of boys. Thus, like NEWTON, he
contraposed the uniform distribution with determinism at large (with
design).
    FREUDENTHAL42 holds that this article of ARBUTHNOT was the
first paper in mathematical statistics. This is hardly so because one of
N. BERNOULLI’S works, at least partly belonging to mathematical
statistics, was published even before43 and NEWTON’S reasoning on
the planetary system (though not a separate paper), if formalized, also
of course belongs to mathematical statistics.
    FREUDENTHAL (Ibidem) and KRUSKAL44 pointed out some
methodological difficulties inherent in studies such as those of
ARBUTHNOT (in particular, the impossibility of increasing the
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number of statistical observations). Borel45 also expressed doubts. He
thought that in cosmogony, as in studies related to the problem of the
origin of life on earth, probabilistic reasoning would not at present be
fruitful.
    Of course, since some satellites were found to move in the direction
opposite to that of all the planets and other satellites, the wonderful
uniformity in the planetary system had been somewhat disturbed.
    Now I notice two more known examples of such considerations: the
Jeans miracle (a large amount of heat can pass from a cold body to a
warmer one only by miracle) and the miracle des singes dactylo-
graphes (a purely random reproduction of a literary chef-d’oeuvre is
possible only by miracle)46. The last example, however, had already
been known in the 17th century47:

It would be folly to play twenty sous … against a kingdom on the
condition that we could gain the stake only if an infant arranging at
hazard the letters from a printing-office, should compose all at once
the first twenty lines of Virgil’s Aeneid.
    The same example, although in a simple form, occurred later in
D’ALEMBERT and LAPLACE: a man of sense would scarcely doubt
that letters forming the word Constantinopolitanensibus, or arranged
in alphabetical order, are arranged so on purpose48.
    I conclude with a quotation from A. A. COURNOT49 which shows
that in a sense NEWTON’S thoughts which were qualitative are of
course safer than those of ARBUTHNOT:
  Independamment de la probabilité mathématique … il y a des

probabilités non réductibles à une énumération de chances, qui
motivent pour nous une foule de jugements, et même les jugements les
plus importants; qui tiennent principalement à l’idée que nous avons
de la simplicité des lois de la nature, de l’ordre et de l’enchaînement
rationnel des phénomènes, et qu’on pourrait à ce titre qualifier de
probabilités philosophiques. Le sentiment confus de ces probabilités
existe chez tous les hommes raisonnables; lorsqu’il devient distinct,
ou qu’il s’applique à des sujets délicats, il n’appartient qu’aux
intelligences cultivées, ou même il peut constituer un attribut
du génie. Il fournit les bases d’un système de critique philosophique
entrevu dans les plus anciennes écoles, qui réprime ou concilie le
scepticisme et le dogmatisme, mais qu’il ne faut pas, sous peine
d’aberrations étranges, faire rentrer dans le domaine des applications
de la probabilité mathématique.
    This is by no means all there is in COURNOT’S works, which
merit special research. It is really remarkable that, at least until
recently, the greatest achievements in science were those based on
rather simple hypotheses and error-burdened observational series. As
EINSTEIN put it,

Der Herr Gott (= nature) ist raffiniert, aber boshaft ist er nicht.
 2.1.2. DE MOIVRE. He openly acknowledged his adherence to the

NEWTONIAN (determinate) philosophy. In the Dedication of the
first edition of his Doctrine of chances50 to NEWTON DE MOIVRE
declared his intention of giving a

Method of calculating the Effects of Chance … and thereby fixing
certain Rules, for estimating how far some sorts of Events may rather
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be owing to Design (= to determinate causes) than Chance … so as to
excite in others a desire of … learning from your (= NEWTON'S)
philosophy how to collect, by a just Calculation, the Evidences of
exquisite Wisdom and Design, which appear in the Phenomena of
Nature throughout the Universe.
    Essentially, this is a declaration of the goals of the theory of
probability, which DE MOIVREe evidently considered a
mathematical discipline with direct applications to exact sciences and
demography. Possibly because of his personal hardships DE MOIVRE
himself applied probability only to games of chance and annuities on
lives, but he repeatedly confirmed his point of view in his
Approximatio.
    There DE MOIVRE found evidence of exquisite wisdom and design
in demography. Referring to N. BERNOULLI, he notices that the
births of both sexes in London are to each other as 18:17 and that with
a total of n births annually the study of relative frequencies of births is
tantamount to the study of n castings of a 35-faced die. More
important, DE MOIVRE (p. 253) insists that

The facilities of production of the two sexes or, if you will, the Form
of the die is the Effect of Intelligence and Design.
    What, then, did DE MOIVRE consider to be random? No concept
of a random quantity, even of a heuristic kind occurs in his writings.
Consider the example of the just described binomial distribution
which, as it is seen, he supposed to be a feature of a determinate
phenomenon, and also his Remark 1 (p. 250), which appears after
some numerical calculations connected with the “integral De Moivre –
Laplace limit theorem”. They suggest that he would have thought that
a frequency curve was a curve of a determinate phenomenon in
which only empirical deviations from that curve were random. Here is
that Remark:

Chance very little disturbs the Events which in their natural
Institution were designed to happen or fail, according to some
determinate (sic!) law.
    This was perhaps one of the reasons why the definition of a random
quantity as “dependent on chance” and possessing a certain law of
distribution had not appeared in LAPLACE (see below).
    Lastly I note DE MOIVRE’S obscure reasoning on chance in
atheistical writings (p. 253):
    Chance, as we understand it, supposes the Existence of things, and
their general known Properties: that a number of Dice, for instance,
being thrown, each of them shall settle upon one or other of its Bases.
After which, the Probability of an assigned Chance, that is of some
particular disposition of the Dice, becomes as proper a subject of
Investigation as any other quantity or Ratio can be.
    But Chance, in atheistic writings or discourse, is a sound utterly
insignificant: It imports no determination to any mode of Existence;
nor indeed to Existence itself, more than to non-existence; it can
neither be defined nor understood: nor can any Proposition
concerning it be either affirmed or denied, excepting this one, “That it
is a mere word.”
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    I return to this passage below, but note here that a comparison of
different fragments of the Approximatio suggests that DE MOIVRE
used the word chance in two different ways. Possibly this was the
reason that BAYES stated that by chance he meant the same as
probability51.

2.2. Bentley. In 1692 R. BENTLEY (1662 – 1742), the future
eminent theologian and member of the Royal Society, delivered a
series of sermons, which were the first BOYLE lectures designed to
prove Christian religion against infidels. Some of these sermons were
necessarily devoted to astronomy, and BENTLEY had to use the
newest NEWTONIAN ideas and approached NEWTON to
clarify some of his doubts. Thus it happened that BENTLEY became
the first populariser of NEWTON.
    NEWTON favourably responded to BENTLEY, answered his
letters and somewhat explained his reasoning on gravitation. But my
goal is to describe BENTLEY’S understanding of chance52:

In the Atheistic Hypothesis of the World’s production, Fortuitous
and Mechanical must be the self-same thing. Because Fortune is no
real entity nor physical essence, but a mere relative signification,
denoting only this; That such a thing said to fall out by Fortune, was
really effected by material and necessary causes; but the Person, with
regard to whom it is called Fortuitous, was ignorant of those Causes
or their tendencies, and did not design nor foresee such an effect …
    But thus to affirm, that the World was made fortuitously, is as much
as to say, That before the World was made, there was some Intelligent
Agent or Spectator; who designing to do something else, or expecting
that something would be done with the Materials of the World, there
were some occult and unknown motions and tendencies in Matter,
which mechanically formed the World beside his design or
expectation. Now the Atheists, we may presume, will be loth to assert
a fortuitous Formation in this proper sense and meaning; whereby
they will make Understanding to be older than Heaven and Earth.
    Then BENTLEY explains his own point of view:

All events called Casual, among inanimate Bodies, are … produced
according to the determinate figures and textures and motions of those
Bodies; with this negation only, That those … Bodies are not
conscious of their own operations.
    It is true that the most authoritative representative of atheism in
those times, HOBBES53, held that by definition fortuitous means
something whose necessary causes are unknown. But this was also the
point of view of JAKOB BERNOULLI and LAPLACE and could be
traced at least to THOMAS AQUINAS (see below).
    What is more, it seems that BENTLEY’S criticisms were directed
against what was later called subjective idealism, usually ascribed to
BENTLEY’S compatriot and junior contemporary G. BERKELEY,
also notable for his struggle against atheism and materialism. In at
least one of his works54 we find the same attribution of casualty to
atheists.
    Now, however, I am primarily concerned not with BENTLEY55 or
BERKELEY but with DE MOIVRE, and am satisfied to conclude that
it seems rather reasonable that he being also influenced by NEWTON,
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denounced casualty as opposed to NEWTON’S determinism, and that
seeing no casualty in nature he also equated it with ignorance of
necessary causes. And this, as I noticed before, was in my opinion the
reason that DE MOIVRE did not consider a binomial distribution
(§ 2.1.2) as a distribution of a random quantity. Nor, except for the
uniform distribution (binomial distribution with p = 1/2), did he
consider any distributions as such. Thus in his works, as in
ARBUTHNOT’S memoir, the uniformly distributed random quantity
is opposed to determinate quantities in general56.
    The uniform distribution was the only used in natural science prior
to DARWIN and BOLTZMANN, see FREUDENTHAL57, who
relates its reason

To the old controversy whether the world has been created … by
chance or by reason. The latter party held that by chance all things
are equally probable, and so chance can only create a chaos.
    I supplement FREUDENTHAL by holding that the uniform
distribution was opposed to determinism at large. But other
distributions, notably the triangular ( SIMPSON, 1756 and
and 1757) and the normal ones, were used in the theory of errors
(which however is not a natural scientific discipline) long before
DARWIN and BOLTZMANN. As to NEWTON’S irregular die
(§ 1.1), this was an important methodological example though not
applied to natural science.
    I return to DARWIN and the theory of errors in the Addendum.
    LAMBERT58 also mentioned the case of equal probabilities:

Die gleiche Möglichkeit aber gründet sich, auch bey der weisesten
Einrichtung des Laufs der Dinge in der Welt, auf die Menge einzelner
Ursachen, die bey den Glücksspielen … jede nach ihren eigenen
Gesetzen so zusammentreffen, dass sie eben so leichte den einen Fall
als den andern hervorbringen‚ und bey Fortsetzung des Spieles
einander compensiren59. Dadurch aber kommt jeder Fall desto
häufiger vor, je wahrscheinlicher er an sich ist.
    And elsewhere he60 stated that

Bey Voraussetzung des blindes Zufalles eine durchaus gleiche
Möglichkeit aller Fälle annimmt.
    Obviously considering the blind chance incogitable‚ he even
compared it with 1.-
    Without mentioning equal possibilities but possibly bearing them in
mind, EULER61repeatedly stated that the pur hazard could not have
been able to create the world. The most interesting in this respect is
letter 44 from vol. 162:

Cependant les Athées ont la hardiesse de soutenir que les yeux
aussi bien que le monde tout entier, ne sont que l’ouvrage d’un pur
hazard.

Pur hazard is the same as blinder Zufall. This is obvious, but I
 quote LAMBERT63:

Nennen wir diese Reihe einen durchaus oder absoluten blinden
Zufall, blindes Ungefähr, einen Casum purum, le pur hazard etc.
    Had LAMBERT an intention of including an English equivalent, he
would possibly have had nothing against using DERHAM’S blind
chance or blind Fate.



15

    2.3. Laplace
2.3.1. Laplacian Determinism.
Une intelligence qui, pour un instant donné, connaitrait toutes les

forces dont la nature est animée et la situation respective des êtres qui
la composent …
    This passage64 is quoted ad nauseam and led to the appearance of
the special term, Laplacian determinism, in which randomness was
only allowed out of ignorance. Indeed, on p. viii LAPLACE
continues:

La courbe décrite par un simple molécule d’air ou de vapeurs est
réglé d’une manière aussi certaine que les orbites planétaires: il n’y a
de différence entre elles que celle qu’y met notre ignorance.
    One is tempted to explain this determinism by LAPLACE’S own
achievements in astronomy: he succeeded to explain almost all the
known motions of celestial bodies of the solar system by a single law,
the law of gravitation. Furthermore, he proved (or thought he proved)
the stability of the solar system, thereby refuting NEWTON’S idea65

of a deity needed to execute reformations.
    Even at the very beginning of his career LAPLACE made
essentially the same remark as quoted above on the état de l’univers66

and therefore
 Determinism and a strictly causal view of change in nature leaving

no room for arbitrariness or lawless intervention, were in fact the
metaphysical presuppositions with which he began his career.
    This is the remark of R. HAHN67 who also quotes from the 1773
memoir and notices that the source of inspiration for LAPLACE was
CONDORCET.
    LAPLACIAN determinism is not LAPLACIAN at all, as shown in
§ 2.2. In particular, the relation of randomness to ignorance was the
prevalent idea of thinkers beginning at least with THOMAS
AQUINAS68, and in the theory of probability the first to advocate this
idea was JAKOB BERNOULLI69. He distinguished randomness
(contingens liberum) quod ab arbitrio creaturae rationalis …
dependet and randomness proper (contingens fortuitum et casuale)
quod à casu vel fortuna dependet and asserted that random events
depend on potentia remota, non proxima, whose action is either
impossible or difficult to consider. Thus, contingency mainly depends
on our knowledge (p. 213).
    One of the corollaries of the Laplacian determinism had possibly
been the absence of a formalized conception of a random quantity in
his works (as also was the case with DE MOIVRE). Repeatedly
introducing various laws of distribution, noticing their general
properties70, calculating their convolutions71 etc., LAPLACE
nevertheless each time kept himself within the bounds of his specific
problems and therefore left behind him no general discussion of these
laws per se.
    As a sideline‚ I notice that LAPLACE, frequently used the so-called
BAYESIAN conception, which allows the estimation of the behaviour
of a random quantity by its prior distribution. Sometimes he
considered that an unknown but constant parameter possessed a prior
distribution, thereby equated it with a random quantity72.
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This is also seen in LAMBERT (see the Addendum) and possibly in
other scholars and at that time it obviously did not lead to confusion.
Similarly DANIEL BERNOULLI did not distinguish a random
quantity and its expectation, although no one noticed it73.
    Lastly LAPLACE extensively used what I shall call statistical
determinism, or stability of mean statistical values. It was introduced
by GRAUNT and others (in § 1.2 I noticed a glimpse of this idea in
NEWTON) and mathematically treated by JAKOB BERNOULLI (the
law of large numbers), but LAPLACE was the first to use the stability
of mean values for the solution of mathematically rather difficult
problems (in demography and natural science). What is more, he74

definitely noticed this statistical determinism in voluntary acts, thus
anticipating QUETELET: a government-sponsored lottery is just
another tax:

On dit encore que cet impôt est volontaire. Sans doute il est
volontaire pour chaque individu; mais, pour l’ensemble des individus,
il est nécessaire; comme les mariages (!), les naissances et tous les
effets variables sont nécessaires, et les mêmes à peu près, chaque
année, lorsqu’ils sont en grand nombre; en sorte que le revenu de
la loterie est au moins aussi constant que les produits de l’agriculture.
    He provided moral (and even fiscal) arguments for the suppression
of the lottery, as for example:

Qu’on se repelle ce qui a été dit mille fois contre l’immoralité de ce
jeu et sur les maux qu’il occasionne
    or that a grand objet is sacrificed in favour of petites considérations
fiscales.

2.3.2. Induction. LAPLACE’S classical achievements in astronomy
had been possible precisely because he applied the theory of
probability to estimate the statistical significance of observations
collected sometimes over many centuries. Thus, groping for laws and
successfully overcoming tremendous difficulties, he then proved them
deductively. LAPLACE describes this general method in a series of
his memoirs and also in his Essai philosophique (1814/1995, p. 112):

Analysis and natural philosophy owe their most important
discoveries to this fecund method which is called induction. Newton
was indebted to it for his binomial theorem and the principle of
universal gravitation.
    But induction alone is not sufficient (p. 113):

It is always necessary to corroborate it with proofs or by conclusive
experiments.
    This, then, is what I relate with the appropriate passage from
Newton in § 1.. And it was Jakob Bernoulli’s goal to elevate the
inductive, posterior probability (2) to the level of the deductive, prior
probability (1) which led him to his law of large numbers.

2.3.3. Theory of Probability. Like his predecessors (e. g., DE
MOIVRE and even LEIBNIZ) LAPLACE defines probability (1)
starting from equipossibility, which is presumed74a

Lorsque rien ne porte à croire que l’un de ces cas (chances) doit
arriver plutôt que les autres, ce qui les rend, pour nous, également
possibles.
  Or, LEIBNIZ75,
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C’est l’axiome, aequalibus aequalia, pour les suppositions egales il
faut avoir des considerations egales.
    That such a definition of probability as (1) is unclear was possibly
widely known although not stated until this century, when, for
example, MARKOV76, while introducing the (Laplacian) definition of
equipossibility, added that the definition is either insufficiently clear
or incomplete but that it is hardly possible to improve it. And so it
certainly was, within the classical theory. POINCARÉ, then
SMOLUCHOVSKI and BOREL77 also mentioned earlier that the
definition of probability is non-strict. And KHINCHIN78 remarked
that

Each author invariably reasoned about equipossible and
favourable chances, but endeavoured to leave this unpleasant subject
as soon as possible.
    But to the absence of causes. It occurs in LAPLACE’S various
memoirs and testifies not to his subjectivism but rather to his use of a
definite statistical method, an anticipation of the method of the null
hypothesis. Studying various observational series, LAPLACE
sometimes rejected the absence of causes. So, for example, when
studying the diurnal variation of the atmospheric pressure and having
at his disposal its morning and evening measurements for 400 days,
LAPLACE calculated the difference (q) between the sums of these
measurements and proceeds thus78a:

Pour déterminer avec quelle probabilité cette cause (of q ≠ 0) est
indiquée, concevons que cette cause n’existe point, et que la différence
observée q résulte des causes perturbatrices accidentelles et des
erreurs des observations.
    After calculating this probability, LAPLACE decided in favour of
the opposite hypothesis that the observed q was statistically
significant. Such was his general but not sufficiently formalized
method. Testing hypotheses, the master did not leave definitions of a
significance level, of errors of the first and second kind, etc.

3. Addendum
3.1. Lambert: Randomness. Without repeating what was said

about the random quantity it is worth noting that, contrary to the
theory of probability at large, in the theory of errors frequency curves
had been understood as laws of random phenomena (LAMBERT,
SIMPSON, then LAPLACE and GAUSS). And precisely GAUSS79

first formalized the notion of such curves. The development of the
notion of the random quantity (and equipossibility) in the beginning of
the 20th century is connected with POINCARÉ‚ SMOLUCHOWSKI,
MISES and BOREL. I will describe neither these nor still later
developments, but I feel it necessary to say a few words about
LAMBERT80. Blind chance

Schließt alles, was in den Reihen der Dinge und ihrer Ordnung,
Auswahl, Zusammenhang … heißt, schlechthin aus (§ 315)
and is contrary to absolute oder fatale Nothwendigkeit (§ 317).
    However, absence of Ordnung in these Reihen is not yet sufficient
evidence of randomness (§ 316) and (same section)

 Bey dem Zufall die Existenz der Unordnung desto wahrscheinlicher
je mehr an sich schon Unordnungen möglich sind, als Ordnungen.
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    Then (§ 318),
Umgeachtet bey dem blinden Zufall ebenfalls Ordnung in den

Dingen seyn kann, die Ordnung dennoch am unwahrscheinlichsten ist,
weil unzählig mal mehr Unordnungen als Ordnungen möglich sind.
    Four lines of digits 3.14159 … seem to be random and so are the
digits of square roots extracted out of incomplete squares (§ 319); how
should random series be distinguished from those formed by
necessary laws (§ 322)?
    The probability of the hundredth digit in the development of √2 to
equal five is 1/10 (§ 323); and (§ 327) locale Ordnung oder Ordnung
der Stelle nach should be distinguished from gesetzliche oder
regelmäßige Ordnung, oder Ordnung im Zusammenhänge.
    Thus, LAMBERT formulated important problems and interesting
considerations. Most interesting, it seems, are his thoughts (§ 316)
about the relation of disorder and randomness, which are qualitatively
linked to modern ideas81.
    The calculation of probability in § 323 means that LAMBERT, as
also BAYES and LAPLACE (§ 2.3.1), and as POINCARE82, did not
distinguish unknown constants from random quantities and thus to a
certain extent depreciated his own goal, which was precisely to
distinguish between randomness and order. (A modern discussion of
this problem is, for examples, in NEYMANN83.)
But then, even the posing of this problem was extremely important. If
all of LAMBERT’S works are considered, he is to be credited as the
first follower of LEIBNIZ who aimed to include the calculus of
probability in a general system of logic84. LAMBERT’S achievements
in the theory of errors are briefly discussed in my article85.

3.2. A Probabilistic World. I concluded the classical theory of
probability with LAPLACE. A new stage of its development and,
especially, of its use in natural science was reached in the 19th century.
    It is true that in the 18th century physics we already see a glimpse of
probabilistic ideas and methods (DANIEL BERNOULLI,
LOMONOSOV, BOSCOVICH), but the real breakthrough came with
MAXWELL and BOLTZMANN. In statistics, says MAXWELL86,
  We meet with a new kind of regularity, the regularity of averages,

which we can depend upon quite sufficiently for all practical
purposes, but which can make no claim to that character of absolute
precision which belongs to the laws of abstract dynamics.
    The laws of abstract dynamics (= LAPLACIAN determinism) were
later subjected to criticisms in that the impossibility of precise
knowledge of initial conditions implies that no absolute precision
could be ever contemplated87.
    SCHRÖDINGER88 gave a short and accurate description of the
introduction of the statistical method in natural science at large:

In the course of the last sixty or eighty years, statistical methods
and the calculus of probability have entered one branch of science
after another. Independently, to all appearance, they acquired more
or less rapidly a central position in biology, physics, chemistry,
meteorology, astronomy, let alone such political sciences as national
economy etc. At first, that may have seemed incidental: a new
theoretical device had become available and was used wherever it
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could be helpful, just as the microscope‚ the electric current … or
integral equations. But in the case of statistics, it was more than this
kind of coincidence.
    On its first appearance the new weapon was mostly accompanied
by an excuse: it was only to remedy our shortcoming, our ignorance
of details or our inability to cope with vast observational material. …
But … the attitude changes … the individual case is entirely devoid of
interest. … The working of the statistical mechanism itself is what we
are really interested in. … The first scientific man aware of the vital
role of statistics was C. Darwin. His theory hinges on the law of big
(!) numbers.
    Mentioning physics, SCHRÖDINGER obviously means, in the first
place, thermodynamics. As to DARWIN, the role of his theory in
establishing mathematical statistics is clearly noticed by the founders
of Biometrika:

A very few years ago, begins the editorial to the first volume of this
periodical89,

All those problems which depend for their solution on a study of
differences between individual members of a race or species, were
neglected. … The starting point of Darwin’s theory of evolution is
precisely the existence of those differences. … The first step in an
enquiry into the possible effect of a selective process upon any
character of a race must be an estimate of the frequency with which
individuals, exhibiting any given degree of abnormality with respect to
that character, occur. …
    These, and many other problems, involve the collection of statistical
data on a large scale.
    This editorial is preceded by a picture, on a separate plate, of
DARWIN’S statue at Oxford, complete with a caption Ignoramus, in
hoc signo laboremus. A second editorial follows90:

 The problem of evolution is a problem in statistics. … We must turn
to the mathematics of large numbers, to the theory of mass
phenomena, to interpret safely our observations. …
    May we not ask how it came about that the founder of our modern
theory of descent made so little appeal to statistics? … The
characteristic bent of C. Darwin’s mind led him to establish the theory
of descent without mathematical conceptions; even so Faraday’s mind
worked in the case of electro-magnetism. But as every idea of Faraday
allows of mathematical definition, and demands mathematical
analysis … so every idea of Darwin, variation, natural selection ...
seems at once to fit itself to mathematical definition and to demand
statistical analysis. Nor was the statistical conception itself entirely
wanting in Darwin’s work (an example follows). That Darwin's mind
did not work easily in mathematical lines is, perhaps, best evidenced
in … a letter of 1857. … But that he realised the importance of the
statistical method for his investigations is evidenced not only by this
very passage, but by several others ...91

    The biologist, the mathematician and the statistician have hitherto
had widely differentiated field of work. … The day will come … when
we shall find mathematicians who are competent biologists, and
biologists who are competent mathematicians.
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    Extremely interesting as these considerations are, the authors could
have added that after DARWIN the ancient – NEWTONIAN –
LAPLACIAN determinism, as far as biology was concerned, came to
an end. The uniformity in the bodies of animals (see NEWTON’S
reasoning in § 1.4) was no longer allowed to be the effect of choice.

Acknowledgement is due to Dr. M. V. CHIRIKOV for information
about the book of BYRNE (note 68), to Professor R. HAHN for
offprints of his works and to Professor W. KRUSKAL for comments
on the first version of this paper.
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by the method of exhaustive enumeration.
(F. N. DAVID, Newton, Pepys and Dyse: a historical note. Annals of sci., vol. 13,
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vol. 2. Providence, 1964, pp. 57 – 105 (p. 58). Mentioning this example without
referring to the exact source, A. YA. KHINCHIN called it

The celebrated example, due to Mises unsurpassed in validity and simplicity of
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COHEN assisted by R. E. SCHOFIELD. Cambridge 1958.
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23. I. NEWTON, An hypothesis explaining the properties of light, discoursed of
in my several papers. (1757). In: Papers and letters ..., pp. 178 – 199; see p. 192.

24. Correspondence, vol. 4, pp. 67 and 134.
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Correspondence, vol. 1, pp. 247 – 253, 269 – 271; vol. 2 (1676—1687). Cambridge,
1960, pp. 254 – 260.

26. Lectiones opticae, part 1, sect. 2, § 33, p. 278. The translation is again from
Russian.

27. I. NEWTON, Particular answer to Linus’s objections. (1676). PT abridged,
vol. 2, pp. 276 – 280. See p. 279.

28. Mathematical principles of natural philosophy. Cambridge, 1934. (A revised
reissue of the 1729 edition with a historical and explanatory appendix by FLORIAN
CAJORI.) The quotation is from p. 544.

29. Optics, or a treatise of the reflexions, refractions, inflexions and colours of
light. (Opera quae extant omnia, vol. 4. London, 1782, pp. 1 – 264. The date of the
original publication of this edition of the Optics is not stated, but there is an
Advertisement by NEWTON, dated 1717, so that this is likely a reissue of the 1718
edition mentioned in the British Museum Catalogue of Printed Books.) The
quotation is from part 1, book 3, qu. 28 (p. 237).

30. The generally known place concerning hypotheses is in the General Scholium
to the Principia (see p. 547 of the edition mentioned in note 28):

I have not been able to discover the cause of those properties of gravity from
phenomena, and I frame no hypotheses. (Hypotheses non fingo.)
    CAJORI (pp. 671 – 676) appends a lengthy explanation of how actually to
understand this phrase.

31. F. E. MANUEL, A portrait of Newton. Cambridge (Mass), 1968, p. 127. The
Astro-Theology to which I return below was first published in 1715.

32. A short account is in TODHUNTER, §§ 394 – 397 and 987.
 33. K. PEARSON, Abraham De Moivre. Nature, vol. 117, No. 2946, 1926,

pp. 551 – 552. This is a discussion with R. C. ARCHIBALD. For another reference
see note 13.

34. The memoir in which DE MOIVRE proved the “De Moivre-Laplace limit
theorems". DE MOIVRE inserted his English translation of this memoir in the
Doctrine of chances (first published in 1718) in its 1738 edition and in the
posthumous edition of 1756 (reprint: New York, 1967) in which that translation
(enlarged) occupies pp. 243 – 254.

35. M. BORN, Natural philosophy of cause and chance. Oxford, 1949.
36. CARUS (TITUS) LUCRETIUS, De rerum natura, vol. 1. London, 1886. See

book 2, lines 216 – 224, 251 – 262, 292 – 293.
37. E.g., De Partibus Animalium, I 1, 641b 15.
38. Lettres à une princesse d’Allemagne, t. 2 (1768), Letter 113. See p. 269 of

EULER’S Opera omnia, ser. 3, vol. 11. Turici, 1960.
39. Physico-Theology or a demonstration of the being and attributes of God from

his works of creation. Preached in 1711 – 1712. London, 1768 (the 13th edition). See
p. 313.
    A letter of DERHAM to NEWTON (1714) is referred to in D. BREWSTER,
Memoirs of the life of Newton, vols. 1 – 2. London, 1865. See p. 520 of vol. 2. In
this letter DERHAM asks NEWTON to honour his promise of giving castigations
for the third impression of the Physico-Theology.

40. Astrotheology or a demonstration of the being and attributes of God from a
survey of the heavens. Fourth edition, much corrected. London, 1721.

41. An argument for divine Providence, taken from the constant regularity
observed in the births of both sexes (1712). In M. G. KENDALL, R. L.
PLACKETT, editors (1977), Studies in history of statistics and probability, vol. 2.
London, pp. 30 – 34.

42. H. FREUDENTAL, 250 years of mathematical statistics. In: Quantitative
methods in pharmacology. Editor, H. DE JONGE. Amsterdam, 1961, pp. xi – xx.
See p. xi.

43. Specimina artis conjectandi, ad quaestiones iuris applicata. Basle, 1709 and
1711. See TODHUNTER, §§ 338 –341. BERNOULLI used the continuous uniform
distribution and an order statistic. Elsewhere (On the early history of the law of large
numbers. Biometrika, vol. 55, No. 3, 1968, pp. 459 – 467) I have erroneously
ascribed this distribution to DE MOIVRE.
    The appearance of the exponential function of the e–xx type, although implicit, is
also due to N. BERNOULLI (letter to P. R. MONTMORT dated Jan. 23, 1713,



23

published by the latter in his anonymous Essay d’analyse sur les jeux de hazard.
Paris, 1713, pp. 388 – 393).

44. W. KRUSKAL, Significance, tests of. Intern. Enc. of the Social Sciences,
vol. 14, 1968, pp. 238 – 250.

45. E. BOREL, Probabilité et certitude. Paris, 1956, § 56:
    Des observations analogues pourraient être faites au sujet des tentatives que l’on
pourrait imaginer, d’appliquer le calcul des probabilités aux problémes
cosmogoniques. Dans ce domaine également, il ne semble pas que les résultats que
nous avons exposés puissent être actuellement d’un grand secours.

46. E. BOREL, Probabilité et certitude, § 55 and Le hasard. Paris, 1914, § 112.
47. Logique de Port-Royal. (1662). An anonymous work of A. ARNAULD & P.

NICOLE. Quotation from English translation: Logic, or the art of thinking: being
the Port-Royal logic. Edinburgh – London, 1850. See chapt. 16, p. 360.

48. TODHUNTER, § 493.
49. Exposition de la théorie des chances etc., § 240, art. 8.
50. Doctrine of chances, 1718. Lacking in the second edition, this Dedication is

appended to the third edition (p. 329). All the following quotations are also from this
third edition.

51. An essay towards solving a problem in the doctrine of chances (part 1) (1763).
Biometrika, vol. 45, No. 3 – 4, 1958, pp. 296 – 315. See p. 299.

52. The letters of NEWTON to BENTLEY are published in NEWION’S Papers
and letters on natural philosophy. The same book contains an article on NEWTON
and BENTLEY by P. MILLER (pp. 271 – 278) and two of BENTLEY’S sermons
originally published in 1693. The quotations from BENTLEY are from this source
(pp. 316 – 318). The entire existing correspondence between BENTLEY and
NEWTON is published in NEWTON’S Correspondence, vol. 3 (1688 – 1694).
Cambridge, 1961.

53. T. HOBBES, Elementorum philosophiae, sectio prima (De Corpore), pars
secunda, caput 10, § 5. See his Opera philosophica. Amstelodami, 1668, p. 69 of the
Elem. Philos, separate paging.

54. Three dialogues between Hylas and Philonous (1713). In: The works of G.
Berkeley, vol. 2. Editors, A. A. LUCE & T. E. JESSOP. London, 1949. See Second
dialogue, p. 213.

55. COTES highly praised BENTLEY in his preface to the second edition of the
Principia (see the revised edition of NEWTON’S Mathematical principles, 1934):
   Newton’s distinguished work will be the safest protection against the attacks of

atheists. … This was felt long ago and first surprisingly demonstrated in …
discourses by R. Bentley. … For many years an intimate friend of the celebrated
author, …. he cared both for the reputation of his friend and for the advancement of
the sciences … he persuaded … the splendid man … to grant him permission for the
appearance of this new edition … at his expence and under his supervision. He
assigned to me the not unwelcome task of looking after the corrections.

56. It seems, though, that the case of the continuous uniform distribution, which
also appears in DE MOIVRE (see my article mentioned in note 43), is somewhat
different.

57. 250 years of mathematical statistics, p. xii.
58. Phänomenologie, § 152 (see note 9).
59. POINCARÉ later developed this seemingly natural outstanding idea.
60. Anlage zur Architectonic, Bd. 1. Riga, 1771. See §§ 314 and 324.
61. Lettres à une princesse, t. 1, 1768, letter 21 and t. 2, letter 113.

The general pattern of EULER’S philosophy is discussed, for example, by W. W.
KOTEK‚ Les tendances matérialistes dans les opinions de L. Euler sur le monde. (In
Russian.) Actes du XIe congrès international d’histoire des sciences 1965. Wroclaw,
1967, vol. 3, pp. 221 – 224.

62. Opera omnia, ser. 3, vol. 11, p. 100.
63. Anlage zur Architectonic, Bd. 1, § 311.
64. Essai philosophique sur les probabilités. (1814). Philosophical Essay on

Probabilities. New York, 1995. Translator A. I. Dale.
65. See quotation from p. 262 of NEWTON’s Optics in § 1.4.



24

66. P. S. LAPLACE‚ Recherches sur l’intégration des équations différentielles
aux différences finies, et sur leur usage dans la théorie des hasards (1773, published
1776). Oeuvr. Compl., t. 8, Paris, 1891, pp. 69 – 197. See p. 144.

67. R. HAHN, Laplace’s first formulation of scientific determinism in 1773. Actes
du XIe eongrès international d’histoire des sciences 1965. Wroclaw, 1967, vol. 2,
pp. 167 – 1 71. See also HAHN, Laplace as a Newtonian scientist. Booklet, Will.
Andrews Clark memorial library (Univ. of Calif., Los Angeles, 1967).

68. M. G. KENDALL, The beginnings of a probability calculus. Biometrika, vol.
43, No. 1 – 2, 1956, pp. 1 – 14. E. F. BYRNE, Probability and opinion. A study in
the medieval presuppositions of post-medieval theories of probability. The Hague,
1968, extensively discussed the role of THOMAS AQUINAS as the originator of
the medieval ideas on probability and their relation to some of the modern ideas.

69. Ars conjectandi, pars quarta, caput 1, p. 212. Bruxelles, 1968. (A
photographic reprint of the original 1713 edition.)

70. Mémoire sur la probabilité des causes par les événements. (1774). Oeuvr.
Compl. t. 8. pp. 27 – 65.

71. Mémoire sur l’inclinaison moyenne des orbites des comètes etc. (1773,
published 1776). Ibidem, pp. 279 – 321.

72. E. g.‚ Mémoire sur les probabilités (1778, published 1781). Ibidem, t. 9. Paris,
1893, pp. 383 – 485. In § 19 LAPLACE finds the probability that the possibility
(considered constant) of the birth of a boy is higher than 1/2. For a description of the
demographic works of LAPLACE see TODHUNTER §§ 902 and 1026.

73. Neither does TODHUNTER (§§ 410 and 417) offer any such comment.
74. Sur la suppression de la loterie. (1819). Oeuvr. Compl., t. 14. Paris, 1912, pp.

375 – 378.
74a. Théorie analytique, chapitre 1, p. 181. See also his Recherches sur

l’intégration des équations différentlelles (1773, published 1776). Oeuvr. Compl.
t. 8, pp. 69 – 197, see § 25.

75. Nouveaux essais sur l’entendement humain. Neue Abhandlungen über den
menschlichen Verstand. (Bilingual edition.) Bd. 2. Frankfurt/Main, 1961. See book
2, chapter 16, p. 514.

76. A. A. MARKOV, Ischislenie veroiatnostei (Calculus of probability).
Moscow, 1924, 4th edition, chapter 1, § 1, p. 2.

77. H. POINCARÉ, La science et l’hypothèse (1902). See his Foundations of
science. Lancaster, Pa. 1946, pp. 9 – 197, Science and hypothesis (p. 156).
    M. SMOLUCHOWSKI, Experimentell nachweisbare, der üblichen
Thermodynamik widersprechende Molekularphänomene. (1912). Oeuvres, t. 2.
Cracovie – Paris, 1927, pp. 226 – 251, § 2 of the article.
    E. BOREL, Le hasard, § 6.

78. The frequentist theory of Mises, part 1, p. 94.
78a. Théorie analytique, chapt. 5, § 25, p. 356.
79. Theoria motus etc. (1809). Werke, Bd. 7. Gotha, 1871. See § 175; Theoria

combinationis observationum etc, part 1. See also § 4.2 of my article mentioned in
note 43.

80. Anlage zur Architectonic, Bd. 1, §§ 314 – 344. See also notes 9 and 58 and my
article on Lambert in this collection.

81. E.g., A. N. KOLMOGOROV, On the logical foundations of the information
theory, 1969 (in Russian). Sel. Works, vol. 2. Dordrecht, 1992, pp. 515 – 519.

82. Science and hypothesis. See p. 159 of his Foundations of science.
83. J. NEYMANN, L’estimation statistique traitée comme un problème classique

de probabilité (1938). See his Selection of early statistical papers. Cambridge, 1967,
pp. 332 – 353. NEYMANN used a quite similar example (p. 337).

84. B. RUSSELL, A critical exposition of the philosophy of Leibniz. London,
1900,1937; L. C0UTURAT, La logique de Leibniz. Paris, 1901.

85. O. B. SHEYNIN, Origin of the theory of errors. Nature, vol. 211, No. 5052,
1966, pp. 1003 – 1004.

86. Molecules. (Nature, vol. 8). See his Scientific papers, vol. 2. Paris, 1927, pp.
361 – 378. Quotation is from p. 374. Throughout his writings MAXWELL
repeatedly refers to BOSCOVICH. For a description of BOSCOVICH’s
philosophical outlook see e. g. A. M. GODYTSKY-TSVIRKO, Nauchnye idei
Boshkovicha (Scientific ideas of Boscovich). Moscow, 1959.



25

D. M. IVANOVIC, Molecules, stars and Boscovic’s law. Atti del
Convegno internazionale celebrativo del 250 anniversario della nascita di R. J.
Boscovich etc. 1962. Milano, 1963‚ pp. 243 – 250, notices a glimpse of the
statistical method in Boscovich’s Philosophiae naturalis theoria, § 481.
    L. L. WHYTE, Boscovich’s atomism. In R. J. Boscovich. Studies of his life and
work. Editor, L. L. WHYTE. London, 1961, pp. 102 – 126, see p. 111, offers a
possible explanation for the lack of a developed kinetic theory of heat motions in
BOSCOVICH (and, for that matter, in the 18th century in general):

 Though Boscovich was in principle concerned with all possible arrangements and
modes of interaction of puncto (= atoms) he concentrated his attention on those
properties which appeared to him simplest and, though interested in the theory of
probability, he did not consider applying statistical methods to random motions.
    More important though could have been the general determinism inherent in
BOSCOVICH’s philosophy.
    The same source contains a contribution on BOSCOVICH’s work in the error
theory: C. EISENHART, Boscovich and the combination of observations (pp. 200 –
213). Its shorter version appeared in Actes du symposium international Boscovich
1961. Beograd, 1962, pp. 19 – 25.

87. See for example the first few pages of H. POINCARÉ, Science et méthode
(1908). (Science and method. In: Foundations of science, pp. 359 – 546.)
    Without mentioning the exact source, N. WIENER, The human use of human
beings. Cybernetics and society. New York, 1956, p. 8) notices that

There was, actually, an important statistical reservation implicit in Newton’s
work, though the 18th century … ignored it. No physical measurements are ever
precise; and what we have to say about a machine or other dynamical system really
concerned not what we must expect when the initial positions and momenta are
given with perfect accuracy (which never occurs) but what we are to expect when
they are given with attainable accuracy. … we know not the complete initial
conditions, but something about their distribution.

88. E. SCHRÖDINGER, The statistical law in nature. Nature, vol. 153, No. 3893,
1944, pp. 704 – 705.

89. Biometrika. A journal for the statistical study of biological problems. Edited
in consultation with Fr. GALTON by W. F. R. WELDON, K. PEARSON and C. B.
DAVENPORT. See vol. 1, pt. 1, 1901 – 1902. The scope of Biometrika, pp. 1 – 2.

90. The spirit of Biometrika, pp. 3 – 6.
91. Several quotations from DARWIN are given, notably this:
I have no faith in anything short of actual measurement und the Rule of three.

Afterword
    Some new sources are included in the Bibliography appended to
Sheynin (2017). Then, see Lambert’s collected works in the Afterword
to my paper about him in this collection. I have not seen the English
translation of the book of Hobbes (note 53): Elements of philosophy;
in his English works, vol. 1, 1839.

To note 6. Bayes also was Mises’ predecessor, see Sheynin (2017,
§ 5.2). To § 2.1.1. The first to introduce philosophical probabilities
was Fries (1842). Poisson. I have not mentioned him and ought to say
that he introduced the notions of distribution function and random
variable, advocated studies of the significance of empirical
discrepancies and studied subjective probability (Ibidem, Chapter 8).
  Low probabilities. I mentioned them in few places, but have an

important comment. Arbuthnot (§ 2.1.1), for example, thought that a
low probability of an event proves that it does not happen. The main
additional point here is that many possible outcomes can have the
same low probability but some of them are remarkable which
indicates their extreme rarity. The separation of events into ordinary
and remarkable can however be difficult.
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II

J. H. Lambert’s work on probability

Arch. Hist. Ex. Sci., vol. 3, 1971, pp. 244 – 256

Summary
    JOHANN HEINRICH LAMBERT (1728 – 1777) worked in different spheres of
mathematics and its applications, including optics, map projections, and geodesy,
and also in astronomy. In the theory of probability proper he is the author of a small
article and of a few posthumously published notes, and his work in this sphere
seems rather slight, but his philosophical reasoning in regard to probability are very
interesting.
    LAMBERT also published works on the then most important applications of
probability: demographic statistics and the theory of errors. His contribution to the
former, while essentially a commentary on the contributions of Daniel
BERNOULLI, nevertheless presents a methodical elaboration of the mathematical
foundation of this discipline. As to the theory of errors, LAMBERT should be
credited as the main predecessor of GAUSS.
    My §§ 1 – 3 are devoted to LAMBERT’S work in the theory of probability,
demographic statistics; and the theory of errors. There is no complete edition of
LAMBERT’S works [10], and his numerous articles are scattered in various
periodicals and not readily available. For this reason I do not claim to offer a
complete description, but the main deductions briefly stated above and
elaborated in the paper itself seem to be established beyond reasonable doubt.

1. Theory of Probability
    LAMBERT [22] calculated the probability of the realization of
"random” (unscientific) predictions, and thought that believers of such
predictions are superstitious. Formalizing the problem, he formulates
it thus: n letters are enclosed in n addressed envelopes (all addresses
different), one letter to each envelope, with an equal probability for
every (subsequent) letter to be enclosed in each of the (still empty)
envelopes. To find the probability that just r letters (0 ≤ r ≤ n) shall be
inserted correctly.
    N. BERNOULLI, EULER, DE MOIVRE and LAPLACE attacked
an equivalent problem for n =13 (the problem of treize or rencontre
see [35]). DE MOIVRE [30, p. 116] and then EULER [6] arrived at a
formula for the probability of the rencontre of r ≥ 1 cards:

    limProb = 1 – 1/e, n → ∞.                                                  (1)

    In 1819 THOMAS YOUNG, 1773 – 1829, a naturalist and a
historian, considered an equivalent problem about the coincidence of
words in two different languages and derived a general formula for the
probability when the number of coincidences was not less than r:

    limProb = 1
!er
, n → ∞

from which (1) at once followed and which, naturally, is the formula
of the POISSON distribution with unit parameter [11].
    LAMBERT partly devoted his writings [16] and [17] to the
introduction of subjective probability. He [16, § 76, p. 500] introduced
probability as a quantitatively expressed fraction of certitude. In [17]
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chapter 5 is devoted to the theory of probability. Here LAMBERT
explained the meaning of probable, of prior and posterior
probabilities, introduced inverse probability and discussed the
probability of testimonies of historical events. Leaving aside the
evaluation of LAMBERT’S general philosophical achievements in
mathematics [34], I notice that in substantiating the concept of
probability he followed an ancient tradition which can be traced back
at least to THOMAS AQUINAS and which manifested itself in J.
BERNOULLI and LAPLACE (relation of randomness to ignorance). I
also notice (and agree with) the general opinion that LAMBERT
should be credited as the first follower of LEIBNIZ, who aimed to
include the calculus of probability into a general system of logic.
    Voluminous literature is devoted to the concept of subjective
probability. I quote from a lesser known article [12]:

An estimation of the probability of any definite opinion which could
really be only true or false, only possesses a temporary and subjective
sense, conveys our attitude. But a subjective probability of a certain
event considered chosen from a series of events occurring under
reiterating conditions already possesses an objective sense.
    This, nevertheless, is far from being the last word and new ideas
continue to be introduced [13]. I [33, § 3.1] treated LAMBERT’S
philosophical reasoning on randomness and probability. In a word, his
contributions [17, § 152; 21‚ §§ 314 to 344] contain a qualitative link
with later works of POINCARÉ which explained the occurrence of
equipossibility and the uniform distribution in common cases and with
some modern ideas on the relation between the theory of probability
and information theory [13].
    An interesting feature in LAMBERT’S work is the problem of
randomness which he [21, § 311] supposes to arise out of ignorance:
    Das Nichtwissen der Gründe, welches bey uns sehr häufig
vorkömmt, und so auch das nicht vorhersehen des Erfolges, macht,
dass wir die Worte eines Ungefährs oder eines Zufalls dabey
gebrauchen. Aus diesem Grunde, da wir erst angeführten Ausdruck
als eine Definition ansehen, beut uns die symbolische Möglichkeit
auch Mittel an, zu dieser Definition das Definitum zu bilden, und so
nennen wir diese Reihe einen … absoluten blinden Zufall.
    And, again [21, § 324]:
  Da die Berechnung der Wahrscheinlichkeit nur da vorkömmt, wo

wir den Erfolg nicht voraus wissen können, so ist es in dieser Absicht
gleich viel, ob wir denselben wegen der gleichen Möglichkeit, oder
wegen des Nichtwissens der Gesetze nicht voraus wissen.
    This statement is in accord with the theory of information (an equal
probability of two possible events means lack of information). First of
all, however, the reader will recall the principle of insufficient reason
(which Keynes named principle of indifference instead).
Then, LAMBERT [33] considered infinite sequences of digits and
posed the problem of distinguishing between sequences governed by
chance and derived in accordance with a certain law. He certainly did
not define of a chance sequence although mentions [21, § 324] that
Bey dem blinden Zufalle wird die gleiche Möglichkeit aller Fälle
vorausgesetzt, so that in infinite sequences the frequencies of



29

occurrences of all the different digits are equal to one another. This,
however, is also the case with, e. g.‚ the infinite sequence of the digits
of √2 [21, § 323], which means that the problem of distinguishing the
two types of sequences was left unsolved.
    Of course, equipossibility is not the only way in which chance
manifests itself. As to the probability of the occurrence of different
digits in the development of irrational numbers, I emphasise that such
problems were posed and solved only in the 20th century (E. BOREL,
1909; A. YA. KHINCHIN, 1936).
    LAMBERT’S philosophic reasoning on probability was hardly
mentioned by any later scholar, in particular, by MISES, who
originated a profound study of random sequences.
    LAMBERT repeatedly reasoned about probability in his popular
contribution [15], see also [20]. Like NEWTON, DERHAM and
DANIEL BERNOULLI, he wished to prove that the regularities
observed in the solar system were not produced by randomness. From
a formal point of view, their attempt constituted a calculation of the
odds of an occurrence of a series of independent events each of which
had an equal probability of happening or failing. The probability of
regularities (e. g., that all the six known planets and their satellites
circulate in one and the same direction) produced by such
simultaneous occurrences occurred too low, and LAMBERT,
following NEWTON [33], thought that such regularities had been
produced by the Creator.
    The calculations involved are quite elementary; nothing new
emerges either in method or in ideas; and until LAPLACE’S time no
further progress accrued to astronomy from the theory of probability.
Only for the sake of completeness it is worth mentioning that
LAMBERT left three notes devoted to games of chance. They were
published posthumously [25].

2. Demographic Statistics
    It originated in the 17th century and led to the formulation and
solution of important problems in probability.
    LAMBERT [23] deduced an empirical law of mortality (§ 9),
studied the mean and probable durations of life (§ 36), formalized the
termination of marriages by deaths (§ 53), studied the distribution of
the number of children in families (§ 108) and of the number of
marriages in various age-groups of the population (§ 113), and, lastly,
considered deaths of children from small-pox (§ 125).
    His empirical law of mortality is

2 / /(1 / ) ( ),  (0) 10,000,x p x qy a x c C e e y- -= - - - =            (2)

where x is the age and y, the corresponding number of survivors. The
calculation of the parameters was not explained. LAMBERT chose the
functions by analogy with those used to describe the outflow of water
from a cylinder (the first term) and thermal processes (the other terms;
see also [19, § 58]. D. BERNOULLI studied the outflow of water
from cylinders in his Hydrodynamica, part 3 (1738), but it seems that
a quadric does not appear there in this connection. It would not be
difficult to deduce a differential equation, whose solution will be that
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quadric. More interesting, however, is that (2) is formed by curves
which later became known as PEARSONian curves, types ix and x.
    In his correspondence LAMBERT [24, pp. 365 – 368; Letter 33,
dated Dec. 6, 1776] explained that his law (2) is empirical with no
theoretical background. What is more, LAMBERT did not use (2) in
his further exposition. Instead (§ 44), he employed the equation

y=axq‚ a > 0‚ q > 1,

and hastened to prove that the probable duration of life does not
coincide with its mean duration. In this he obviously differed with
D’ALEMBERT who thought that the existence of two different
durations of life is a great objection to the theory of probability.
D’ALEMBERT’S objection

Is as reasonable as an objection to the theory of mechanics would
be on the ground that the centre of gravity of an area does not
necessarily fall on an assigned line which bisects the area [35, § 505].
     D. BERNOULLI [3] studied the termination of marriages, being
guided by his own simultaneously published memoir [2] in which he
considered urn problems. An urn with 2n strips of paper, n of them
white and n black, is given. Strips of each colour are numbered from 1
through n so that each two strips different in colour but having the
same number constitute a pair. His problem consisted in finding out
the number of paired strips remaining in the urn after (2n – r) random
extractions without replacement (after the urn contained only r strips
out of the original number, 2n). BERNOULLI applied this urn
problem in the case when strips of one of the colours are for some
reason extracted more often than the other strips, and solved a number
of problems pertaining to the duration of marriages (numbers of
surviving marriages, widows, widowers etc.) for identical and
different mortalities of men and women.
    Similar problems constitute the subject matter of the relevant part of
[23], but nothing except formalized descriptions of the problems
emerge. Evidently LAMBERT thought that his problems should be
solved purely statistically, and from this point of view nothing more
could have been done. (It seems that EULER held to the same point of
view.) Only after the establishment of state statistical agencies and the
development of mathematical statistics it became possible to get
trustworthy statistical data and estimate the reliability of the deduced
results.
    When studying the distribution of the number of children in
marriages, LAMBERT proceeded from statistical data on 612 families
with up to and including 14 children in each. He somehow managed to
adjust his data and, although considering his work only a Beyspiel
rather than a Muster, provided hardly any explanation of his method.
    There were 104 childless families, 149 families with one child each
etc. In the adjusted results there were 906 families with 3480
children in all (1518 children in the data), the mean ratios of children
per family were, respectively, k2 = 3.84 and k1= 2.48 with k2/k1=1.55
and the adjusted number of children per family up to and including 18.
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All these figures are given by LAMBERT himself, and he states also
that it was necessary to increase the number of children by one half
and that those adjusted numbers are um 2/3 näher beysammen. I can
only add that in demography systematic errors are more dangerous
than random, so, evidently, the increase in children in the adjusted
results should be explained by the wish to eliminate these systematic
errors (deaths of children) although I do not understand his um 2/3
näher beysammen. I also notice that with x ≥ 2 the adjusted values
may be approximated by an arc of a circumference

    (x – 17.9)2 + (y – 16.2)2 = 17.82.

    LAMBERT repeatedly fitted curves and straight lines to empirical
data, and I note one more example [23, § 67 and further] where he
considered mortality data for London, 1753 – 1758, but see also § 3
below.
    In § 68 LAMBERT states that the statistical treatment of data must
include detection of irregularities; in § 69 he accepts certain
qualitative features for a mortality law and among them an asymptotic
approach of the mortality curve to the x-axis. The probability of a
person attaining an age of 130 years happened to be equal to 1/108 > 0
and such, as it seems, is also the modern practice of demographic and
life-insurance calculations.
    In § 70 and further LAMBERT selects a parabolic curve of the fifth
degree to represent the law of mortality for age x ≥ 45 and justly
observes that mortality of people with life annuities is essentially
different from that of the whole population. Strictly speaking he does
not here adjust his data, since the parabolic curve passes through all of
his empirical points.
    In different cases LAMBERT selects essentially different mortality
laws, which prompts me to think that he considered his contribution as
a methodological commentary on the works of D. BERNOULLI.
   And as far as deaths of children from small-pox is concerned (about
which I have not yet said anything) this is particularly true: this part of
LAMBERT’S contribution is indeed essentially a commentary on D.
BERNOULLI’S memoir [l]. But then, LAMBERT, along with
BERNOULLI and EULER (whom he for some reason does not
mention, not even referring to [7])‚ should undoubtedly be credited as
the originator of methodical foundations of mathematical demography
[5, 27, 28].

3. Theory of Errors
    3.1. General. Except for my preliminary publication [31],
LAMBERT’S contributions to the theory of errors have remained
almost unnoticed. It is true that GALLE [8] stated, without adducing
any evidence, that GAUSS arrived at the idea of least squares while
reading LAMBERT and that GAUSS himself [9] named LAMBERT
among others as his predecessor. I shall now try to prove that
LAMBERT should be given precedence over GAUSS as the
originator of the theory of errors.
    Elements of that theory occur in the work of GALILEI, who
distinctly expressed its main propositions (1632, Third day) are:
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inevitability of errors; equal probability of positive and negative
errors; higher probability of lesser errors; concentration of the greater
portion of observations in the vicinity of the true value of the observed
constant; necessity of rejecting outliers. He also suggested a definite
principle of treatment of indirect observations.

In 1756 – 1757 T. SIMPSON, by actually introducing random
variables, proved that for two distributions the arithmetic mean was
preferable to a single observations. At the same time he considered the
first continuous frequency curve in the theory of errors. And even in
1722 R. COTES and, after him, a number of astronomers
(MAUPERTUIS, BOUGUER) studied the influence of errors in
triangulation upon the accuracy of calculated functions (lengths of
meridian arcs).
    Here is R. Cotes, Aestimatio errorum in mixta mathesi per
variationes partium trianguli plani et sphaerici (1722). Opera misc.
London, 1768, pp. 10 – 58. He (Ibidem) also offered a rule for the
adjustment of direct observations qualitatively based on an analogy of
the arithmetical mean with the centre of gravity of a system of points.
    Lastly, redundant simultaneous linear algebraic equations,
especially in two unknowns (the parameters of the earth’s ellipsoid of
rotation) had been repeatedly solved although the solutions were only
qualitatively justified by stochastic considerations [32].
    Such was the state of the theory of errors before the work of
LAMBERT, who, from 1760 onward, devoted many pages of his
writings to this theory.
    3.2. Lambert's Photometria [14]. In §§ 271 – 306 LAMBERT
described the properties of observational errors: (1) the absolute
values of errors are finite; (2) the number of errors of a given absolute
value decreases with the increase of this value and (3) the probability
of errors of both signs are equal. Referring to J. BERNOULLI’S A. C.,
LAMBERT remarked (§ 281) that the number of errors of opposite
signs tend to equality with the increase in the number of observations.
    He then classified errors according to their origin (§ 282), proved
the necessity of rejecting the extreme observation (§§ 287 – 291),
estimated the precision of observations (§ 294) using the difference of
the arithmetic mean of all observations (x0) from that of all but the
most deviating observation (x1) with |Δx|/x0 chosen as the measure of
precision.
    Then, for an unspecified continuous frequency curve, LAMBERT
formulated the problem of introducing a Mittel (a statistic) which with
a maximum probability deviated the least from the real value of the
observed constant (§§ 295 – 296); introduced the principle of
maximum likelihood, again without specifying the appropriate curve
(§ 303) which however was unimodal and conformed to the properties
of usual random errors; and deduced the likelihood equation, stating,
however, that in most cases the maximum likelihood estimate will not
differ from the arithmetic mean (§ 306).

Deduction of the real value of an observed constant is a
characteristic expression (and the aim) of LAMBERT and of the
classical error theory in general. Only within the framework of
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mathematical statistics the estimation of corresponding parameters of
the laws of distribution has been mostly considered (Sheynin 2007).
    Thus, already in [14], LAMBERT’S achievements considerably
exceeded those of GALILEI. Nevertheless, the relevant sections [14,
271 – 306] were omitted from the German translation of this work
(OSTWALD’S Klassiker series No. 31 – 33, 1892) and, moreover, the
translator asserted that that portion contained nothing of interest.
    I shall now describe the subject matter of these sections in more
detail. The rejection of the extreme observation is substantiated: let a,
b, c, ..., m, n, be the errors of observation (assumed positive and n, the
maximal error). Then the rejection of n decreases the error of the
arithmetic mean and is advisable if (an important additional
condition!) the corresponding observation is considerably separated
from the rest. This reasoning was only a qualitative approach to
rejection.
    Consider now a frequency curve φ(x – x0) with a single mode x0.
The condition of maximal probability of a series of observations is

    φ(x1 – x0)φ(x2 – x0) … φ(xn – x0) = max.                       (3)

LAMBERT, however, issued ex theoria combinationum et
permutationum:

    PNnQMmRLlSKk = max.

Here, PN, QM, … are the ordinates of the frequency curve and n, m,
… are the numbers of the corresponding observations.
    Condition (3) is arrived by calculating the number of ways N in
which the observations P, Q, … occur n, m, … times respectively:

( ...)!PN QM ...
! !...

n mn mN
n m
+ +

=

    Permutations of n + m + … elements with recurrences are allowed
here. In (3), the numerical factor is unnecessary, and, moreover, it is
sufficient to change the observations infinitesimally to have
n = m = … = 1.
    The ordinates PN, QM etc. are called (§ 300) the true numbers of
observations (vices verae), which shows that LAMBERT (just like
LAGRANGE somewhat later) introduced a continuous frequency
curve but used concepts peculiar to the discrete case. This
intermediate point of view vanished only in the works of LAPLACE
and D. BERNOULLI (1778). (In contrast with LAMBERT,
BERNOULLI, to whom the second introduction of the maximum
likelihood principle is due, clearly contraposed this principle with the
principle of the arithmetic mean.)
    In § 304 LAMBERT equates to zero the logarithmic differential of
(3) and introduces subtangents but does not say that the differentiation
should be made with respect to the unknown mode x0, a defect not
really important for curves of the φ(x – xo) type.
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    3. 3. Lambert’s Subsequent Work. In 1765, he partly repeated
himself. He [18,§ 320] called the arithmetic mean allerdings das
sicherste if only errors of both signs were equally possible and added
[19, § 3] that with the increase in the number of observations this
mean tended to the observed constant. This, the limit property of
consistency, is true for linear estimates in general.
    Then (§ 4) LAMBERT asserted that the observation deviating most
from the true value is also deviating most from the arithmetic mean
and vice versa. Lastly [18, § 441], he noted that the use of the mean is
based on its maximum probability, which was incompatible with his
own deduction of the maximum likelihood principle (§ 3.2).
    All these assertions seem to be based on [18, §§ 443 – 445], where
LAMBERT attempted to estimate the error of the arithmetic mean. He
assumed that observations were situated within necessary boundaries
and compared that mean with the mid-point between the boundaries
but did not solve his problem or estimate the error of the mean.
Indeed, without assuming a law of distribution his problem remained
indefinite.
    I also notice in [18] a classification of errors (§ 311), a description
of their properties (§ 434), and even an experimental check of these
properties (§§ 435 – 436); a remark on the different influence a given
error can exert according to circumstances (§ 322); a qualification
remark about the necessity of calculating the arithmetic mean from
direct observations, not their functions ( § 322); and, finally, a
deduction of the law of distribution of errors (§§ 429 – 430).
    LAMBERT mentions errors due to the imperfection of optical
instruments and human vision and singles out systematic errors
tolerated because they are negligible, for instance, those caused by
assuming the path of light to be a straight line.
    LAMBERT’S experimental check of the properties of errors was
based on numerous transfers of a segment with a compass. The
experiment is of course primitive, but that LAMBERT did perform a
check is a fact interesting in itself.
    On the other hand, LAMBERT’S deduction of the law of
distribution of errors in pointing a geodetic instrument is in contrast
with principles of empirical proof. Here is his deduction. A point
which das Auge nicht mehr unterscheidet is considered as though seen
through a magnifying glass and is assumed to be a circle, since there is
kein Grund for it to be of an angled form (eckicht). If that point ADBE
is covered by the hair of the cross-hairs, it, the hair, might have as
many positions as there are points in the diameter AB. The possibility
of each position of a vertical chord DE corresponds to the number of
points in DE, and the half-length of DE will be the possibility of the
ensuing error. The distribution curve thus takes the shape of a semi-
circumference.
    LAMBERT goes on to study the errors of angle measurements by
using two circumferences and then, starting from his distribution
curve, arrives at the main properties of errors (see § 3.2). I doubt that
any experiments were made for deriving that distribution, and, as far
as natural objects serve as targets for pointing, the main error occurs
because these targets are mostly illuminated by the Sun from aside.
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Note, however, that LAPLACE [26] later derived a certain frequency
law by assuming a proposition only since there were no reasons for
etc.
    LAMBERT’S formal result is that the “possibility” of an error x in
pointing an instrument is

2 2
2

2 ,
π

p r x
r

= -  |x| < r and p = 0 otherwise,

but r remains unspecified.
    As in 1760, LAMBERT estimates the precision of observations by
comparing the arithmetic means x0 and x1. Similarly he compares the
slopes of empirical straight lines [18, § 333;19, §§ 4, 22, 25 – 42] in
the case of indirect observations. It is the formulation of the problem
of estimating precision which is most interesting in his work. Before
GAUSS introduced the mean square error as an estimate of precision,
the treatment of observations had been accomplished without a
sufficient estimation of their precision. In particular, it seems that no
one (including LAMBERT himself) noticed that estimates of precision
(for example, his own estimates) should be normed so as to
correspond to the number of observations‚ thus making possible
comparisons of series of observations with different numbers of
observations. But then, LAMBERT is to be credited for the first
numerical rules of estimating precision and practising them without
fail.
    In this connection I should also note DELAMBRE’S book [4], in
which normed estimates of precision are used repeatedly (for instance,
on pp. 59 and 235). This book was written some time between 1818 (a
reference to a book published in 1818 is contained on p. 258) and
1822, when DELAMBRE died. Thus DELAMBRE was the first to
introduce normed estimates of precision at about the same time as
GAUSS did.
    LAMBERT [19] described the solution of redundant simultaneous
linear algebraic equations. Like his contemporaries, he [32] clearly
understood the similarity of treating direct and indirect observations.
This is proved by the similarity in estimating precision (see above)
and by the coincidence in terms: in both cases the estimate(s) of the
unknown constant(s) is (are) called Mittel.
    GAUSS and LEGENDRE, in 1806, upheld this unified viewpoint.
    LAMBERT [19, § 20] fitted straight lines to sets of points or
observations. He divided these observations into two groups (with
lesser and greater abscissas), with equal or unequal (§ 24) numbers of
observations in each. He then calculated the centre of gravity of each
group and assumed that the straight line should pass through them.
    Likewise he fitted curves by dividing observations into several
groups. He reasonably supposed (§ 66) that an adjusting curve was
more representative of the empirical data than a polynomial curve
drawn through every given point.
    In many instances LAMBERT considered cases in which there
existed functional dependences between variables, but his ideas of
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using centres of gravity and of constructing adjusting curves are now
used in correlation analysis.
    As to the solution of redundant simultaneous equations, it should be
noticed that LAMBERT, just as before in 1760, enunciated the
minimax principle (minimization of the maximum residual, the
minimum being sought among all possible solutions, see [18, § 420],
confessing, however, that he did not know how to use this principle
auf eine allgemeine Art, imd ohne viele Umwege. In a rudimentary
form this principle should be credited to EULER [31, 32]. It was then
developed by LAPLACE and CAUCHY; now it is used in decision
theory and the theory of games.
    The term “theory of errors” (Theorie der Fehler) is due to
LAMBERT, who used it at first in the Vorberichte to Bd. 1 of the
Beyträge, although without elaborating it and then in [18, § 321]. Here
he defined the goals of this theory: to find the Verhältnis zwischen den
Fehlern, ihren Folgen, den Umstanden der Ausmessung und Güte des
Instruments. The Theorie der Folgen was defined independently as the
study of errors of functions of observed quantities.
    LAMBERT also introduces [19, § 1] the Zuverlässigkeit of
observations and names the main problems of the treatment of
observations: deduction of the true values of observed constants and
estimation of the precision of observations.
    He devotes [18, §§ 340 – 426] to the Theorie der Folgen. Using
differential calculus‚ he arrives at most advantageous types of
standard geodetic figures. He does not refer to Cotes but repeatedly
mentions [29], which is unknown to me.
    The general outline of the goals of all his Theorie’s taken together
is rather successful. And there is a point for singling out the Theorie
der Folgen if, actually following LAMBERT, we are to understand it
as the determinate part of a unified theory of the treatment of
observations, whereas the Theorie der Fehler proper is its stochastic
part.
    I shall only add  that obviously neither LAPLACE nor GAUSS
used the term theory of errors. This may mean that that term was not
put into general use until the 19th century. Note, however, that Bessel
began applying the new term in 1820.
    The emergence of error theory in LAMBERT's work as a separate
scientific discipline and its division can be explained by his obvious
desire to classify science, plainly seen in his philosophical writings
[16;17 etc.].
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Afterword
    Many new pertinent sources have appeared and are listed in the
Bibliography appended to Sheynin (2017). Not included there is
Lambert’s works (1965 – 2020). On p. 83 of that book I mentioned
Lambert’s study of the influence of the Moon on air pressure and that
Daniel Bernoulli encouraged him. Also there, on p. 96, Note 12, I
quoted a letter from E. S. Pearson who had explained the absence of
Lambert in K. Pearson (1978) by his father’s old age which restricted
his investigation to Condorcet, D’Alembert, Lagrange and Laplace. I
disagree and believe that at the time when K. P. delivered his lectures
Lambert remained barely known.
    Then, contrary to the stated at the end of §1, Cournot (1851, § 33,
Note) and Chuprov (1909/1959, p. 188) did discuss Lambert’s
philosophical reasoning on probability.
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 Cournot A. A. (1851), Essai sur la fondements de nos connaissances. Paris,
1975.

 Lambert J. H. (1965 – 2020), Philosophische Schriften,
Bde 1 – 10 + Supplement Band. Hildesheim.

Pearson K. (1978), History of statistics in the 17th and 18th centuries etc. Lectures
of 1921 – 1933. London. Posthumous publication by E. S. Pearson.
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III

J. B. J. Fourier

Historical Eloge of the Marquis De Laplace

Lond., Edinb. and Dublin Phil. Mag., ser. 2, vol. 6, 1829, pp. 370 – 381. Read 1829
    At the time, this journal was called Phil. Mag. (ser. 2). Translation also published
in Edinb. J. of Sci., vol. 1, No. 11, 1829, pp. 193 – 207. Original French text
published in Mém. Acad. Roy. Sci. Inst. de France, t. 10, 1831, pp. LXXX – CII.

[1] The name of Laplace has been heard in every part of the world
where the sciences are honoured; but his memory could not receive a
more worthy homage than the unanimous tribute of the admiration and
sorrow of that illustrious body who shared in his labours and in his
glory. He consecrated his life to the study of the grandest objects
which can occupy the human mind.
    The wonders of the heavens, – the lofty questions of natural
philosophy, – the ingenious and profound combinations of
mathematical analysis, – all the laws of the universe have been
presented to his thoughts during more than sixty years, and his efforts
have been crowned with immortal discoveries.
    From the time of his first studies it was remarked that he possessed
a prodigious memory: all the occupations of the mind were easy to
him. He acquired rapidly a very extensive knowledge of the ancient
languages, and he cultivated different branches of literature. Every
thing interests rising genius; every thing is capable of revealing it. His
earliest success was in theological studies1; and he treated with talent
and with extraordinary sagacity the most controversial questions.
    We do not know by what fortunate event Laplace passed from the
study of scholastics to that of higher geometry. This last science,
which scarcely admits of a divided attention, attracted and fixed his
thoughts. Henceforth he abandoned himself without reserve to the
impulse of his genius, and he was impressed with the conviction that a
residence in the capital had now become necessary. D’Alembert was
then in the zenith of his fame. It was he who informed the court of
Turin that its Royal Academy possessed a geometer of the first order,
Lagrange, who, without this noble testimony to his merits, might have
remained long unknown. D’Alembert had announced to the king of
Prussia that there was only one man in Europe who could replace at
Berlin the illustrious Euler, who, having been recalled by the Russian
government, had consented to return to St. Petersburg2. I find in the
unpublished letters possessed by the Institute of France the details of
this glorious negotiation which fixed the residence of Lagrange at
Berlin.

[2] It was about the same time that Laplace began that long career
which was destined to become so illustrious. He waited upon
D’Alembert preceded by numerous recommendations which might
have been considered as very powerful. But his attempts were vain,
for he was not even introduced. He then addressed to him, whose
suffrage he solicited, a very remarkable letter on the general principles
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of mechanics, of which M. Laplace has frequently quoted to me
different fragments.
    It was impossible that a geometer like D’Alembert could fail to be
struck with the singular profoundness of this composition. On the
same day he invited the author of the letter, and thus addressed him:

You see, Sir, that I hold recommendations as of very little value;
you have no occasion for them. You have made yourself better known,
this is sufficient for me. You are entitled to my support.
    In a few days he succeeded in getting Laplace nominated Professor
of Mathematics in the Military School of Paris3. From that moment,
devoted wholly to the science which he had chosen, he gave to all his
labours a fixed direction from which he never deviated. For the
unchangeable purpose of his mind has always been the principal
feature of his genius. He already trenched upon the known limits of
mathematical analysis; he was versed in the most ingenious and
powerful parts of this science and there was none more capable than
he of extending its domains.
    He had solved a leading question in theoretical astronomy. He
formed the project of consecrating his efforts to this sublime science.
He was destined to perfect it, and was able to embrace it in all its
extent. He thought deeply upon this glorious purpose, and he spent all
his life in accomplishing it with a perseverance of which the history of
the sciences presents perhaps no other example4.
    The immensity of the subject flattered the just pride of his genius.
He undertook to compose the Almagest of his age. This memorial he
has left us under the name of Mécanique Céleste, and his immortal
work surpasses that of Ptolemy as much as the modern analysis
surpasses the Elements of Euclid5.

[3] Time, which is the only just dispenser of literary glory and
which sinks into oblivion contemporary mediocrity, perpetuates also
[only?] the remembrance of great works. They alone convey to
posterity the character of each succeeding age. The name of Laplace
will thus live for ever, but I hasten to add that enlightened and
impartial history will never separate his memory from that of the other
successors of Newton. It will conjoin the illustrious names of
D’Alembert, Clairaut, Euler, Lagrange, and Laplace. I confine myself
at present to the mere mention of the great geometers whom the
sciences have lost and whose researches had for their common object
the perfection of physical astronomy. In order to give a just idea of
their works it would be necessary to compare them, but the limits of a
discourse liked this oblige me to reserve a part of this discussion for
the collection of our Memoirs.
    Next to Euler, Lagrange contributed most to the foundation of
mathematical analysis. In the writings of these two great geometers it
has become a distinct science, the only one of the mathematical
theories of which we can say that it is completely and rigorously
demonstrated6. Among all these theories it alone is sufficient for its
own purposes, while it illustrates all the rest. And it is so necessary to
them that without its aid they must have remained very imperfect.
    Lagrange was destined to invent and to extend all the sciences of
calculation. In whatever condition fortune had placed him, whether
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prince or peasant, he would have been a great geometer. This he
would have become necessarily and without any effort, which cannot
be said even of the most celebrated individuals who have excelled in
this science.
    If Lagrange had been the contemporary of Archimedes and Conon7,
he would have divided with them the glory of their most memorable
discoveries. At Alexandria he would have been the rival of
Diophantus. The distinctive mark of his genius consists in the unity
and grandeur of his views. He attached himself wholly to a simple
though just and highly elevated thought. His principal work, the
Mécanique Analytique, might be called Philosophical Mechanics, for
it refers all the laws of equilibrium and motion to a single principle.
And, what is not less admirable, it submits them to a single method of
calculation of which he himself was the inventor. All his mathematical
compositions are remarkable by their singular elegance, by symmetry
of form, and generality of method, and if we may so express it, by the
perfection of his analytical style.
    Lagrange was no less a philosopher than a great geometer. He has
proved this in the whole course of his life, by the moderation of his
desires, by his immovable attachment to the general interests of
humanity8, by the noble simplicity of his manners, and the elevation
of his character, and by the justness and profoundness of his scientific
labours.

 [4] Laplace had received from nature all that force of genius which
a great enterprise required. Not only has he united in his Almagest of
the eighteenth century all that mathematical and physical sciences had
already invented, and which formed the foundation of astronomy, but
he has added to this science capital discoveries of his own which had
escaped all his predecessors. He has resolved, either by his own
methods or by those of which Euler and Lagrange had pointed out the
principles, questions the most important, and certainly the most
difficult of all those which had been considered before his time. His
perseverance triumphed over any obstacle. When his first efforts were
not successful, he renewed them under the most ingenious and
diversified forms.
    In the motion of the moon, for example, there had been observed an
acceleration, the cause of which philosophers were unable to discover.
It had been ascribed to the resistance of an ethereal medium in which
the celestial bodies moved. If this had been the cause, the same cause
affecting the orbits of the planets would have tended continually to
disturb their primitive harmony. These stars (!) would have been
constantly disturbed in their course and would have finally been
precipitated upon the mass of the sun. It would have required the
creating power to have been exerted anew in preventing or repairing
the immense disorder which the lapse of time would have caused9.
    This cosmological question is undoubtedly the greatest which
human intelligence can propose: it is now resolved. The first
researches of Laplace on the immutability of the dimensions of the
solar system, and his explanation of the secular equation of the moon
have led to this solution.
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    He at first inquired if the acceleration of the moon’s motion could
be explained by supposing that the action of gravity was not
instantaneous but subject to a successive transmission like that of
light. By this means he succeeded in discovering its true cause. A new
investigation then gave a better direction to his genius. On the 19th

March 1787 he communicated to the Academy of Sciences a precise
and unexpected solution of this great difficulty. He proved in the
clearest manner that the observed acceleration is a necessary effect of
universal gravitation.
    This great discovery threw a new light on the most important points
of the system of the world. The same theory, indeed, proved to him
that, if the action of gravitation on the stars was not instantaneous, we
must suppose that it propagates itself more than fifty millions of times
faster than light whose velocity is well known to be 70,000 leagues in
a second1.
    Hence he concluded from his theory of the lunar motions that the
medium in which the stars revolve does not oppose any sensible
resistance to the motions of the planets; for this cause would
particularly affect the motion of the moon whereas it produces no
perceptible effect.
    The discussion of the motions of this planet is pregnant with
remarkable consequences. We may conclude from it, for example, that
the motion of rotation of the earth about its axis is invariable. The
length of the day has not varied the 100th part of a second for 2000
years11. It is remarkable that an astronomer need not go out of his
observatory to measure the distance of the earth from the sun. It would
be sufficient to observe carefully the variations of the lunar motions
and from this he would deduce with certainty the distance required.
    A still more striking consequence is that which relates to the figure
of the earth. For the form even of the terrestrial globe is impressed on
certain inequalities of the lunar orbit. These inequalities would have
not taken place if the earth had been a perfect sphere. We may
determine the compression at the poles of the globe by the observation
of the lunar motions alone, and the results hence deduced agree with
the real measures which have been obtained by the great
trigonometrical surveys at the equator, in the northern regions, in
India, and in different countries.
    It is to Laplace that we especially owe this astonishing perfection of
modern theories. I cannot undertake to recount at present the series of
his labours and [or] the discoveries to which they have led. The simple
enumeration of them, however rapid it may be, would exceed the
limits which I am obliged to prescribe to myself. Beside these
researches on the secular equation of the moon, and the no less
important and difficult discovery of the cause of the great inequalities
of Jupiter and Saturn, we may mention those admirable theorems on
the libration of the satellites of Jupiter12. To these we may add his
analytical inquiries respecting the tides, a subject which he had
pursued to an immense extent.
    There is scarcely a point of physical astronomy of any importance
that he did not study with the most profound attention, and he
submitted to calculation most of the physical conditions which his
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predecessors had omitted. In the question already so complex, of the
form and rotatory motion of the earth, he has considered the influence
of the waters distributed between the continents, the compression of
the interior strata, and the secular diminution of the dimensions of the
globe.

[5] Among all these researches we must particularly distinguish
those which relate to the stability of great phenomena for no object is
more worthy of the meditation of philosophers. Hence it follows that
those causes, either accidental or constant, which disturb the
equilibrium of the ocean are subject to limits which cannot be passed.
The specific gravity of the sea being much less than that of the solid
globe, it follows that the oscillations of the ocean are always
comprehended between very narrow limits; which would not have
happened if the fluid spread over the globe had been much heavier.
    Nature in general keeps in reserve conservative forces which are
always present, and act the instant the disturbance commences, and
with a force increasing with the necessity of calling in their assistance.
This preservative power is found in every part of the universe. The
form of the great planetary orbits and their inclinations vary in the
course of ages, but these changes have their limits. The principal
dimensions subsist, and this immense assemblage of celestial bodies
oscillates round a mean condition of the system, towards which it is
always drawn back. Every thing is arranged for order, perpetuity and
harmony13. In the primitive and liquid state of the terrestrial globe the
heaviest materials are placed near the centre, and this condition
determines the stability of seas.
    Whatever may be the physical cause of the formation of the
planets14, it has impressed on all these bodies a projectile motion in
one direction round an immense globe15. And from this the solar
system derives its stability. Order is here kept up by the power of the
central mass. It is not therefore left, as Newton himself and Euler had
conjectured, to an adventitious force to repair or prevent the
disturbance which time may have caused. It is the law of gravitation
itself which regulates all things, which is sufficient for all things, and
which everywhere maintains variety and order. Having once emanated
from Supreme Wisdom, it presides from the beginning of time and
renders impossible every kind of disorder. Newton and Euler were not
acquainted with all the perfections of the universe.
    Whenever any doubt has been raised respecting the accuracy of the
Newtonian law, and whenever any foreign cause has been proposed to
explain apparent irregularities, the original law has always been
verified after the most profound examination. The more accurate that
astronomical observations have become, the more comfortable have
they been to theory. Of all geometers Laplace is the one who had
examined most profoundly these great questions.
    We cannot affirm that it was his destiny to create a science entirely
new, like Galileo and Archimedes; to give to mathematical doctrines
principles original and of immense extent, like Descartes, Newton and
Leibniz; or, like Newton, to be the first to transport himself into the
heavens, and to extend to all the universe the terrestrial dynamics of
Galileo: but Laplace was born to perfect every thing, to exhaust every
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thing, and to drive back every limit, in order to solve what might have
appeared incapable of solution. He would have completed the science
of the heavens, if that science could have been completed.

[6] The same character appears in his researches on the analysis of
probabilities, a science quite modern and of immense extent; whose
object, often misunderstood, has given rise to the most erroneous
interpretations, but whose application will one day embrace every
department of human knowledge, a fortunate supplement to the
imperfection of our nature16.
   This art originated from a fine and fertile ides of Pascal’s: it was
cultivated from its origin by Fermat and Huygens. A philosophical
geometer, James Bernoulli, was its principal founder. A singularly
happy discovery of Stirling17, the researches of Euler and particularly
an ingenious and important idea due to Lagrange have perfected this
doctrine. It has been illustrated by the objections even of D’Alembert
and by the philosophical views of Condorcet. Laplace had united and
fixed the principles of it.
    In his hands it has become a new science, submitted to a single
analytical method18 and of prodigious extent. Fertile in useful
applications, it will one day throw a brilliant light over all the
branches of natural philosophy. If we may here be permitted to
express a personal opinion, we may add, that the solution of one of the
principal questions, that which the illustrious author has treated in the
18th chapter [it does not exist] of his work, does not appear to us exact.
But, taken all in all, this work is one of the most precious monuments
of his genius.

[7] After having mentioned such brilliant discoveries, it would be
useless to add that Laplace belonged to all the great Academies of
Europe. I might also and perhaps ought to mention the high political
dignities with which he was invested, but such an enumeration would
only have an indirect reference to the object of this discourse. It is the
great geometer whose memory we now celebrate. We have separated
the immortal author of the Mécanique Céleste from all accidental facts
which concern neither his glory nor his genius. Of what importance
indeed is it to posterity who [which] will have so many other details to
forget, to learn whether or not Laplace was for a short time the
minister of a great nation.
    What is of importance are the eternal truths which he discovered;
the immutable laws of the stability of the world and not the rank
which he occupied for a few years in the conservative senate. What is
of importance and perhaps still more so even than his discoveries, is
the example which he has left to all those who love the sciences, and
the recollection of that incomparable perseverance which has
sustained, directed, and crowned so many glorious efforts.
    I shall omit, therefore, all the accidental circumstances and
peculiarities which have no connection with the perfection of his
works. But I will mention that in the first body in the state the memory
of Laplace was celebrated by an eloquent and friendly voice, which
important services rendered to the historical sciences, to literature, and
toi the state, have for a long time illustrated (Le Marquis Pastoret)19.
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    I shall particularly mention that literary solemnity which attracts the
attention of the capital. The French Academy, uniting its suffrages to
the acclamations of the country, considered that it would require a
new glory by crowning (M. Royer-Collard) the triumphs of eloquence
and of political virtue.
    At the same time it chose to reply to the successor of Laplace, an
illustrious academician (M. Le Comte Daru), with more than one
claim, who united in literature, in history and in the public
administration, every species of talent.

[8] Laplace enjoyed an advantage which fortune does not always
grant to great men. From his earliest youth he was justly appreciated
by his illustrious friends. We have now before us unpublished letters
which exhibit all the zeal of D’Alembert to introduce him into the
Military School of France, and to prepare for him, if it had been
necessary, a  better establishment at Berlin. The president Bochard de
Saron20 caused his first works to be printed. All the testimonies of
friendship which have been given to him recall great labours and great
discoveries; but nothing could contribute more to the progress of the
physical sciences than his relations with the illustrious Lavoisier,
whose name, consecrated in the history of science, has [had] become
an eternal object of our sorrow and esteem21.
    These two celebrated men united their efforts. They undertook and
finished very extensive researches in order to measure one of the most
important elements of the physical theory of heat. About the same
time they also made a long series of experiments on the dilatation of
solid substances. The works of Newton sufficiently show us the value
which this great geometer attaches to the special study of the physical
sciences.
    Laplace is of all his successors the one who has made the greatest
use of his experimental method22; he was almost as great a natural
philosopher as he was a geometer. His researches on refractions, on
capillary attraction, on barometric measurements, on the statical
properties of electricity, on the velocity of sound, on molecular action,
and on the properties of gases, testify that there was nothing in the
investigation of nature to which he was a stranger. He was particularly
anxious about the perfection of instruments, and he caused to be
constructed, at his own expense, by a celebrated artist, a very valuable
astronomical instrument, which he gave to the Observatory of France.
    All kinds of phenomena were perfectly well known to him. He was
connected by an old friendship with two celebrated chemists, whose
discoveries have extended the boundaries of the arts and of chemical
theory. History will unite the names of Berthollet and Chaptal to that
of Laplace. It was his happiness to reunite them. And their meetings
always had for their object and for their results the increase of those
branches of knowledge which are the most important and the most
difficult to acquire.
     The gardens of Berthollet at his house at Arcueil were not
separated from those of Laplace. Great recollections and great sorrows
have rendered this spot illustrious. It was there that Laplace received
celebrated foreigners, men of powerful minds, from whom science
had either obtained or expected some benefit, but especially those
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whom a sincere zeal attached to the sanctuary of the sciences. The one
had begun their career the others were about too finish it. He received
them with extreme politeness. He went even so far that he led those
who did not know the extent of his genius to believe that he might
himself draw some advantage from their conversation.

[9] In alluding to the mathematical works of Laplace, we have
particularly noticed the depth of his researches, and the importance of
his discoveries, but his works are distinguished also by another
character which all readers have appreciated. I mean the literary merit
of his compositions. That which is entitled Système du Monde is
remarkable for the elegant simplicity of its style and the purity of its
language.
    There had previously been no example of this kind of composition.
But we should form a very incorrect idea of the work were we to
expect to acquire a knowledge of the phenomena of the heavens in
such productions. The suppression of the symbols of the language of
calculation cannot contribute to its perspicuity, and [or] render the
perusal of it more easy23. The work is a perfectly regular exposition of
the results of profound study: it is an ingenious epitome of the
principal discoveries. The precision of its style, the choice of methods,
the greatness of the subject, give a singular interest to this vast picture.
But its real utility is to recall to geometers those theorems whose
demonstrations were already known to them. It is properly speaking
the contents of a mathematical treatise.
    The purely historical works of Laplace have a different object. They
present to geometers with admirable talent the progress of the human
mind in the invention of the sciences. The most abstract theories have
indeed an innate beauty of expression. It is this which strikes us in
several of the treatises of Descartes and in some of the pages of
Galileo, of Newton and Lagrange. Novelty of views, elevation of
thought, and their connection with the grand objects of nature, fix the
attention and fill the mind. It is sufficient that the style be pure and
have a noble simplicity. It is this kind of literature that Laplace has
chosen and it is certain that he has attained in it the first rank. If he
writes the history of great astronomical discoveries, he becomes a
model of elegance and precision. No leading fact ever escapes him,
the expression is never obscure or ambiguous. Whatever he calls great
is great in reality. Whatever he omits does not deserve to be cited.

 [10] Laplace retained to a very advanced age that extraordinary
memory which he had exhibited from his earliest years. A precious
gift which, though it is not genius, is that which serves to acquire and
preserve it. He had not cultivated the fine arts but he appreciated them.
He was fond of Italian music and of the poetry of Racine, and he often
took delight in quoting from memory different passages of this great
poet. The works of Raphael adorned his apartments and they were
found beside the portraits of Descartes, Francis Vieta, Newton,
Galileo and Euler.
    Laplace had always accustomed himself to a very light diet, and he
diminished the quantity of it continually and even to an excessive
degree. His very delicate sight required constant care and he
succeeded in preserving it without any alteration. These cares about
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himself had only one object, that of reserving all his time and all his
strength for the labours of his mind. He lived for the sciences and the
sciences have rendered his memory immortal.
    He had contracted the habit of excessive application to study, so
injurious to health, though so necessary to profound inquiries, but he
did not experience from it any inconvenience till during the two last
years of is life.
    At the commencement of the disease by which he was cut off, there
was observed with alarm a moment of delirium. The sciences still
occupied his mind. He spoke with unwonted ardour of the motions of
the planets and afterwards of a physical experiment, which he said
was a capital one. And he announced to the persons whom he believed
to be present that he would soon discuss these questions in the
Academy. Hi strength gradually failed. His physician (M. Magendie)
who deserved all his confidence, both from his superior talents and the
care which friendship alone could have inspired, watched near his
bed; and  Bouvard, his fellow-labourer and his friend, never left him
for a single moment25.
    Surrounded with a beloved family, under the eyes of a wife whose
tenderness had assisted in supporting the necessary ills of life, whose
amenity and elegance had shown him the value of domestic happiness,
he received from his son, the present Marquis de Laplace, the
strongest proofs of the warmest affection.
    He evinced his deep gratitude for the marks of interest which the
King and the Dauphin had repeatedly exhibited. Those who were
present at his last moments reminded him of his titles to glory and of
his most brilliant discoveries. He replied:
 What we know is little, and what we are ignorant of is immense.

    This was at least the meaning of his last words which were
articulated with difficulty. We have often heard him express the same
thought, and almost in the same terms. He grew weaker and weaker
but without suffering pain. His last hour had arrived. The powerful
genius which had for a long time animated him, separated from its
mortal coil, and returned to the heavens.
    The name of Laplace honoured one of our provinces already so
fertile in great men, ancient Normandy. He was born on the 23rd

March 1749, and he died in the 78th year of his age, on the 5th May
1827, at nine o’clock in the morning26. Shall I remind you of that
gloomy sadness which brooded over this placed like a cloud when the
fatal intelligence was announced to you? It was on the day and even at
the hour of your usual meetings. Each of you preserved a mournful
silence, each felt the sad blow with which the sciences were struck.
All eyes were fixed on that place which he had so long occupied.  One
thought only filled your minds, every [any] other meditation became
impossible. You separated under the influence of a unanimous
resolution, and for this single time your usual labours were
interrupted27.
    It is doubtless great, it is glorious, it is worthy of a powerful nation
to decree high honours to the memory of its celebrated men. In the
country of Newton the ministers of state desired that the mortal
remains of this great man should be solemnly deposited among the
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tombs of its monarchs. France and Europe have offered to the memory
of Laplace an expression of their sorrow, less pompous no doubt, but
perhaps more touching and more sincere.
    He has received an unusual homage: he has received it from his
countrymen in the bosom of a learned body, who could alone
appreciate all his genius. The voice of science in tears was heard in
every part of the world where philosophy had penetrated. We have
now before us an extensive correspondence from every part of
Germany, England, Italy, and New Holland, from the English
possessions in India, and from  the two Americas, and we find in it the
same expressions of admiration and sorrow. This universal grief of the
sciences so nobly and so freely expressed has in it no less truth than
the funeral pomp of the Westminster Abbey.
    Permit me, before closing this discourse, to repeat a reflection
which presented itself when I was enumerating in this place the great
discoveries of Herschel29, but which applies more directly to Laplace.
Your successors will see accomplished those great phenomena whose
laws he has discovered. They will observe in the lunar motions the
changes which he had predicted, and of which he was alone able to
assign the cause. The continued observation of the satellites of Jupiter
will perpetuate the memory of the inventor of the theorems which
regulate their course. The great inequalities of Jupiter and Saturn
pursuing their long periods, and giving to these planets new situations
will recall without ceasing one of the most astonishing discoveries.
These are the titles to true glory which nothing can extinguish. The
spectacle of the heavens will be changed, but in these distant epochs
the glory of the inventor will ever subsist. The traces of his genius
bear the stamp of immortality.
    I have thus presented to you some feature of an illustrious life
consecrated to the glory of the sciences. May your recollection supply
the defects of accents so feeble! May the voices of the nation, may
that of the world at large be raised to celebrate the benefactors of
nations – the only homage worthy of those who, like Laplace, have
been able to extend the domains of thought – to attest to man the
dignity of his being by unveiling to his eyes  all the majesty of the
heavens!

Notes
1. These studies are hardly known.
2. Euler’s return to Russia: see Youshkevich (1968, p. 108).
3. In the beginning of § 8 this school is called Military School of France.
4. Fourier forgot Euler.
5. The comparison with the Almagest is marred by the rejection of the Ptolemaic

system of the world.
6. Cauchy later justified the foundations of mathematical analysis much more

thoroughly.
7. Conon from Samosa was an eminent ancient Greek astronomer but not of the

same rank as Archimedes.
8. Regrettably, no details provided. I can only add that Lagrange had written an

Essai d’arithmétique politique sur a la premiers besoins de l’interieur de la
République only published in t. 6 of his Oeuvres, 1831, see Pearson (1978,
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pp. 628 – 633). Then, his very short Essai d’arithmétique politique is in t. 14 of his
Oeuvres (1892, pp. 608 – 614).

9. Acceleration of the moon’s motion. Laplace examined and rejected the
suggestion that it was occasioned by the deceleration of the rate of the Earth’s
diurnal rotation (Morando 1995, p. 132).

10. Velocity of light: 70,000 leagues = 70∙1,000∙4.83 = 338,000 km (/sec),
erroneous more than by 10%.

11. The present estimate of that lengthening: 0.02 sec in two thousand years.
12. Only four satellites of Jupiter were known then, now their number is no less

than 79.
13. In cosmogonic terms, the stability of the solar system is only proved for a

short time.
14. No theory of the birth of the planets is yet generally acknowledged.
15. Already in 1797 William Herschel discovered that two satellites of Uranus

were moving in the other direction.
16. Here is my comment on Laplace’s theory of probability. First, it is primarily

used for studying mass random events. Then, his predecessors treated it as a branch
of pure mathematics but Laplace resolutely directed it to the realm of applied
mathematics. At least three times he separated himself from (pure) mathematicians
(Sheynin 2017, p. 111). He thus became able to make fundamental discoveries in
natural science but later the theory of probability had to be constructed anew. A
special circumstance is that his Méch. Cél. made extremely difficult reading (see
also note 23). And now the forgotten Bayes: he greatly influenced and still
influences statistics and numerically estimated the precision of the inverse law of
large numbers (given, statistical probability, required, theoretical probability of an
event). See also note 17.

17. De Moivre discovered that formula about the same time as Stirling, although
the latter indicated to him the exact value of its numerical factor. Lagrange (see just
below) foreshadowed the introduction of characteristic functions. On D’Alembert
see Sheynin (2017, p. 75). Wolf (1860) published interesting quotations from Daniel
Bernoulli’s letters to Euler which concerned D’Alembert. It transpired that D. B.
only gradually recognized D’Alembert’s merits but that some of his criticisms were
just.

18. The single analytic method is apparently the application of the central limit
theorem, rigorously proved only by Liapunov and Markov, not even by Chebyshev.

19. Fourier mentioned three names: Claude Emanuel Joseph Pierre de Pastoret
(1755 – 1840), politician and writer; Pierre Antoine Noel Bruno Daru (1767 –
1829), statesman, historian, poet. Pierre Paul Royer-Collard (1768 – 1825),
statesman, philosopher. I do not know why Fourier called Daru the successor of
Laplace. De Pastoret read out an Eloge on Laplace (Laplace, Oeuvr. Compl., t. 14.
Paris, pp. 388 – ).

20. Bochart de Saron (1730 – 1794, beheaded), lawyer, mathematician,
astronomer. President of the Paris parliament. He published Laplace’s first
contributions, at least partly at his own expense.

21. Lavoisier (1743 – 1794, beheaded). Did the scientific community try to save
him? I can only say that each scientist was likely mortally afraid to stick his neck
out. And E. S. Pearson, in a separate note (K. Pearson 1978, p. 635) quoted the
prosecutor at the Lavoisier trial: The Republic has no need in scientists or chemists.

22. Galileo and Huygens should be mentioned as well.
23. There are no formulas in his Essai philosophique of 1814 and some places are

hardy understandable.
24. See General comment.
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25. Alexis Bouvard (1767 – 1843) was a tireless calculator of astronomical
observations.

26. Laplace died on 5 March 1826.
27. The Academy did not sit at the day of Laplace’s death, just as it happened in

Petersburg at the day of Euler’s death.
28. New Holland was the European name for mainland Australia. Two Americas

is not definite enough. Strangely, Fourier does not mention the Petersburg Academy
although Laplace was its honorary member since 1802.

29. Fourier read the Eloge on William Herschel on 7 June 1824. I have not seen it.
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General Comment
    The French Academy of which Laplace became member (§ 7) was
established in 1635 for studying the French language. The Institut de
France is an umbrella for five academies and a multitude of other
scientific establishments.
    Morando (1995) provided the almost present-day description of
Laplace’s achievements in astronomy. What no author and even more
certainly the authors of eulogies ever mention are the shortcomings of
their heroes, but see Sheynin (2017, pp. 117 – 119 and 121 – 122).
The main points there are, first, his barely useful theory of errors. He
based it on the central limit theorem which he introduced all but
arbitrarily and which required a large number of observations lacking
in geodesy and, with a large number of them in astronomy, but
therefore hardly obeying a single frequency law with constant
parameters. Moreover, he never admitted the superiority of the
Gaussian theory of errors.
    Second, in his book of 1796 he ascribed the eccentricities of the
planetary orbits to local irregularities in the bodies of those planets
whereas Newton showed that they depended of the velocity of the
planet’s motion. Moreover, even in 1835 he had not corrected himself
and I strongly suspect that he tried thus to conceal his mistake which
no one apparently indicated.
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    One more circumstance ought to be discussed: Fourier did not
mention either Poisson or Gauss. Laplace was the main source of
inspiration for Poisson and at the very least Fourier should have noted
it. In 1881, the centenary of Poisson’s birth was not observed and
some circles still hold a negative opinion about him (Bru 1981, p. 75),
but this happened much later and was occasioned by later causes.
Then, Bru (p. 69) stated that Fourier had thought of compiling a tract
on the theory of probability and thus of eclipsing Poisson, but his
death in 1830 prevented him. Still, this only hints at explaining
Fourier’s attitude.
    Now, Gauss. French scientists including Poisson (but not Laplace)
to their own detriment never cited Gauss which was caused by
Gauss’s peculiar and unfriendly treatment of Legendre over the
invention of least squares (Sheynin 2017, pp. 130 and 138 – 140), so
even in 1829 Fourier apparently followed suit.
    I have now found out that the original French text of the Eloge
published in 1831 is much more detailed.
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Preliminary explanation
     Since 1713 the Ars Conjectani (AC) has appeared in a German
translation whereas its Part 4 was translated into Russian and French
(and, in an horrible unsatisfactory way, into English), see the
references. The German translation, especially insofar as mathematical
reasoning is concerned, is rather far from the original; the Russian text
also somewhat deviates from Bernoulli; finally, the French translation
is perhaps almost faultless in this sense, but the translator made
several mathematical mistakes.
    I do not read Latin and had to begin from the Russian text, but I
invariably checked my work against the two other translations and the
several English passages from the AC which Shafer (1978) had
provided, as well as against the original with the help of a Latin
dictionary. I am really thankful to Claus Wittich (Geneve) who
kindly went over my own text and made valuable suggestions and
corrections. I am confident that the final result is good enough and in
any case better than any translation mentioned above, but any
remaining shortcomings and/or mistakes are my own.
    A few words about Markov are in order. He initiated, and then
edited the 1913 Russian translation. The same year he put out the
third, the jubilee edition, as he called it, of his treatise (see
References) and supplied it with Bernoulli’s portrait. Again in 1913,
he initiated a special sitting of the Imperial [Petersburg] Academy of
Sciences devoted to Bernoulli’s work in probability and, along with
two other mathematicians, delivered a report there, first published in
1914, reprinted in Bernoulli (1986) and available in an English
translation (Ondar 1977/1981, pp. 158 –163).
    Later, in the posthumous edition of his treatise (1924), Markov
improved Bernoulli’s estimates (§ 2.4), as Pearson did at about the
same time and, perhaps as an indirect result of his study of the AC,
inserted there many interesting historical comments.
    I had previously privately printed the same translation, see S, G, 8,
but now I am not satisfied by it.

FOREWORD
1. The Art of Conjecturing and Its Contents

    Jacob Bernoulli (1654 – 1705) was a most eminent mathematician,
mechanician and physicist. His AC (1713) was published
posthumously with a Foreword by his nephew, Nicolaus Bernoulli
(English translation: David (1962, pp. 133 – 135); French translation,
Jacob Bernoulli (1987, pp. 11 – 12)). It is not amiss to add that N. B.
(1709) published his dissertation on the application of the art of
conjecturing to jurisprudence where he not only picked up some hints
included in the manuscript of his late uncle, but borrowed whole
passages both from it and even from the Meditationes, never meant for
publication (Kohli 1975b, p. 541).
    The Meditationes is Bernoulli’s diary. It covers approximately the
years 1684 – 1690 and is important first and foremost because it
contains a fragmentary proof of the law of large numbers (LLN) to
which Bernoulli indirectly referred at the end of Chapter 4 of Part 4 of
the AC. Other points of interest in the Meditationes are that he (1975,
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p. 47) noted that the probability (in this case, statistical probability) of
a visitation of a plague in a given year was equal to the ratio of the
number of these visitations during a long period of time to the number
of years in that period. Then, Bernoulli (p. 46, marginal note) wrote
out the imprint of a review published in 1666 of Graunt’s book (1662)
which he possibly had not seen; he had not referred to it either in the
Meditationes itself or in the AC. And, lastly, at about the same time
Bernoulli (p. 43) considered the probability that an older man can
outlive a young one (cf. Item 4 in Chapter 2, Part 4 of the AC). All
this, even apart from the proof of the LLN, goes to show that already
then he thought about applying statistical probability.
    Part 1 of the AC is a reprint of Huygens’ tract (1657) complete with
vast and valuable commentaries. Nevertheless, this form testifies that
Bernoulli was unable to complete his contribution. Also in Part 1
Bernoulli (pp. 22 – 28 of the German translation), while considering a
game of dice, compiled a table which enabled him to calculate the
coefficients of xm in in the development of (x + x2 + … + x5 + x6)6

for small values of n. Part 2 dealt with combinatorial analysis and it
was there that the author introduced the Bernoulli numbers. Part 3 was
devoted to application of the “previous” to drawing of lots and games
of dice.
    Parts 1 and 3 contain interesting problems: the study of random
sums for the uniform and the binomial distributions; a similar
investigation of the sum of a random number of terms for a particular
discrete distribution; a derivation of the distribution of the first order
statistic for the discrete uniform distribution; and the calculation of
probabilities appearing in sampling without replacement. The author’s
analytical methods included combinatorial analysis and calculation of
expectations of winning in each set of finite and infinite games and
their subsequent summing.
    Finally, Part 4 contained the LLN. There also we find a not quite
formal “classical” definition of probability (a notion which he had not
applied when formulating that law), a reasoning, in Chapter 2, on the
aims of the art of conjecturing (determination, as precisely as possible,
of probabilities for choosing the best solutions of problems, apparently
in civil life) and elements of stochastic logic. Strangely enough, the
title of Part 4 mentioned the completely lacking applications of the
“previous doctrine” whereas his main theorem (the LLN) was not
cited at all. This again testifies that Bernoulli had not completed his
work. He did state, however (Chapter 4) that his LLN provided moral
certainty which was sufficient for civil life and at the end of Chapter 2
he even maintained that judges must have firm instructions about what
exactly constituted it.
    Moral certainty had first appeared about 1400 (Franklin 2001, p.
69), but it was Descartes (1644, p. 323) who put it into circulation
(above all apparently bearing in mind jurisprudence!). Huygens
(Sheynin 1977, pp. 251 – 252) believed that proofs in physics were
only probable and should be checked by appropriate corollaries and
that common sense ought to determine the required degree of certainty
of judgements in civil life. This latter statement seems much more
reasonable than Bernoulli’s rigid demand.
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    Bernoulli apparently considered the art of conjecturing as a
mathematical discipline based on probability as a measure of certainty
and on expectation which included (the not yet formally introduced)
addition and multiplication theorems and crowned by the LLN.

2. The Art of Conjecturing, Part 4
2.1 Randomness and Necessity. Apparently not wishing to

encroach upon theology, Bernoulli (beginning of Chapter 1) refused to
discuss the notion of randomness. Then, again in the same chapter, he
offered a subjective explanation of the “contingent” but actually
corrected himself at the beginning of Chapter 4 where he explained
randomness by the action of numerous complicated causes. Finally,
the last lines of his book contain a statement to the effect that some
kind of necessity was present even in random things (but left too little
room for it). He referred to Plato who had taught that after a
countless number of centuries everything returned to its initial state.
Bernoulli likely thought about the archaic notion of the Great Year
whose end will cause the end of the world with the planets and stars
returning to their positions at the moment of creation. Without
justification, he widened the boundaries of applicability of his law and
his example was, furthermore, too complicated. It is noteworthy that
Kepler (1596) believed that the end of the world was unlikely. In this,
the first edition of this book, his reasoning was difficult to understand
but later he substantiated his conclusion by stating, in essence, like
Oresme (1966, p. 247) did before him, that two [randomly chosen]
numbers were “probably” incommensurable.
    Bernoulli borrowed his example of finding a buried treasure from
Aristotle (end of Chapter 1) but, unlike him, only indirectly connected
it with randomness. The later understanding of randomness began
with Maxwell and especially Poincaré, who linked it with (among
other interpretations) with the case in which slight causes (digging the
earth somewhere near) would lead to considerable effects (the treasure
remained buried) and numerous complicated causes (here, he repeated
Bernoulli). Poincaré also sensibly reasoned on the interrelations
between randomness and necessity. On randomness see Sheynin
(2014); new ideas took root late in the 20th century.

2.2. Stochastic Assumptions and Arguments. Bernoulli examined
these in Chapters 2 and 3, but did not return to them anymore; he
possibly thought of applying them in the unwritten pages of his book.
The mathematical aspect of his considerations consisted in the use of
the addition and the multiplication theorems for combining various
arguments.
    Unusual was the non-additivity of the deduced [probabilities] of the
events under discussion. Here is one of his examples (Chapter 3, Item
7):
    “Something” possesses 2/3 of certainty but its opposite has 3/4 of
certainty. Both possibilities are probable and their probabilities are as
8:9. Koopman (1940) resumed, in our time, the study of non-additive
probabilities whose sources can be found in the medieval doctrine of
probabilism that considered the opinion of each theologian as
probable. Franklin (2001, p. 74) traced the origin of probabilism to the
year 1577, or, in any case (p. 83), to 1611. Nevertheless, similar
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pronouncements on probabilities of opinion go back to John of
Salisbury (the 12th century) and even to Cicero (Garber & Zabell
1979, p. 46).
    I note a “general rule or axiom” concerning the application of
arguments (pp. 234 and 236): out of two possibilities, the safer, the
more reliable, etc. should be chosen.
    On the subject of this subsection see Shafer (1978) and Halperin
(1988).
    Bernoulli derived many formulas which I had not copied. I believe
that no one had or will ever apply them, but they are inserted in any
full translations of the Ars and certainly in Bernoulli (1975).

2.3. Arnauld and Leibniz. Antoine Arnauld (1612 – 1694) was an
extremely well known religious figure and philosopher, the main
author of the influential treatise Arnauld & Nicole (1662). In Chapter
4 Bernoulli praised Arnauld and approved his reasoning on using
posterior knowledge and at the end of Chapter 3 Bernoulli borrowed
Arnauld’s example (1662, pp. 328 – 329) of the criminal notary. Other
points of interest are Arnauld’s confidence in moral certainty and his
discussion of the application of arguments. It might be reasonably
assumed that Arnauld was Bernoulli’s “non-mathematical”
predecessor.
    In 1703, Bernoulli informed Leibniz about the progress in his work
(Kohli 1975, p. 509). He had been compiling it for many years with
repeated interruptions caused by his “innate laziness” and worsening
of health; the book still lacked its “most important part”, the
application of the art of conjecturing to civil life; nevertheless, he,
Bernoulli, had already shown his brother [Johann] the solution of a
“difficult problem, special in its own way” that justified the
applications of the art of conjecturing.
    Most important both in that letter and in the following
correspondence of 1703 – 1705 (Ibidem, pp. 510 – 512) was the
subject of statistical probabilities. Leibniz never agreed that
observations could secure moral certainty, but his arguments were
hardly convincing. Thus, he in essence repeated the statement of
Arnauld & Nicole (1662/1992, pp. 304 and 317) that the finite (the
mind; therefore, observations) could not always grasp the infinite
(for example, God, but also, as Leibniz stated, any phenomenon
depending on innumerable circumstances).
    Leibniz’ views were possibly caused by his understanding of
randomness as something “whose complete proof exceeds any human
mind” (manuscript, 1686/1960, p. 288). His heuristic statement does
not contradict a modern approach to randomness founded on
complexity and he was also right in the sense that statistical
determinations cannot definitively corroborate a hypothesis.
    In his letter of 3 Dec. 1703 Leibniz (Gini 1946, p. 405) also
maintained that the allowance for all the circumstances was more
important than subtle calculations, and Bortkiewicz (1923, p. 12) put
on record Keynes’ (1921) favourable attitude towards this point of
view and indicated the appropriate opinion of Mill (1843/1886, p.
353), who had sharply contrasted the consideration of circumstances
with “elaborate application” of probability and declared that the
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“neglect of this obvious reflection” made probability “the real
opprobrium of mathematics”. Bortkiewicz agreed that mathematicians
had been sometimes guilty of such neglect, which, however, had
nothing to do with the calculus of probability. In his Chapter 4,
Bernoulli touched on medical statistics and, for my part, I note that its
progress is accompanied by the discovery of new circumstances so
that stochastic calculations ought to be made repeatedly. Thus, in the
mid-19th century, amputation of a limb made under the newly
introduced anaesthesia sometimes led to death from bronchitis
(Sheynin 1982, p. 262) and the benefits of that procedure had to be
critically considered. Circumstances and calculations should not be
contrasted.
    Bernoulli paid due attention to Leibniz’ criticism; more than a half
of Chapter 4 of the AC in essence coincided with the respective
passages from his letters to Leibniz (whom he did not mention by
name).
    In 1714, in a letter to one of his correspondents, Leibniz (Kohli
1975, p. 512) softened his doubts about the application of statistical
probabilities and for some reason added that the late Jacob Bernoulli
had “cultivated” the [theory of probability] in accordance with his,
Leibniz’ “exhortations”.
    On the correspondence between the two scholars see also Sylla
(1998).

2.4. The Law of Large Numbers
 2.4.1. The Prehistory. The LLN has its prehistory. It was thought,

long before Bernoulli, that the number of successes in n “Bernoulli”
trials with probability p was approximately equal to

    µ = np.                                                                                (1)

    Cardano (Ore 1963, pp. 152 – 154 and 196), for example, applied
this formula in calculations connected with games of dice. When
compiling his mortality table, Halley (1694) assumed that
“irregularities” in his data would have disappeared had he much more
observations at his disposal. His idea can be interpreted as a statement
on the increase in precision of formula (3), see below, with n; it is
likely, however, that these irregularities were occasioned by
systematic corruptions.
    A second approach to the LLN took shape in astronomy not later
than during Kepler’s lifetime when the arithmetic mean became the
universal estimator of the constant sought.
    Similar but less justified statements concerning sums of magnitudes
corrupted by random errors had also appeared. Thus, Kepler (Sheynin
1973, p. 120) remarked that the total weight of a large number of
metal money of the same coinage did not depend on the inaccuracy in
the weight of the separate coins. Then, De Witt (Sheynin 1977, p. 214)
stated that the then existing custom of buying annuities upon many (n)
young and apparently healthy lives secured profit “without hazard or
risk”. The expectation of a gain Exi from each such transaction was
obviously positive; if constant, the buyer could expect a total gain of
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nEx. There also apparently existed a practice of an indirect
participation of (petty?) punters in many games at once. An any case
(Sheynin 1977, p. 236), both De Moivre and Montmort mentioned in
passing that some persons bet on the outcomes of games. The LLN
has then been known, but not to such punters, and that practice could
have existed from much earlier times.

2.4.2. Jakob Bernoulli. Before going on to prove his LLN,
Bernoulli (Chapter 4) explained that the theoretical “number of cases”
was often unknown, but what was impossible to obtain beforehand,
might at least be determined afterwards, i.e., by numerous
observations. In essence, Bernoulli proved a proposition that,
beginning with Poisson, is being called the LLN.
    Let r and s be natural numbers, t = r + s, n, a large natural number,
ν= nt, the number of [independent] trials (De Moivre (1712) was the
first to mention independence) in each of which the studied event
occurs with [probability] r/t, µ – the number of the occurrences of the
event (of the successes). Then Bernoulli proved without applying
mathematical analysis that

μ 1 1(| | ) 1
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                                               (2)

and estimated the value of ν necessary for achieving a given c > 0. In a
weaker form Bernoulli’s finding meant that

    lim μ(| | ε) 1, ν
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where, as in formula (1), r/t was the theoretical, and µ/ν, the statistical
probability.
    Markov (1924, pp. 44 – 52) improved Bernoulli’s estimate mainly
by specifying his intermediate inequalities, and Pearson (1925), by
applying the Stirling formula, achieved a practically complete
coincidence of the Bernoulli result with the estimate that makes use of
the normal distribution as the limiting case of the binomial law;
Markov did not use that formula apparently because Bernoulli had not
known it, but then, on p. 55ff, he applied it without any connection
with his previous reasoning.
    In addition, Pearson (p. 202) considered Bernoulli’s estimate of the
necessary number of trials in formula (2) “crude” and leading to the
ruin of those who would apply it but had not found a single word
appreciating the result achieved. On the contrary, he inadmissibly
compared the Bernoulli law with the wrong Ptolemaic system of the
world.
    The very fact described by formulas (2) and (3) was, however,
extremely important for the development of probability and statistics,
and, anyway, should we deny the importance of existence theorems?
For modern descriptions of Bernoulli’s LLN see Prokhorov (Bernoulli
1986) and Hald (1990, Chapter 16; 2003).
    And so, the LLN established a correspondence between the two
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probabilities. Bernoulli (Chapter 4) had indeed attempted to ascertain
whether or not the statistical probability had its “asymptote”– whether
there existed such a degree of certainty, which observations, no matter
how numerous, would never be able to reach. Or, in my own words,
whether there existed such positive numbers β and δ < 1, that

    lim μ(| | β) 1 δ, ν
ν

rP
t
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    He answered his question in the negative: no, such numbers did not
exist and he thus established, within the boundaries of stochastic
knowledge, a relation between deductive and inductive methods and
combined statistics with the art of conjecturing.
    Throughout Part 4, Bernoulli considered the derivation of the
statistical probability of an event given its theoretical probability and
this most clearly emerges in the formulation of his Main Proposition
in Chapter 5. However, both in the last lines of that chapter and in
Chapter 4 he mentioned the inverse problem actually alleging that he
had solved it as well. I return to this point in § 2.4.3.

2.4.3. Remarks on Later Events. De Moivre (1756, p. 251) followed
Bernoulli. Without any trace of hesitation, he claimed to have solved
both the direct and the “converse” problems; he had expressed less
clearly the same idea in 1738, in the previous edition of his book. De
Moivre’s mistake largely exonerates Bernoulli, so that Keynes (1921,
p. 402) wrongfully stressed that the latter “proves the direct theorem
only”. It was Bayes who perceived that the two problems were
different. He was the first to determine precisely the theoretical
probability given the appropriate statistical data and for this reason I
(Sheynin 2003) suggested that Bayes had completed the construction
of the first version of probability theory. This, however, does not
diminish the great merit of Bernoulli in spite of the much more precise
results of De Moivre (for one of the problems) and Bayes.
    I do not discuss Nicolaus Bernoulli’s version of the LLN, which he
described in one of his letters of 1713 to Montmort (1713, pp. 280 –
285); see Youshkevich (1986) and Hald (1990, § 17.3; 2003). I myself
(Sheynin 1970, p. 232; lacking in the original publication of 1968)
noted that N.B. was the first to introduce, although indirectly, the
normal distribution.

2.4.4. Alleged Difficulties in Application. Strangely enough, for a
long time statisticians had not recognized the fundamental importance
of the LLN. Haushofer (1872, pp. 107 – 108) declared that statistics,
since it was based on induction [only partly], had no “intrinsic
connections” with mathematics which is based on deduction
[consequently, neither with probability]. A most noted German
statistician, Knapp (1872, pp. 116 – 117), expressed a strange idea: the
LLN was hardly useful since statisticians always made only one
observation, as when counting the inhabitants of a city. And even later
on, Maciejewski (1911, p. 96) introduced a “statistical law of large
numbers” in place of the Bernoulli proposition that had allegedly
impeded the development of statistics. His own law qualitatively
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asserted that statistical indicators exhibited ever lesser fluctuations as
the number of observations increased.
    All such statements definitely concerned the Poisson law as well
(European statisticians then hardly knew about the Chebyshev form of
the law) and Maciejewski’s opinion likely represented the prevailing
attitude of statisticians. Here, indeed, is what Bortkiewicz (1917, pp.
56 – 57) thought: the expression law of large numbers ought to be
used only for denoting a “quite general” fact, unconnected with any
definite stochastic pattern, of a higher or lower degree of stability of
statistical indicators under constant or slightly changing conditions
and given a large number of trials. Even Romanovsky (1961, p. 127)
kept to a similar view and stressed the natural-scientific essence of the
law and called it physical.
    The text of Part 4 of the Art of Conjecturing follows.
The Art of Conjecturing, Part 4 showing The Use and Application

of the Previous Doctrine to Civil, Moral and Economic Affairs
Chapter 1. Some Preliminary Remarks

about Certainty, Probability,Necessity and Fortuity of Things
    Certainty of some thing is considered either objectively and in itself
and means none other than its real existence at present or in the future;
or subjectively, depending on us, and consists in the measure of our
knowledge of this existence. Everything that exists or originates under
the sun, – the past, the present, or the future, – always has in itself and
objectively the highest extent of certainty. This is clear with regard to
events of the present or the past; because, just by their existence or
past existence, they cannot be non-existing or not having existed
previously. Neither can you have doubts about [the events of] the
future, which, likewise, on the strength of Divine foresight or
predetermination, if not in accord with some inevitable necessity,
cannot fail to occur in the future. Because, if that, which is destined to
happen, is not certain to occur, it becomes impossible to understand
how can the praise of the omniscience and omnipotence of the greatest
Creator remain steadfast. But how can this certainty of the future be
coordinated with fortuity or freedom [independence] of secondary
causes? Let others argue about it; we, however, will not touch
something alien to our aims.
    Certainty of things, considered with respect to us, is not the same
for all things, but varies diversely and occurs now greater, now lesser.
Something, about which we know, either by revelation, intellect,
perception, by experience, autopsia [direct observation; by one’s own
eyes] or otherwise, that we cannot in any way doubt its existence or
realization in the future, has the complete and absolute certainty. To
anything else our mind assigns a less perfect measure [of certainty],
either higher or lower depending on whether there are more or less
probabilities convincing us of its existence at present, in the past or
the future.
    As to probability, this is the degree of certainty, and it differs from
the latter as a part from the whole. Namely, if the integral and absolute
certainty, which we designate by letter α or by unity 1, will be thought
to consist, for example, of five probabilities, as though of five parts,
three of which favour the existence or realization of some event, with
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the other ones, however, being against it, we will say that this event
has 3/5α, or 3/5, of certainty.
    Therefore, the event that has a greater part of certainty than the
other ones is called more probable, although actually, according to the
usual word usage, we only call probable that, whose probability
markedly exceeds a half of certainty. I say markedly because a thing,
whose probability is roughly equal to a half of certainty, is called
doubtful or indefinite1.1. Thus, a thing having 1/5 of certainty is more
probable than that which has 1/10, although actually neither is
probable.

Possible is that which has at least a low degree of certainty whereas
the impossible has either no, or an infinitely small certainty. Thus,
something is possible if it has 1/20 or 1/30 of certainty.

Morally certain is that whose probability is almost equal to
complete certainty so that the difference is insensible. On the contrary,
morally impossible is that which has only as much probability as the
morally certain lacks for becoming totally certain. Thus, if morally
certain is that which has 999/1000 of certainty, then something only
having 1/1000 of certainty will be morally impossible.

 Necessary is that, which cannot fail to exist at present, in the future
or past, owing exactly to necessity, either physical (thus, fire will
necessarily consume; a triangle will have three angles summing up to
two right angles; a full moon, if in a node, will necessarily be
accompanied by a [lunar] eclipse), – or hypothetical, according to
which all that exists, or had existed, or is supposed to exist, cannot fail
to exist (in this sense it is necessary that Petrus, about whom I know
and accept that he is writing, is indeed writing), – or, finally,
according to the necessity of a condition or agreement (thus, a
gambler scoring a six with a die is necessarily reckoned the winner if
the gamblers have agreed that winning is connected with throwing a
six).

Contingent (both free, if it depends on the free will of a reasonable
creature, and fortuitous and casual, if it depends on fortune or chance)
is that which can either exist or not exist at present, in the past or
future, – clearly because of remote rather than immediate forces.
Indeed, neither does contingency always exclude necessity up to
secondary causes. I shall explain this by illustrations.
    It is absolutely doubtless that, given a certain position of a die, [its]
velocity and distance from the board at the moment when it leaves the
thrower’s hand, it cannot fall otherwise than it actually does. Just the
same, under a certain present composition of the air, and given the
masses, positions, motions, directions, and velocities of the winds,
vapours and clouds, as well as the mechanical laws governing the
interactions of all that, the weather tomorrow cannot be different from
that which it will actually be. So these phenomena take place owing to
their immediate causes with no lesser necessity than the phenomena of
the eclipses follow from the movement of the heavenly bodies. And
still, usually only the eclipses are ranked among necessary phenomena
whereas the fall of a die and the future weather are thought to be
contingent.
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    The sole reason for this is that what is supposed to be known for
determining future actions, and what indeed is such in nature, is not
enough known. And, even had it been sufficiently known, geometric
and physical knowledge is inadequately developed for subjecting such
phenomena to calculation in the same way as eclipses can be
calculated beforehand and predicted by means of known astronomical
principles. And, for the same reason, before astronomy achieved such
perfection, the eclipses themselves had to be reckoned as future
chance events to not a lesser extent than the two other [mentioned]
phenomena.
    It follows that what seems to be contingent to one person at a
certain moment, will be thought necessary to someone else (or even to
the same person) at another time after the [appropriate] causes become
known. And so, contingency mainly depends on our knowledge since
we do not see any contradiction with the non-existence of the event at
present or in the future, although here and now, owing to an
immediate but unknown to us cause, it is either necessarily realized, or
ought to occur.
    Not everything which brings us well-being or harm is called
happiness or misfortune {Fortuna prospera, un Bonheur, ein Glück &
Fortuna adversa, un Malheur, ein Unglück}, but only that which with
a higher, or at least with the same probability would have possibly
failed to occur. Therefore, happiness or misfortune are the greater, the
lower was the probability of the well-being or harm that has actually
occurred. Thus, exceptionally happy is the man who finds a buried
treasure while digging the ground because this does not happen even
once in a thousand cases. If twenty deserters, one of whom will be put
to death by hanging as an example for the others, cast lots as to who
remains living, those nineteen who drew the more favourable lot are
not really called happy; but the twentieth who cast the horrible lot is
most miserable. [In the same way,] your friend who came out
unharmed from a battle in which [only] a small part of the combatants
were killed should not be called happy, unless you will perhaps think
it necessary to do so because of the special fortune of preserving life.

Chapter 2. On Arguments and Conjecture.
On the Art of Conjecturing.

On the Grounds for Conjecturing.
Some General Pertinent Axioms

    Regarding that which is certainly known and beyond doubt, we say
that we know or understand [it]; concerning all the rest, – we only
conjecture or opine.
    To make conjectures about something is the same as to measure its
probability. Therefore, the art of conjecturing or stochastics {ars
conjectandi sive stochastice}2.1 is defined as the art of measuring the
probability of things as exactly as possible, to be able always to
choose what will be found the best, the more satisfactory, serene and
reasonable for our judgements and actions. This alone supports all the
wisdom of the philosopher and the prudence of the politician.
    Probabilities are estimated both by the number and the weight of the
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arguments which somehow prove or indicate that a certain thing is,
was, or will be. As to the weight, I understand it to be the force of the
proof.

 Arguments themselves are either intrinsic, in every-day speech
artificial, elicited in accordance with considerations of the cause, the
effect, of the person, connection, indication or of other circumstances
which seem to have some relation to the thing under proof; or external
and not artificial, derived from people’s authority and testimony. An
example: Titius is found killed in the street. Maevius is charged with
murder. The accusing arguments are: 1) He is known to have hated
Titius (an argument from a cause, since this very hate could have
incited to murder). 2) When questioned, he turned pale and answered
timidly (this is an argument from the effect since it is possible that
the pallor and fright were caused by his being conscious of the evil
deed perpetrated). 3) Blood-stained cold steel is found in Maevius’
house (this is an indication). 4) The same day that Titius was killed,
Maevius had been walking the same road (this is circumstance of
place and time). 5) Finally, Cajus maintains that the day before Titius
was killed, he had quarrelled with Maevius (this is a testimony).
    However, before getting down to our problem, – to indicating how
should we apply these arguments for conjecturing to measure
probabilities, – it is helpful to put forth some general rules or axioms
which are dictated to any sensible man by usual common sense and
which the more reasonable men always observe in everyday life.
    1) In such things in which it is possible to achieve complete
certainty, there is no place for conjectures. Futile would have been an
astronomer, who, knowing that two or three [lunar] eclipses occur
yearly, desires to forecast, on such grounds, whether or not there will
be an eclipse during a full moon. Indeed, he could have found out the
truth by reliable calculation. Just the same, if a thief says at his
questioning that he sold the stolen thing to Sempronius, the judge who
wants to conjecture about the probability of that statement by looking
at the expression of the thief’s face and listening to the tone of his
voice, or by contemplating the quality of the stolen thing, or by some
other circumstances, will act stupidly, because Sempronius, from
whom everything can certainly and easily be elicited, is available.
    2) It is not sufficient to weigh one or another argument; it is
necessary to investigate all such which can be brought to our
knowledge and will seem suitable in some respect for proving the
thing. Suppose that three ships leave the harbour. After some time it is
reported that one of them had suffered shipwreck and is lost.
Conjectures are made: which of them? If only paying attention to the
number of the ships, I shall conclude that each of them could have met
with the misfortune in an equal manner. But since I remember that one
of them was comparatively old and decrepit, badly rigged with masts
and sails, and steered by a young and inexperienced helmsman, I
believe that, in all probability, it was this ship that got lost rather than
one of the others.
    3) We ought to consider not only the arguments which prove a
thing, but also all those which can lead to a contrary conclusion, so
that, after duly discussing the former and the latter, it will become
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clear which of them has more weight. It is asked, with respect to a
friend very long absent from his fatherland, may we declare him
dead2.2? The following arguments favour an answer in the affirmative:
During the entire twenty years, in spite of all efforts, we have been
unable to find out anything about him; the lives of travellers are
exposed to very many dangers from which those remaining at home
are exempted; therefore, perhaps his life came to an end in the waves;
perhaps he was killed en route or in battle; perhaps he died of an
illness or from some [other] cause in a place where no one knew him.
Then, has he been living, he would have reached an age which only a
few attain even in their homeland; and he would have written even
from the furthest shores of India because he knew that an inheritance
was expected for him at home. And so on in the same vein.
    Nevertheless, we should not rest content with these arguments but
rather oppose them by the following supporting the contrary. He is
known to have been thoughtless; wrote letters reluctantly; did not
value friends. Perhaps Barbarians held him captive so that he was
unable to write, or perhaps he did write sometimes from India, but the
letters got lost either because of the carelessness of those carrying
them, or during shipwrecks. And, to cap it all, many people are known
to have returned unharmed after having been absent even longer.
    4) For judging about universalities remote and universal arguments
are sufficient; however, for forming conjectures about particular
things, we ought also to join to them more close and special
arguments if only these are available. Thus, if it is asked, in general,
how much more probable is it for a twenty-year-old youth to outlive
an aged man of 60 rather than the other way round, we have nothing
to take into consideration other than the distinction between the
generations and ages. But if the question concerns two definite
persons, the youth Petrus and the old man Paulus, we also ought to
pay attention to their complexion, and to the care that each of them
takes over his health. Because if Petrus is in poor health, indulges in
passion, and lives intemperately, Paulus, although much older, may
still hope, with every reason, to live longer.
    5) Under uncertain and dubious circumstances we ought to suspend
our actions until more light is thrown. If, however, the necessity of
action brooks no delay, we must always choose among two
possibilities that one which seems more suitable, safe, reasonable, or
at least more probable 2.3, even if none of them is actually such. Thus,
if a fire has broken out and you can only save yourself by jumping
from the top of the roof or from some lower floor, it is better to choose
the latter as being less dangerous, although neither alternative is quite
safe or free from the danger of injury.
    6) That which is in some cases helpful and never harmful ought to
be preferred to that which is never either helpful or harmful. In our
vernacular it is said Hilfft es nicht, so schadt es nicht [Even if it does
not help, it does not harm]. This proposition follows from the previous
[considerations], because that which can be helpful is more
satisfactory, reliable and desirable than that which under the same
conditions cannot [be helpful].
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    7) Human actions should not be assigned a value according to
their outcomes because sometimes the most reckless actions are
accompanied by the best success, whereas, on the contrary, the most
reasonable [may] lead to the worst results. In agreement with this, the
Poet says: “May success be wanting, I wish, for him who would judge
facts by their outcomes” [Ovidius, Epistulae Heroidum II, “Phyllis
Demophoonti”, line 85]. Thus, someone who intends to throw at once
three sixes with three dice, should be considered reckless even if
winning by chance. On the contrary, we [ought to] note the false
judgement of the crowd which considers a man the more prominent,
the more fortunate he is, and for which even a successful and fruitful
crime is mostly a virtue. Once more Owen (Epigr[ammatum] lib[er]
sing[ularis, 1607], § 216)2.4 gracefully says:

Although just now Ancus is believed to be a fool, it is argued that he
is wise because the poorly conceived turned out successful [for him].
If something reasonably thought-out fails, even Cato will be judged a
fool by the crowd.
    8) In our judgements, we ought to beware of attributing to things
more than is due to them, ought not to consider something which is
only more probable than the other as absolutely certain, nor to impose
the same opinion on others. [This is] because the trust attributed to
things ought to be in a proper proportion to the degree of certainty
possessed by each thing, and be less in the same ratio as its probability
itself is. In vernacular, this is expressed as
  Man muss ein jedes in seinem Werth und Unwerth beruhen lassen

[Let each thing be determined by its value or worthlessness.]
    9) However, since complete certitude can only seldom be attained,
necessity and custom desire that that, which is only morally certain,
be considered as absolutely certain. Therefore, it would be helpful if
the authorities determine certain boundaries for moral certainty, – if,
for example, it would be defined whether 99/100 of certainty be
sufficient for resolving something, or whether 999/1000 be needed, so
that a judge, unable to show preference to either side, will always have
firm indications to conform with when pronouncing a sentence.
    Anyone having knowledge of life can compile many more similar
axioms, but, lacking an appropriate occasion, we can hardly remember
all of them.

Chapter 3. On Arguments of Different Kinds and on How Their
Weights Are Estimated for Calculating the Probabilities of Things
    He who considers various arguments by which our opinions and
conjectures are formed will note a threefold distinction between them
since some of them necessarily exist and contingently provide
evidence; others exist contingently and necessarily provide evidence;
finally, the third ones both exist and provide evidence contingently.
    I explain these differences by examples. For a long time, my
brother does not write me anything. I doubt whether to blame his
laziness or his business pursuits, and fear that he may even have died.
Here, there are threefold arguments for explaining the ceasing of the
correspondence: laziness, death, pursuits. The first of these exists for
sure (according to hypothetical necessity, since I know and accept that
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my brother is lazy), but proves true [provides evidence] only
contingently because laziness possibly would not have
hindered him from writing. The second one contingently exists
(because my brother could still be alive), but proves true without
question because a dead man cannot write. The third one both exists
and provides evidence contingently because my brother can have
business pursuits or not, and if he has them, they need not be such that
prevent him from writing.
    Another example. I suppose that, according to the conditions of a
game, a gambler wins if he throws seven points with two dice, and I
wish to guess his hope of winning. Here, the argument for winning is
the throwing of seven points. It necessarily indicates the winning
(owing, indeed, to the agreement between the gamblers), but it only
exists contingently, because, in addition to the seven points, another
number of them can occur.
    Excepting this difference between the arguments, another
distinction can also be noted since some of them are pure, the other
ones, mixed. I call an argument pure if in some cases it proves a thing
in such a manner that on other occasions it does not prove anything
positively. A mixed argument, however is such that in certain cases it
thus proves a thing that on other occasions it proves the contrary in the
same manner.
    An example. Someone in a quarrelling crowd was cut with a sword;
and, as trustworthy people who saw the incident from a distance
testify, the perpetrator was dressed in a black cloak3.1. If Gracchus was
among those quarrelling together with three others, all of them in
black tunics, this tunic will be an argument in favour of Gracchus
having committed the murder.
    However, this argument will be mixed since in one case it proves
his guilt, and, in three other cases, it demonstrates his innocence.
Indeed, the murder was perpetrated either by him, or by one of the
other three, with the latter instance being impossible without
exonerating Gracchus. If, however, during the subsequent questioning
Gracchus turned pale, the paleness of his face will be a pure argument
because it demonstrates his guilt if occasioned by disturbed
conscience. On the contrary, it would not prove his innocence had it
been called forth by something else, since it is possible that he turned
pale owing to another cause but still was himself the perpetrator of the
murder [the murderer].
    The above makes it clear that the force of proof peculiar to some
argument depends on the multitude of cases in which it can exist or
not exist, provide evidence or not, or even provide evidence to the
opposite of the thing. Therefore, the degree of certainty, or the
probability engendered by this argument, can be deduced by
considering these cases in accordance with the doctrine given in Part 1
[of this book] in exactly the same way as the fate of gamblers in
games of chance is usually investigated.
    And so, first, let an argument exist contingently and provide
evidence necessarily. If some argument both exists and indicates
contingently, …
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    Then, if several arguments are collected for proving one and the
same thing, the force provided by the totality of all the arguments is
estimated in the following way …
     If, in addition to the arguments leading to the proof of a thing, there
exist other pure arguments favouring the opposite, the arguments of
both kinds ought to be weighed separately …
    It might happen that something has 2/3 of certainty whereas its
opposite has 3/4 so that each of these contraries will be probable
although the first of them is less probable than the opposite; namely,
their ratio will be as 2/3 to 3/4 or as 8 to 9.
    I cannot conceal here that I foresee many obstacles in special
applications of these rules that can often lead to shameful mistakes if
caution is not observed when distinguishing between the arguments.
Indeed, sometimes such arguments can seem to differ which actually
compose one and the same argument, and to the contrary: differing
arguments can be accepted as a single argument. Sometimes an
argument includes such premises which absolutely refute the opposite,
etc. As an explanation, I only adduce one or two illustrations. In the
example above concerning Gracchus, I assume that the trustworthy
people who saw those quarrelling also noted that the perpetrator was
red-haired and that Gracchus together with two of the others were
distinguished by hair of that colour, but that no one of the latter was
dressed in a black toga. In that case, if someone would have desired to
compare the probabilities of Gracchus’ guilt and innocence by the
indications that Gracchus and three others were dressed in black, and
also, that, again in addition to him, two others were notable for their
red hair, and found that they are in a composite ratio of 1:3 and 1:2, or
in the ratio of 1 to 6; and if he were to conclude that Gracchus is by
far more likely to be innocent than to be the perpetrator of the murder,
he would certainly have collated the matter in a most inept fashion.
Actually, there are no two arguments here but only one and the same,
resulting from two simultaneous circumstances, the colour of the dress
and of the hair. Since both these circumstances are only conjoined in
the case of Gracchus, they certainly demonstrate that no one else
except him could have been the perpetrator.
    Another example. It becomes doubtful whether a written document
is fraudulently antedated. An argument to the opposite could be that
the document was signed by the hand of a notary public, i.e., by an
official and sworn person, with regard to whom it is unlikely that he
might have permitted himself any fraud. Indeed, he would have been
unable to do so without greatly endangering his honour and well-
being; in addition, even from among 50 notaries hardly one would
have dared to commit such a vile action. The following arguments
could be in favour of an answer in the affirmative: This notary is very
ill-famed; and could have expected greatest benefits from the fraud;
and especially that he had testified to something having no
probability, as for example that someone had lent 10,000 gold coins to
another person, whereas, according to everyone’s estimation, all his
property then barely amounted to 100.
    Here, if considering separately the argument from the character of
the signatory, the probability that the document is authentic may be
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valued as 49/50 of certainty. When, however, weighing the arguments
favouring the opposite, it would be necessary to conclude that it is
hardly possible that the document is not forged so that the fraud
committed in the document is of course morally certain, that is, has
999/1000 of certainty. However, we should not conclude that the
probabilities of authenticity and fraud are in the ratio of 49/50 to
999/1000, or almost of equality. Because, if I believe that the notary is
dishonourable, I am therefore assuming that he does not belong to the
49 honest notaries detesting deception but that he is indeed the fiftieth
who has no scruples of fulfilling his duties faithlessly. This
consideration completely destroys all the power of that argument,
which in other cases could have been able to prove that a document is
authentic.

Chapter 4. On a Two-Fold Method
of Investigating the Number of Cases.

What Ought To Be Thought about Something Established
by Experience. A Special Problem Proposed in This Case, etc.

    It was shown in the previous chapter how, – given the number of
cases in which arguments in favour of some thing can exist or fail to
exist, can provide evidence or not, or even prove the opposite, – the
force of what they prove, and the probabilities of things proportional
to these forces, can be derived and estimated by calculation. We thus
see that for correctly conjecturing about some thing, nothing else is
required than both precisely calculating the number of cases and
finding out how much more easily can some of them occur than the
others. Here, however, we apparently meet with an obstacle since this
only extremely seldom succeeds, and hardly ever anywhere except in
games of chance which their first inventors, desiring to make them
fair, took pains to establish in such a way that the number of cases
involving winning or losing were determined with certainty and
known and the cases themselves occurred with the same facility.
    However, for most of other matters, depending either on the
production of nature or the free will of people, this does not take place
at all. Thus, for example, the number of cases is known in [a game of]
dice. For each die there are manifestly as many cases as faces, and all
of them are equally inclined [to turn up], since, owing to the similitude
[congruence] of the faces and the uniform weight [density] of the die,
there is no reason for one of them to turn up more easily than
another4.1.
    This would have happened if the forms of the faces were dissimilar
or if one part of the die consisted of a heavier substance than the other
one. In the same way, the number of cases for drawing a white or a
black ticket from an urn is known, and known [also] is that [the
drawings of] all of them are equally possible. Indeed, the number of
tickets of both these kinds is evidently determined and known, and no
reason is seen for one of them to appear more easily than any other.
    But, who from among the mortals will be able to determine, for
example, the number of diseases, that is, the same number of cases
which at each age invade the innumerable parts of the human body
and can bring about our death; and how much easier one disease (for
example, the plague) can kill a man than another one (for example,



69

dropsy or, dropsy than fever), so that we would be able to conjecture
about the future state of life or death? And who will count the
innumerable cases of changes to which the air is subjected each day to
form a conjecture about its state in a month, to say nothing about a
year? Again, who knows the nature of the human mind or the
admirable fabric of our body shrewdly enough for daring to determine
the cases in which one or another participant can gain victory or be
ruined in games completely or partly depending on acumen or agility
of body?
    Since this and the like depends on absolutely hidden causes, and, in
addition, owing to the innumerable variety of their combinations
always escapes our diligence, it would be an obvious folly to wish to
find something out in this manner. Here, however, another way for
attaining the desired is really opening for us. And, what we are not
given to derive a priori, we at least can obtain a posteriori, that is, can
extract it from a repeated observation of the results of similar
examples. Because it should be assumed that each phenomenon can
occur and not occur in the same number of cases in which, under
similar circumstances, it was previously observed to happen and not to
happen. If, for example, it was formerly noted that, among the
observed three hundred men of the same age and complexion as Titius
now is and has, two hundred died after ten years with the others still
remaining alive, we may conclude with sufficient confidence that
Titius also has twice as many cases for paying his debt to nature
during the next ten years than for crossing this border. Again, if
someone will consider the atmosphere for many previous years and
note how many times it was fine or rainy; or, will be very often
present at a game of two participants and observe how many times
either was the winner, he will thus discover the ratio of the number of
cases in which the same event will probably happen or not also in the
future under circumstances similar to those previously existing.
    This empirical method of determining the number of cases by
experiment is not new or unusual. Because the celebrated author of
L’art de penser, a man of great intellect and acumen4.2, prescribes the
like in Chapter 12 and in the next ones of the last part [of that book],
and the same is also constantly observed in everyday life. Then,
neither can anyone fail to note also that it is not enough to take one or
another observation for such reasoning about an event, but that a large
number of them are needed. Because, even the most stupid person, all
by himself and without any preliminary instruction, is guided by some
natural instinct (which is extremely miraculous) and feels sure that the
more such observations are taken into account, the less is the danger
of straying from the goal.
    Although this is known by nature to everyone, its proof, derived
from scientific principles, is not at all usual and we ought therefore to
expound it here. However, I would have estimated it as a small merit
had I only proved that of which no one is ignorant. Namely, it remains
to investigate something that no one had perhaps until now run across
even in his thoughts. It certainly remains to inquire whether, when the
number of observations thus increases, the probability of attaining the
real ratio between the number of cases, in which some event can occur
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or not, continually augments so that it finally exceeds any given
degree of certitude. Or [to the contrary], the problem has, so to say, an
asymptote; i.e., that there exists such a degree of certainty which can
never be exceeded no matter how the observations be multiplied, so
that, for example, it is never possible to obtain more than a half, or
than 2/3, or 3/4 of certainty in deriving the real ratio of cases.
    To make clear my desire by illustration, I suppose that without your
knowledge three thousand white pebbles4.3 and two thousand black
ones are hidden in an urn, and that, to determine [the ratio of] their
numbers by experiment, you draw one pebble after another (but each
time return the drawn pebble before extracting the next one so that
their number in the urn will not decrease), and note how many times is
a white pebble drawn, and how many times a black one. It is required
to know whether you are able to do it so many times that it will
become ten, a hundred, a thousand, etc., times more probable (i.e.,
become at last morally certain) that the number of the white and the
black pebbles which you extracted will be in the same ratio, of 3
to 2, as the number of pebbles themselves, or cases, than in any other
different ratio. To tell the truth, if this failed to happen, it would be
necessary to question our attempt at experimentally determining the
number of cases. If, however, this is attained and we thus finally
obtain moral certainty (in the next chapter I shall show that this is
indeed so), then we determine the number of cases a posteriori almost
as though it was known to us a priori. In social life, where the morally
certain, according to Proposition 9 of Chapter 2, is assumed as quite
certain, this is undoubtedly quite sufficient for scientifically directing
our conjectures about any contingent thing in a no lesser way than in
games of chance. Because, if we replace an urn for example by air or
by a human body, which contain in themselves sources of various
changes or diseases just as the urn contains pebbles, we will be able to
determine by observation in exactly the same way how much easier
can one or another event occur in these things.
    To avoid false understanding, it ought to be noted that the ratio
between the numbers of cases which we desire to determine
experimentally is accepted not as precise and strict (because this point
of view would have led to a contrary result and the probability of
determining the real ratio would have been the lower the more
observations we would have taken)4.4, but that this ratio be accepted
with a certain latitude, that is, contained between two limits
[boundaries] which can be taken as close as you like. Indeed, if in the
example just provided concerning pebbles, we will assume two ratios,
301/200 and 299/200, or 3001/2000 and 2999/2000, etc., one of which
is very near but greater, and the other one very near but smaller than
3/2, it will be shown that, setting any probability, it can be made more
probable that the ratio derived from many observations will be
contained within these limits of 3/2 rather than outside.
    This, then, is the problem that I decided to make here public after
having known its solution for twenty years. Its novelty and the
greatest utility joined with an equal difficulty can attach more weight
and value to all the other chapters of this doctrine [of the ars
conjectandi]. However, before exposing its solution I shall defend
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myself in a few words from the objections to these propositions
levelled by some scholars.
    1. First, it was objected that the ratio of pebbles is one thing,
whereas the ratio of diseases or changes in the air is something else.
The number of the former is definite but the number of the latter is
indefinite and vague. I answer this by saying that they both, in
comparison to our knowledge, are equally indefinite and vague.
However, we can imagine anything that is such in itself and in
accordance with its nature, not better than a thing created and at the
same time not created by the Author of nature because everything
done by God is determined thereby.
    2. Second, it is objected that the number of pebbles is finite and that
of diseases etc. is infinite. Answer. Rather immense than infinite. But
let us assume that it is indeed infinite. Even between two infinities a
definite ratio is known to be possible and to be expressed by finite
numbers either precisely or at least with any desired approximation.
Thus, the ratio of each circumference to [its] diameter is definite.
[True,] it is not precisely expressed otherwise than by an infinitely
continued Ludolphus’ cyclic number. However, Archimedes, Metius
and Ludolphus himself4.5 restricted that ratio within limits
[boundaries] sufficiently close to each other for practice. Therefore,
nothing hinders a ratio of two infinities approximately expressed by
finite numbers to be determined by a finite number of experiments
either.
    3. Third, it is said that the number of diseases does not remain
constant but that new diseases occur every day. Answer. We are
unable to deny that diseases can multiply in the course of time; and he
who desires to conclude from present-day observations about the
times of our antediluvian forefathers will undoubtedly deviate
enormously from the truth. But nothing follows from this except that
sometimes we ought to resume observations just as it would be
necessary to resume observations with the pebbles if it is assumed that
their number in the urn is variable.

Chapter 5. Solution of the Previous Problem
    To explicate the long demonstration as briefly and clearly as
possible, I will attempt to reduce everything to abstract mathematics,
eliciting from it the following lemmas after which all the rest will only
consist in their mere application.

Lemma 1. Suppose that a series of any quantity of numbers 0, 1, 2,
3, 4, etc., follow, beginning with zero, in the natural order and let the
extreme and maximal of them be r + s, some intermediate, be r, and
the two nearest to it on either side, r + 1 and r – 1. If this series be
continued until its extreme term becomes equal to some multiple of
the number r + s, that is, until it is equal to nr + ns, the intermediate
number r and those neighbouring it, r + 1 and r – 1, will be augmented
in the same ratio, so that nr, nr + n and nr – n will appear instead, and
the series itself

    0, 1, 2, 3, 4, …, r – 1, r, r + 1, …, r + s

will change becoming
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    0, 1, 2, 3, 4, …, nr – n, …, nr, …, nr + n, …, nr + ns.

    With an increasing n both the number of the terms situated between
the intermediate nr and one of the limiting terms, nr + n or nr – n, and
the number of those terms which extend from these limits to the
extreme terms nr + ns or 0 will thus increase. However (no matter
how large will n be assumed), the number of terms following after the
larger limit nr + n will never be more than s – 1 times greater than,
and the number of terms preceding the lesser limit nr – n will never be
more than r – 1 times greater than the number of them situated
between the intermediate nr and one of the limits, nr + n or nr – n.
Because, after subtraction, it is clear that between the greater limit and
the extreme term nr + ns there are ns – n intermediate terms, and
between the lesser limit and the other extreme term 0 there are nr – n
intermediate terms, and n terms between the intermediate and each of
the limits. However, (ns – n):n = (s – 1):1 and (nr – n):n = (r – 1):1. It
therefore follows, etc.

Lemma 2. A binomial r + s raised to any integral power is
expressed by terms whose number exceeds by 1 the number of unities
in the exponent.
    Since a square [of a binomial] consists of three terms, a cube has 4,
a fourth power has 5 terms, etc., as is known.

Lemma 3. For any power of this binomial (at least for an exponent
equal to the binomial r + s = t, or to its multiple, for example, to
nr + ns = nt), a certain term M will be maximal if the number of terms
preceding and following it are in the ratio of s to r; or, which is the
same, if the exponents of letters r and s in this term are in the ratio of
the magnitudes r and s themselves. The term nearer to it from either
side is greater than the more distant term on the same side; however,
the same term M is in a lesser ratio to the nearer term than the nearer
term to the more distant one if the numbers of intermediate terms are
the same.

Dem[onstration]. 1. Geometers know well enough that the binomial
r + s raised to the power nt, that is, (r + s)nt, is expressed by such a
series:

1 2 2 1( 1) ... .
1 1 2 1

m m m m mnt nt nt ntr r s r s rs s- - --
+ + + + +

×

[…] Since the number of all the terms except M is, according to
Lemma 1, nt = nr + ns, and, as assumed, the numbers of the terms
preceding and following M are as s to r, these numbers are ns and nr
respectively. Therefore, in accordance with the law of the series, then
term M will be

( 1)( 2)...( 1) ( 1)( 2)...( 1)or
1 2 3 ... 1 2 3 ...

nr ns nr nsnt nt nt nr nt nt nt nsr s r s
ns nr

- - + - - +
× × × × × × × ×

call it (5.1),
and in the same way the terms nearest to it on the left and the right are
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1 1 1 1( 1)( 2)...( 2) ( 1)( 2)...( 2)and
1 2 3 ... ( 1) 1 2 3 ... ( 1)

nr ns nr nsnt nt nt nr nt nt nt nsr s r s
ns nr

+ - - +- - + - - +
× × × × - × × × × -

and in the same way the next ones on the left and the right are […].
    After a preliminary suitable cancellation of common multipliers
from both the coefficients and the powers themselves, it becomes
clear that the term M is to its nearest on the left as (nr + 1)s to nrs; this
latter to the next one, as (nr + 2)s to (ns – 1)r, etc., and also that the
term M is to its nearest on the right as (ns + 1)r to nsr, this latter to the
next one, as (ns + 2)r to (nr – 1)s, etc. But

    (nr + 1)s > nrs, and (nr + 2)s > nsr – r, etc.

Also,

    (ns + 1)r > nsr and (ns + 2)r > nrs – s, etc.

    It follows that the term M is greater than either of the nearest terms
on either side which [in turn] are greater than the more remote terms
on the same side, etc. QED.
    2. The ratio (nr + 1)/ns, as is clear, is less than the ratio
(nr + 2)/(ns – 1). Therefore, after multiplying [them] by one and the
same ratio s/r, the ratio

( 1) ( 2) .
( 1)

nr s nr s
nsr ns r
+ +

<
-

Just the same, it is evident that the ratio
.

( 1) 2 .
1

ns ns
nr nr
+ +

<
-

    Consequently, after multiplying [this inequality] by one and the
same ratio r/s, also

( 1) ( 2) .
( 1)

ns r ns r
nrs nr s
+ +

<
-

    But the ratio

( 1)nr s
nsr
+

is equal to the ratio of the term M to its nearest term on the left and the
ratio5.1

( 2)
( 1)
nr s
ns r
+
-
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is the same as M has to the next one. And the ratio

( 1)ns r
nrs
+

is that of the term M to its nearest term on the right, and

( 2)
( 1)
ns r
nr s
+
-

is the ratio of that term to the next one. What was just shown may in
the same way be also applied to all the other terms.
    Therefore, the maximal term M is in a lesser ratio to the nearer term
on either side than (if the intervals between the terms are the same) the
nearer term is to the more distant one on the same side. QED.

Lemma 4. The number n in a binomial raised to the power nt can
be taken so great that the ratio of the maximal term M to [any of the]
two others, L and L  distant from it by n terms on the left and on the
right [respectively], would be greater than any given ratio.

Dem[onstration]. Since in the previous Lemma the maximal term M
was found to be equal to (5.1) the terms on the left and on the right, L
and L , in accordance with the law of the [formation of the] series
(adding n to the last multiplier in the numerators of the coefficients,
and subtracting n from the last multiplier in their denominators,
adding the same n to the power of one of the letters r and s, and
subtracting it from the power of the other letter), will be

( 1)( 2)...( 1)
1 2 3 ... ( )

nr n ns nnt nt nt nr n r s
ns n

+ -- - + +
× × × × -

( 1)( 2)...( 1)and
1 2 3 ... ( )

nr n ns nnt nt nt ns n r s
nr n

- +- - + +
× × × × -

.

    And after a suitable cancellation of common multipliers,

( )( 1)...( 1) ,
( 1)( 2)...

n

n

M nr n nr n nr s
L ns n ns n nsr

+ + - +
=

- + - +

( )( 1)...( 1) ,
( 1)( 2)...

n

n

M ns n ns n ns r
nr n nr n nrs
+ + - +

=
L - + - +

or

( )( )...( ) ,
( )( 2 )...

M nrs ns nrs ns s nrs s
L nrs nr r nrs nr r nrs

+ + - +
=

- + - +
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( )( )...( ) .
( )( 2 )...

M nrs nr nrs nr r nrs r
nrs ns s nrs ns s nrs

+ + - +
=

L - + - +

    However, when n is assumed infinite, these ratios will [also] be
infinitely large, because then the numbers 1, 2, 3 etc. will vanish as
compared with n, and the numbers themselves nr ± n m  1, nr ± n m  2,
etc., and ns ± n m  1, ns ± n m  2, etc. will have the same value as
nr ± n and ns ±  n [respectively], so that, after dividing [both parts of
both last fractions] by n,

( )( )... ( )( )...,  .
( )( )... ( )( )...

M rs s rs s rs M rs r rs r rs
L rs r rs r rs rs s rs s rs

+ + + +
= =

- - L - -

    It is clear that these ratios are composed of as many ratios
[(rs + s)/(rs – r)] or [(rs + r)/(rs – s)] as there are multipliers whose
number is n, that is, infinite since the difference between the first
multipliers nr + n or ns + n, and the last ones, nr + 1 or ns + 1, is
n – 1. These ratios [M/L and M/L ] will therefore be equal to
[(rs + s)/(rs – r)] or [(rs + r)/(rs – s)] raised to an infinite power and
therefore simply infinite. If you doubt this conclusion, imagine
infinity [of ratios] in a continued proportion with their ratio being as
rs+s to rs – r or rs + r to rs – s. The first ratio will be to the third as
the square; to the fourth, as a cube; to the fifth, as the fourth [power],
etc. Finally, the first ratio will be to the last one as infinite powers of
the ratio [(rs + s)/(rs – r)] or [(rs + r)/(rs – s)]. It is known, however,
that the ratio of the first [ratio] to the last one is infinitely large since
the last one = 0 (see Coroll. to Prop[osition] 6 of our [Tractatus de]
Seriebus Infinitis [etc.]5.2). It is therefore clear that infinite powers of
the ratio [(rs + s)/(rs – r)] or [(rs + r)/(rs – s)] are infinite. It is thus
shown that the ratio of the maximal term M to [any of the] two others,
L and L , exceeds any assigned ratio. QED.

Lemma 5. Assuming the same as above, it is possible to imagine
such a large number n, that the sum of all the terms from the
intermediate and maximal M to both the [to any of the] terms L and L
 inclusive, is to the sum of all the other terms exterior to the limits L
and L , in a ratio greater than any given ratio.

 Dem[onstration]. Let the terms between the maximal M and the
limiting term L on the left be designated thus: the second one from the
maximal5.3, F, the third one, G, the fourth one, H, etc.; and the second
one beyond L, P, the third one, Q, the fourth one, R, etc. Since
according to the second part of Lemma 3

M/F < L/P, F/G < P/Q, G/H < Q/R, etc.

    and (Lemma 4), for an infinite n, M/L is also infinite, and

M/L, F/P, G/Q, H/R, etc.                                          (5.2)

are certainly infinite just as
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...
...

F G H
P Q R
+ + +
+ + +

is. That is, the sum of the terms between the maximal term M and the
limit L is infinitely greater than the sum of the same number of terms
beyond and nearest to L. And since according to Lemma 1 the number
of all the terms outside L is not more than s – 1 times (i. e., not more
than a finite number of times) greater than the number of terms
between this limit and the maximal term M, and the terms themselves,
in accordance with the first part of Lemma 3, become the smaller the
further they are from the limit, the sum of all the terms between M and
L (even without considering M) will be infinitely greater than the sum
of all the terms beyond L. In a similar way it is shown that the sum of
all the terms between M and L  is infinitely greater than the sum of all
the terms beyond L  (whose number, according to Lemma 1, is not
more than r – 1 times greater than the number of the former).
    Therefore, finally, the sum of all the terms situated between the
limits L and L  (the maximal term may be excluded) will be infinitely
greater than the sum of all the terms beyond these limits.
Consequently, this statement persists all the more if the maximal term
is included [in the first sum], QED.

Explanatory Comment. Those, who are not acquainted with
inquiries involving infinity may object to Lemmas 4 and 5 in the
following way: Although, if n is infinite, the multiples of the
magnitudes expressing the ratios M/L and M/L , that is, nr ± n m  1,
nr ± n m  2, etc., and ns ± n m  1, ns ± n m  2, etc. have the same value
as nr ± n and ns ± n since numbers 1, 2, 3… vanish with respect to
each multiplier, it can still happen that, taken together and multiplied
one by another, they increase to infinity (because the number of
multipliers is infinite) and will infinitely decrease, that is, make
finite, the infinite powers of the ratios [(rs + s)/(rs – r)] or
[(rs + r)/(rs – s)].
    I cannot obviate these scruples better than by showing now a
method of deriving a finite number n, or a finite power of a binomial,
for which the sum of the terms between the limits L and L  has a
larger ratio to the sum of the terms beyond them than any no matter
how great given ratio, which I designate by letter c. Once this is
shown, the objection will necessarily fall down.
    To this end, I choose some ratio [greater than unity], less, however,
than the ratio [(rs + s)/(rs – r)] (for the terms on the left), for example,
the ratio [(rs + s)/rs] or (r + 1)/r, and multiply it by itself so many
times (m times) that the product becomes equal or exceeds the ratio of
c(s – 1) to 1; that is, until

    [(r+1)m/rm] ≥ c(s – 1).

    When will this happen can be advantageously investigated by
means of logarithms. Because, taking logarithms, we obtain

mLog(r + 1) – mLogr ≥ Log[c(s – 1)]
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and, after dividing, we find at once that

m ≥ Log[ ( 1)] .
Log( 1) Log

c s
r r

-
+ -

    I continue in the following way. With regard to a series of fractions
or multipliers

, ,...,
2

nrs ns nrs ns s nrs s
nrs nr r nrs nr r nrs

+ + - +
- + - +

from which, according to Lemma 4, the ratio M/L is obtained by
multiplying them one by another, it may be remarked that, although
the separate fractions are less than the fraction [(rs + s)/(rs – r)], they
approach it the nearer the larger is the assumed n. Therefore, one of
them will sooner or later become equal to the ratio [(rs + s)/rs] =
[(r + 1)/r] itself. It should be therefore found out how great n ought to
be taken for the fraction whose ordinal number is m to become equal
to [(r + 1)/r] itself. But (as it is seen from the law of the formation of
the series) the fraction of ordinal number m is

.nrs ns ms s
nrs nr mr
+ - +
- +

    Equating it to [(r + 1)/r], we obtain

 so that .
1 1

ms s mst stn m nt mt
r r
- -

= + = +
+ +

    I maintain that if this is the power to which the binomial (r + s) is
raised, the maximal term M will be more than c(s – 1) times greater
than the limit L. Indeed, for the assumed value of n the fraction of
ordinal number m will be equal to [(r + 1)/r], and the fraction
[(r + 1)/r], being multiplied by itself m times, that is [the fraction]
(r + 1)m/rm, is (as constructed) equal or greater than c(s – 1).
    Therefore, this fraction [of ordinal number m] multiplied by all the
previous fractions will all the more exceed c(s – 1) since all these are
greater than [(r + 1)/r]. Consequently, the product, being multiplied by
all the following [fractions], will all the more exceed c(s – 1) because
each of these is at least greater than unity. But the product of all the
fractions expresses the ratio of the term M to term L and it is therefore
absolutely clear that the term M exceeds the limit L over c(s – 1)
times.
    But, see (5.2), it follows that the second term after the maximal
term M exceeds the second term after the limit L more than c(s – 1)
times, that the third term [after M] still more exceeds the third term
[after L], etc. Therefore, finally, the sum of all the terms between the
maximal M and the limit L will exceed the sum of the same number of
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maximal terms situated beyond this limit more than c(s – 1) times, and
more than c times the same sum taken (s – 1) times.
    Consequently, it is still more evident that it exceeds more than c
times the sum of all the terms situated beyond the limit L whose
number is not more than s – 1 times greater [than the number of terms
between M and L].
    I proceed in the same way with regard to the terms on the right. I
take the ratio

1 ,s rs r
s rs s
+ +

<
-

assume that

( 1) ( 1)
m

m

s c r
s
+

³ -

and determine

Log[ ( 1)] .
Log( 1) Log

c rm
s s

-
³

+ -

Then, among the series of fractions

, ,...,nrs nr nrs nr r nrs r
nrs ns s nrs ns rs nrs

+ + - +
- + - +

included in the ratio M/L , I assume that the fraction having ordinal
number m, namely,

,nrs nr mr r
nrs ns ms
+ - +
- +

is equal to (s + 1)/s. I derive therefrom

 so that .
1 1

mr r mrt rtn m nt mt
s s
- -

= + = +
+ +

    After this, it will be shown just as before that the maximal term M
of the binomial r + s raised to this power will be more than c(s – 1)
times greater than the limitL , and also, consequently, that the sum of
all the terms between the maximal M and the limit L will be more than
c times greater than the sum of all the terms beyond this limit whose
number is not more than r – 1 times greater [than the number of terms
between M and L ]. And so we finally conclude that, upon raising the
binomial r + s to the power equal to the greater of two numbers,

,  .
1 1

mst st nrt rtmt mt
r s
- -

+ +
+ +
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the sum of all the terms included between the limits L and L
will exceed more than c times the sum of all the other terms extending
on either side beyond these limits. The finite power possessing the
desired property is thus discovered, QED.

The Main Proposition. Now follows the proposition itself for
whose sake all the previous was stated and whose demonstration
ensues solely from the application of the preliminary lemmas to the
present undertaking. To avoid tediousness, I name the cases in which
some event can happen fecund or fertile; and sterile those in which the
same event does not occur. In the same way, I name the experiments
fecund or fertile if some fertile case appears in them and infertile or
sterile when we observe something sterile.
    Let the number of fertile cases be to the number of sterile cases
precisely or approximately as r to s; or to the number of all the cases
as r to r + s, or as r to t so that this ratio is contained between the
limits (r + 1)/t and (r – 1)/t. It is required to show that it is possible to
take such a number of experiments that it will be in any number of
times (for example, in c times) more likely that the number of fertile
observations will occur between these limits rather than beyond them,
that is, that the ratio of the number of fertile observations to the
number of all of them will be not greater than (r + 1)/t and not less
than (r – 1)/t.

Dem[onstration]. Suppose that the number of the available
observations is nt. It is required to determine the expectation, or
probability that all of them without exception will be fecund; that all
of them will be such with one, with two, 3, 4, etc. being sterile. Since,
according to the assumption, there are t cases in each observation, r of
them fecund and s sterile, and because separate cases of one
observation can be combined with separate cases of another one, and
then again combined with separate cases of the third, the fourth, etc., it
is easy to see that the Rule attached to the end of the notes of
Proposition 125.4 of Part 1 [of this book] and its second corollary
containing the general formula by whose means the expectation of the
lack of sterile observations, rm:tm; of the expectations of one, two,
three etc. sterile observations

1 2 2 3 3( 1) ( 1)( 2): , : , : ,...
1 1 2 1 2 3

m m m m m mnt nt nt nt nt ntr s t r s t r s t- - -- - -
× × ×

are here suitable.
    Therefore (after rejecting the common term tnt) it becomes clear that
the degrees of probability, or the number of cases in which it can
happen that all the experiments are fecund, or all excepting one sterile,
excepting two, 3, 4, etc. sterile, are expressed, respectively, by

1 2 2 3 3( 1) ( 1)( 2), : , ,...
1 1 2 1 2 3

m m m mnt nt nt nt nt ntr r s r s r s- - -- - -
× × ×
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that is, by the terms themselves of the binomial raised to the power of
nt, which were just studied in our lemmas. All the rest is now
manifest. Namely, it follows from the nature of the series that the
number of cases, which add nr fecund to ns sterile observations, is
indeed [corresponds to] the maximal term M since, according to
Lemma 3, ns terms precede, and nr terms succeed it. In the same way,
the number of cases in which there occurred either nr + n or nr – n
fecund observations with the others being sterile, are expressed by the
terms L and L , n terms apart on either side from the maximal term M.
Consequently, the total number of cases in which there are not more
than nr + n, and not less than nr – n fecund observations, is expressed
by the sum of the terms situated between the limits and L . The total
number of the other cases in which there occur either more or less
fecund observations is expressed by the sum of the other terms beyond
the limits L and [or] L . The power of the binomial may be taken so
great that, according to Lemmas 4 and 5, the sum of the terms
between the limits L and L  inclusive is more than c times greater
than the sum of all the other terms exceeding these limits. It is thus
possible to take so many observations, that the number of cases in
which the ratio of the number of fecund observations to the number of
all of them does not exceed the limits

1 1 and  or  and ,nr n nr n r r
nt nt t t
+ - + -

is greater than c times the number of the other cases. That is, it will
become greater than c times more probable that the ratio of the
number of fecund observations to the number of all of them is
contained between the limits (r + 1)/t and (r – 1)/t rather than beyond
them. Quod demonstrandum erat.
    When applying this to separate numerical examples, it is self-
evident that the greater, in the same ratio, we assume the numbers r, s
and t, the narrower can be made the boundaries (r + 1)/t and (r – 1)/t
of the ratio r/t. Therefore, if the ratio of the number of cases r/s that
should be determined by observation is, for ex[ample], one and a half,
I take for r and s not 3 and 2, but 30 and 20, or 300 and 200, etc. It is
sufficient to assume r = 30, s = 20 and t = 50 for the limits to become
(r + 1)/t = 31/50 and (t – 1)/t = 29/50.
    Suppose in addition that c = 1000. Then, according to what was
prescribed in the Explanatory Comment, it will occur that, for the
terms on the left and on the right respectively5.5,

Log[ ( 1)] 42,787,536 301,
Log( 1) Log 142, 405

c sm
r r

-
> = <

+ -

24,728,
1

mst stnt mt
r
-

= + <
+
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Log[ ( 1)] 44,623,980 211,
Log( 1) Log 211,893

c sm
s s

-
> = <

+ -

25,550.
1

mrt rtnt mt
s
-

= + =
+

    From which, as it was demonstrated there, it will follow that,
having made 25,550 experiments, it will be more than a thousand
times more likely that the ratio of the number of obtained fertile
observations to their total number is contained within the limits 31/50
and 29/50 rather than beyond them. And in the same way, assuming
c = 10,000 or 100,000 etc., we will find that the same is more than ten
thousand times more probable if 31,258 experiments will be made;
and more than a hundred thousand times if 36,966 experiments
will be made; and so on until infinity, always adding 5708 other
experiments to the 25, 550 of them. This, finally, causes the
apparently singular corollary: if observations of all events be
continued for the entire infinity (with probability finally turning into
complete certitude), it will be noticed that everything in the world is
governed by precise ratios and a constant law of changes, so that even
in things to the highest degree casual and fortuitous we would be
compelled to admit as though some necessity and, I may say, fate5.6. I
do not know whether Plato himself had this in mind in his doctrine on
the restoration of all things according to which everything will revert
after an innumerable number of centuries to its previous state.

Notes
1.1. This remark conforms to information theory.
2.1. It was Bortkiewicz (1917, p. x) who noticed the new word in the Ars

Conjectandi and put it into scientific circulation, although Prevost & Lhuilier
(1799, p. 3) had preceded him. The Oxford English Dictionary included this
word, which had already appeared in ancient Greece (Hagstroem 1940), with
a reference to a source published in 1662.

2.2. Although an astrologer, Kepler (1610, §115; p. 238 in 1941) simply
refused to answer definitely the same question. Times had changed! Bernoulli
resumed this discussion in his Chapter 3.

2.3. The application of stochastic reasoning to one single case conforms to
modern ideas.

2.4. John Owen (1563 – 1622). Haussner (Bernoulli 1713, German transl.,
p. 311) saw five editions of his Epigrams.

3.1. A few lines below I write black tunic, and, at the end of the chapter, black
toga. Bernoulli himself applied three different nouns.

4.1. This is the very old principle of indifference. It can be perceived, for
example, in the use of the arithmetic mean in astronomy since Kepler’s time.

4.2. Arnauld was the main author of L’art de penser (Arnauld & Nicole
1662).

4.3. Bernoulli wrote stones; the German translation mentioned small stones
(Steinchen).

4.4. The maximal term of the binomial (r + s)n is approximately equal to
1/ 2πnrs  and therefore decreases with an increasing n as 1/√n, see e.g. Feller
(1950, §3 of Chapter 6).

4.5. Adriaan Metius (1571 – 1635); Ludolph van Ceulen (1540 – 1610).
5.1. A misprint in this ratio was corrected without comment in all the

translations.
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5.2. Separate parts of Bernoulli’s Tractatus de Seriebus Infinitis appeared in
1689 – 1704, and, for the first time as a single entity, in 1713 together with the
Ars Conjectandi.

5.3. The “second” (repeated in the same sense in the Explanatory Comment
below) is unusual: Bernoulli actually had in mind the term immediately
neighbouring M. Cf.: February is the second month of the year, not the second
after January. A similar remark is of course valid with respect to the “third”
and the “fourth”.

5.4. Bernoulli wrongly referred to Proposition 13. Haussner (Bernoulli
1713, German transl., p. 262) corrected him without comment.

5.5. The excessive number of significant digits below was the result of a
venerable but misleading habit.

5.6. Bernoulli obviously had in mind the archaic notion of the Great Year
(“innumerable number of centuries”).
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V

Corrections and Short Notes on My Papers

Arch. Hist. Ex. Sci., vol. 28, No. 2, 1983, pp. 171 – 195

    I have published thirteen papers in this Archive and some correction
of almost all of them is overdue. In what follows, I take up these
articles, one by one, note the mistakes and misprints, and point out
references which should have been noticed before. It is almost self-
explanatory that any review of the literature which appeared
meanwhile is out of the question. I append indexes of names
mentioned and an index of subjects.

Notation. Roman numerals denote my papers. A reference such as
[ii; 17] indicates reference [17] from paper [ii]. Except for expressions
“Replace [3] by [6]”, [l], [2] etc. stand for items [1], [2] etc. Finally,
l. 3b or etc. denotes line 3 from the bottom of the page while an arrow
means “see (also) my contribution.”

I. Newton and the Classical Theory of Probability
this Archive, vol. 7, No. 3, 1971, pp. 217 – 243

1. p. 218, middle. HALLEY and geometric probabilities →
[x, p. 228].
    2. p. 221, l. 8. Arc measurements: I mean meridian are
measurements.
3. p. 224, middle. The proof is not given by NEWTON. In a letter
dated 1972 Professor D. T. WHITESIDE commented:

The proof does exist in an unpublished MS and is more elementary
than yours, viz. … your immediately following inference that
Newton’s phrase ‘motus regressus’ is an ‘astronomical expression’ I
cannot admit. [Perhaps not only an astron. expression].
    Regarding my § 1.3, WHITESIDE noted:
    NEWTON in fact (but not in explicit statement) ... had a precise
understanding of the difference between random and structurally
‘inbuilt’ errors. He was certainly, himself, absorbed by the second
type of ‘inbuilt’ error, and his many theoretical models of differing
types of physical, optical and astronomical phenomena were all
consciously contrived so that these structural errors should be
minimized. At the same time, he did, in his astronomical
practice, also make suitable adjustment for ‘random’ errors in
observation.
4. p. 227, just above § 2.1. Mean statistical values: In a letter dated
1971 Professor E. S. PEARSON opined:

From reading [the Lectures on the history of statistics], I think I
understand what K. P. [PEARSON] meant when he referred to
Newton’s view of the deity, who maintains mean statistical values ...;
he has stepped ahead of where Newton had got to, by stating that the
laws which give evidence of Design, appear in the Stability of the
mean values of observations, i.e. [he] supposed Newton was perhaps
unconsciously thinking what De Moivre put into words.
5. p. 228, § 2.2.1. ARBUTHNOT → [iv, 95].
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6. p. 231, § 2.3, l. 3. BOYLE’s lectures: BOYLE’S will is published in
his Works [5, p clxvii].
7. p. 238, § 3.1. LAMBERT → [ii, pp. 245 - 246].
8. pp. 240 – 241. Statistical method in biology → [xiii, § 5.8.1].
9. p. 241, § 3.3. ARISTOTLE → [vii, § 2.2].

II. J. H. Lambert’s Work in Probability
this Archive, vol. 7, No. 3, 1971, pp. 244 – 256

10. p. 246, l. 4b. LAMBERT’S reasoning: COURNOT (1851, § 33
note) and then CHUPROV [xi; 61, p. 188] noticed it. Note its relation
with the concept of a normal number.
11. p. 248, 1. 2b. Number of children in adjusted data: LAMBERT
likely allowed for those who died in childhood.
12. I cite another passage from Professor PEARSON’S letter (see item
4):

Curiously, I find no reference to Lambert in these lectures [on the
history of statistics]. It was not because his writings were in German
of which my father was an excellent scholar. I suppose, however, that
he selected the names of the personalities he would study from a
limited number of sources, e.g., Todhunter, and that these did not
include Lambert’s name. [TODHUNTER did refer to LAMBERT,
but failed to describe his work.] Of course, K. P. [PEARSON] was
over 70 by the time his history lectures passed the year 1750, and no
doubt his exploration was limiting itself to the four Frenchmen,
Condorcet, D’Alembert, La Grange and Laplace.
III. On the Mathematical Treatment of Observations by L. Euler

this Archive, vol. 9, No. 1, 1972
13. p. 48, 1. 3 after formula (4). Weighing of observations: LIIOYD
studied estimators with weights depending only on the order of the
corresponding observations.
14. p. 48, l. 2b, 1. 6. Posterior estimators: the first to use them was
SHORT, not PINGRÉ [iii, p. 48, note 17].

IV. Finite Random Sums etc.
this Archive, vol. 9, No. 4/5, 1973, pp. 275 – 305

15. p. 276, l. 2b. Dice with unequal numbers of faces not considered
after MONTMORT: this should not imply that the behaviour of
random sums was not studied in the most general case. And astragali
deserve mention.
16. p. 287, l. 3b. Independence of events (observations) → [vi, p. 112,
1. 3b; viii, p. 172, l. 10 before § 3; ix, p. 11, lower half of].
17. p. 293, footnote. Discontinuity factors → [ix, p. 1, note l].
18. p. 294, 1. 9b. LAPLACE’S understanding of continuity of
functions: he followed the generally accepted views of his time.

V. R. J. Boscovich’s Work on Probability
this Archive, vol. 9, No. 4/5, 1973, pp. 306 – 324

19. p. 306, § 1.1.3. For a description of BOSCOVICH’S geodetic
work see CUBRANIC [6].
20. p. 307, § 1.1, title. Arc measurements: see item 2.
21. p. 310, lower half. Adjustment of observations by LAPLACE →
[ix, p. 41, footnote].
22. p. 312, solution of equations (1.3.2) → [xii, p. 33].
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23. p. 312, l. 6 et seq. Number of exactly satisfied equations: Before
one of BOSCOVICH’S restrictions (sum of errors equals zero) was
allowed for, system (1.3.2) involved four unknowns. Its solution led to
three equations that should be satisfied exactly. This fact corroborates
GAUSS’S conclusion [v, p. 311, 1. 2b] which I previously did not
believe in. Even before my paper [v] appeared in print, I had
informed Professor R. L. PLACKETT of GAUSS’S “error” and he
incorporated my wrong remark in his own article [ix; 63, p. 242].
Professor S. M. STIGLER who pointed out my mistake (letter dated
1981) added:

Gauss’s last sentence [v, p. 312, 11. 1 – 2] puzzles me (what does
“before” refer to ?) but your suggested change (Ibidem, 11. 8 – 9)
seems wrong to me.
24. p. 316, 1. 4. Replace (aij) by (aji).

VI. Mathematical Treatment of Astronomical Observations etc.
this Archive, vol. 11, No. 2 – 3, 1973, pp. 97 – 126

25. p. 98, § 2.1. I should have included a subsection on LEVI BEN
GERSON [13, 14, 23].
26. p. 108, § 3.3. Falsification of observations: BABBAGE published
a short account [2] exposing various methods for falsifying
observations.
27. p. 115, a passage from BRADLEY. I note a similar opinion of
DESCARTES [7, p. 48]: Je remarquais, touchant les expériences,
qu’elles sont d’autant plus nécessaires qu’on est plus avancé en
connoissance.
28. p. 119, 11. 2 – 3 under Table 2. Mittlerer Betrag recht und
schlecht: The original Latin expression ex aequo et bone means in
fairness and justice. This correction is due to Professor N.
SWERDLOW who expressed his view in a letter to Professor W.
KRUSKAL. The letter dated 1979 contains a phrase feel free to send
copies around. SWERDLOW disagrees with my interpretation of
KEPLER’S treatment of observations [vi‚ p. 119]. He rather agrees
with J. J. FILLIBEN. Rejecting the most deviating observation and
assuming double weight for the middlemost observation, the latter
arrived at the same estimate as KEPLER (and myself). However,
EISENHART [9‚ p. 356], who quoted‘Filliben and referred to
Professor O. GINGERICH, proved that the problem is rather
complicated. [Cicero stated that that Latin expression implied: rather
than according to the letter of the law, and I infer that the arithmetic
mean became then (or somewhat earlier) the letter of the law. In more
detail see Sheynin (2017, p. 32).]
29. p. 119, lower half. An English translation of BODINI’S book was
published in 1606 and reprinted in 1962 in Cambridge (Mass.). The
relevant portion of the book occupies pp. 781 – 792 of the reprint.
30. p. 120, first passage from KEPLER → [ix, p. 49, note 12].
31. p. 120, last passage from KEPLER. Statistical procedures
connected with coining money deserve special attention [31, pp. 79
and 81; 29].
32. That the errors of TYCHONIAN observations did not exceed 8’
(p. 120) was my misunderstanding; the precision of these
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observations, as KEPLER stated, enabled him to distinguish errors of
8'.

VII. On the Prehistory of the Theory of Probability
this Archive, vol. 12, No. 2, 1974, pp. 97 – 141

33. p. 97, note 2a. SCHILLER on randomness → [xiii, p. 330, note
15].
34. p. 102, 1.1. SAMBURSKY quotes SIMPLICIUS: In a reprinted
version of his article [x; 117], he amended his reference to
SIMPLICIUS. Elsewhere [24, pp. 55 and 97 – 98] he supplied related
information on LEUCIPPUS, ALEXANDER APHRODISIENSIS and
CHRYSIPPUS.
35. p. 104, l. 3. Chance and production of females: according to VAN
BRACKEL [x; 103, p. 125] ARISTOTLE considered phenomena with
logical or subjective probability less than 0.6 – 0.9 to be accidental.
VAN BRACKEL’S criticism (Ibidem, p. 120) of my article [vii] or at
least of its first sections seems to be correct.
36. p. 105, l. 8. A moral law of large numbers: cf. RABINOVITCH
[22].
37. p. 107, middle. Ordeals were cooked-up frauds: this was the
opinion of TYLOR [32]. He asserted that the rate of “success” was
50%.
38. p. 109, note 55. Quantification of qualitative characteristics → [X,
p. 217, end of footnote].
39. p. 111, passage from CANTOR. JOAN GADOL (see my note 59
on p. 110) rather than I noticed this passage.
40. p. 112, 1.6. Complexity of games of chance. An appropriate
example is the game of the bowl, the principal game of hazard among
the northern tribes [of Indians] [26, pp. 85 – 87]. See also
LONGFELLOW’S Hiawatha, chap. xvi.
41. p. 113, end of note 69. Accusation of gambling: see also BUFFON
[viii; 9, pp. 67 – 69].
42. p. 114, middle. KEPLER’S expression unmathematische
Glückspielmethode. SCHNEIDER [25, p. 56, note 32] maintains that
this expression (a translation from the original Latin) is unglücklich
und irreführend. Discussing successive approximations in algebra,
WALLIS [35, p. 254] used the term Stochastick Process.
43. p. 130, l. lb. Section 8.2.1 should be 8.1.2.
44. p. 131, l. 2. All planets return to their position at the moment of
creation: according to ancient belief, this event would have brought
about the end of the world [15, p. 440; 34].
45. p. 135, § 9.2, 1.2. An argument about randomness and necessity:
the first such argument is due to NICOLAUS BERNOULLI and DE
MOIVRE rather than to KANT [iv, p. 303].
46. p. 137, text between formulas (1) and (2). The reference to
KEPLER should be § 8.1.2 (cf. item 43); as to CARDANO, the
reference should be to his Book on games of chance [vii, note 57].
47. p. 138, 1. 3b, 1. 3. Limit theorems and. the paradox of the heap →
[viii, p. 162, footnote].

VIII. P. S. Laplace’s Work on Probability
this Archive, vol. 16, No. 2, 1976, pp. 137 – 187
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48. p. 139, just before § 2. New reference: I failed to mention that
LAPLACE published a short announcement on the forthcoming
publication of his Théor. anal. prob. (Comm. temps pour 1815 (1812),
pp. 215 – 221).
49. p. 141, 1.3 before § 2.2. Change [32] for [17].
50. p. 159, the population of France: BERTILLON [3] published the
Résultats sommaires des recensements in European countries. On p.
30 he presented the figures for France throughout the 19th century.
51. p. 161, l. 1. Include missing reference [viii; 45].
52. p. 172, 1. 2b before § 3.1. Replace “independently” by
“independent”.
53. p. 17.2 A line which should have been 6b is missing. It reads: of
his scientific career ([39], p. 144; [32], [33]).
54. p. 173. Note * should have been placed before the first table.
55. p. 173, § 3.2, 1. 2. Replace ([39], p. 145 and [43], p. 132; [79],
p. 296) by ([39], p. 145 and [44], p. 296; [79], p. 132, note 146).
56. p. 177, l. 3b. The epigraph referred to is that to this article [viii].
57. p. 175, 1. 4b. Mean interval between molecules: G1LLISP1E [12,
p. 438] noted the introduction of this concept by POISSON.
58. p. 175, note *. Introduction of delta function → [xi,
pp. 250 – 252].
59. p. 179, § 4.2. I should have referred to my earlier contribution [iv,
pp. 300 – 301] where I compared LAPLACE’s main work with a
monumental maze.
60. p. 184, Note on HUYGENS → [x, § 4].
61. p. 186, ref. [42]. This should have been to LAPLACE’S Sur les
comètes [xii, 95].
62. p. 187. Ref. [80] is missing. This is my contribution [ix].
63. p. 187, ref. [81]. The volume of the Istoriko-Matematicheskie
Issledovania is 20 rather than 2.

IX. Laplace’s Theory of Errors
this Archive, vol. 17, No. 1, 1977, pp. 1 – 61

64. p. 2, 1.2 above § 2. Delete ‘my’ from ‘my earlier investigation’.
65. p. 5. Unnumbered equation after formula (2.2.2): it should be

( )φ( ) exp .
2

m x vmx - -=

66. p. 5, formula (2.2.3). In LAPLACE’S original memoir (not in the
Oeuvr. compl.) the denominator in the formula was 3.
67. p. 39, l. 3. Measuring angles of a triangulation → [xii‚ p. 50, note
46].
68. p. 45, note 11. LAPLACE’S azimuths: their use in the adjustment
of triangulation presupposes the knowledge of the deviations of the
vertical.
69. p. 50, ll. 4 – 2 above § 11. The end of the phrase must read:
associated with the estimation of the precision of observations (for
example, with the study of the stochastic behaviour of L) become
extremely complicated for integer m > 1 as compared with etc.

X. Early History of the Theory of Probability
this Archive, vol. 17, No. 3, 1977, pp. 201 – 259
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70. p. 210, after l. 2b, ULPIANUS’s table: SENTEMANN [27‚ p.
252] maintained that ULPIANUS based his table on moral and legal
considerations rather than on statistical data.
71. p. 212, just before § 2.3.3. Insurance societies: BABBAGE [l]
described the conditions for life insurance stipulated by the main
insurance societies of the day.
72. p. 212, note 2. Compound interest adversely influenced life
insurance: HEYDE & SENETA [xiii; 73, p. 37] refute this thesis.
73. p. 217, just before § 2.4.2. New reference: PTOUKHA [21]
studied the work of PETTY, GRAUNT and HALLEY.
74. p. 223, middle of. Quotations from the Logique de Port-Royal:
these are from pp. 355 and 372.
75. p. 229, end of note 1. T. PAINE and his pension programme: In a
letter dated 1977 Professor W. KRUSKAL remarked:

There were many pieces of then-published evidence that Paine
might have used; the puzzles are (1) why he did not, (2) why his many
critics did not pick at that weak spot (weak both methodologically and
in terms of estimated cost for the proposed pension program), and (3)
why Richard Price wasn’t consulted to set Paine straight.
76. p. 240,11 3b and 6b. The work of HUYGENS. In a letter dated
1981 Dr. O. REIERSOL objected to my phrase Huygens only
describes expectation and noted that I did not give any indication of
how HUYGENS proved most of his propositions.
[On this p. 240 I wrote that HUYGENS directly calculated the
expectations sought.] REIERSOL argued that HUYGENS proved
theorems about, rather than described, expectation [exactly so] and
that he, REIERSQL [x, 85], offered a possible explanation of
HUYGENS’s method. A recent study of HUYGENS’ s work in
probability is FREUDENTHAL [11].
77. p. 241, formula (4.1.l). Its correct explanation is due to
REIERSOL himself[x; 85]. He informed me of this fact in a letter
dated 1980.
78. p. 241,11. 5 – 6. Interpretation of HUYGENS’s problem. in the
same letter REIERSOL objects to the interpretation of this problem, as
solved by HUYGENS, in terms of conditional probabilities.
79. I have referred to games of chance indirectly [x, pp. 222 – 223,
first few lines of § 2.4.4 and p. 223, note 1].

XI. S. D. Poisson’s Work in Probability
this Archive, vol. 18, No. 3, 1978, pp. 245 – 300

80. p. 271, note 25, l. 2b. Mean interval between molecules: see item
57.
81. p. 279, formula (5.2.2. 3). As given by POISSON himself, the
coefficient is 2/√π (not 2/π).
82. p. 289, § 7.1, 1. 3. Change §3.2.2 to § 3.3.2.
83. I long ago decided to restrict my research in probability theory to
events which happened before the middle of the 19th century (with,
possibly, occasional forays into alien territory).

XII. C. F. Gauss und the Theory of Errors
this Archive, vol. 20, No. 1, 1979, pp. 21 – 72

84. p. 33, footnote 17. GAUSS and linear programming: see item 23.
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85. p. 38, § 4.4. The death of the probable error: astronomers used the
probable error until recently and may be still use it once in a while. It
is therefore opportune to quote L. STRUVE [30, see Thesen on the
last (unnumbered) page]:

Statt des wahrscheinlichen Fehlers sollte allgemein der mittlere
Fehler benutzt werden.
    Note another of his Theses (Ibidem):

 Die Anwendung sechs- und siebenstelliger Logarithmentafeln in
den Schulen sollte verboten werden.
86. p. 44, just before § 5.7. Substantiation of least squares: In a letter
dated 1979 Professor W. KRUSKAL writes:

Despite the comments of … and others, I am not wholly persuaded
that Gauss published a full statement of what you call the third
substantiation, that is (roughly speaking) least squares as minimum
variance estimation, given linearity and unbiasedness of estimator.
[See Sheynin (2012).]
87. p. 48, l. 2b. Role of MARKOV: NEYMAN [20, p. 228]
subsequently admitted the confusion to which he

Unwittingly contributed by attributing to Markoff the basic
theorem an least squares.
88. p. 51. Observations in triangulation: one of the leading Soviet
statisticians, the late Professor L. N. BOLSHEV, attempted to study
this topic from the vantage point of modern statistics. I do not know
whether he had time to complete his research, but at least we
discussed the historical aspect of the problem. BOLSHEV thought that
GAUSS was in favour of attaining a (formal) equality of the variances
of the observed angles or directions. I disagreed and later formulated
my opinion in this article [xii, p. 51] but my highest respect for
BOLSHEV’S scientific expertise obliges me to report his point of
view. For the same reason I make known a finding of his which I was
unable to confirm: one of the geodetic volumes of GAUSS’S Werke,
BOLSHEV asserted, contained an example of the chi-squared
distribution. [See Sheynin (1988).]
    BOLSHEV read my papers and told me he understood them (no‘
doubt, a polite reference to errors and ambiguities) and considered
them useful; moreover, he corrected a few of my early MSS. For what
unsubstantiated evidence is worth, I recall BOLSHEV’ s words:

It was after reading your article [vii] that I came to understand [the
statistical aspect of] the work of Kepler.
89. p. 54, § 6.5. GAUSS as the master of experimental science: I
should have referred to HERMANN [16].
90. p. 56, § 7.1, l. 3b,1.1. Replace [47] by [46].
91. p. 61, l. 2b. Introduction of word statistics into English: see also
HILTS [xiii; 73a, pp. 24 – 25].
92. p. 67, Acknowledgements. Replace D. H. L. HARTER by Dr. H.
L. HARTER.
93. Article as a whole: At the time, I could not have known about
other contributions on the same subject [28, 33] published somewhat
before mine. I did not refer to one of Dr. C. EISENHART’S
unassuming contributions [8] (which I mentioned elsewhere [ix; 42]).
I did not then realize that
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(1) EISENHART was one of the first Western authors to present a
correct view of GAUSS’S work in statistics.
(2) The large number of references in my paper [xii] made any
omission unduly significant.
    EISENHART also published a biography of GAUSS [ix; 43]. It was
all but unavailable and at the time I had not seen it since 1975 and did
not dare to refer to it once more. It is now reprinted [10].
    It was not my intention to discuss GAUSS’S linear model. On my
p. 441 referred in this connection to IDELSON [xii; 79, chap. 5] and
SEAL [xii; 123] and I can additionally mention HELMERT [xii; 75]. I
always thought that such authors as HELMERT and IDELSON had
adequately described all GAUSS’S achievements in this direction
though of course not in the language of modern statistics.

XIII. On the History of the Statistical Method in Biology
this Archive, vol. 22, No. 4, 1980, pp. 323 – 371

94. p. 329, 1. 1b. Recherches statistiques etc: vol. 5 appeared in 1844,
fourteen years after FOURIER died.
95. p. 336, § 3.2.1, 11. 5 – 6. Chance as ignorance of causes:
LAMARCK repeated this statement elsewhere [xiii; 91, p. 329].
96. p. 343, note 38, 1. 3. Replace “who most possibly also decided” by
“who likely took a too resolute point of view”.
97. p. 361, note 71, 11.2 – 1b. HERSCHEL referred to SWIFT: so he
did [17, p. 63, footnote]: the philosopher’s
    Plan for writing books has a close parallel in the theories of the
production of animals … by natural selection. BAER was not the only
one to present a narrow view on evolution! [SWIFT borrowed his
philosopher from RAYMOND LULLY (13th – 14th century).]
98. p. 361, § 5.8.1. The Biometric school: cf. MACKENZIE [18; 19,
pp. 82 – 91]. This source contains chapters on GALTON and K.
PEARSON, and on the development of the statistical theory.
99. p. 363, 1. 2. Reference to PEARSON: replace [107‚ p. 321] by
[106, p. 321].

XIV. On the History of Medical Statistics
this Archive, vol. 26, No. 3, 1982, pp. 241 – 286

100. § 1.2, end of note 4, Addendum: MENDELSOHN [19a, p. 204]
testified to the fact that medical probabilities became acknowledged,
at least for some time:

Diese Art von Wahrscheinlichkeit, da wir das Verhältnis der Fälle
selbst, erst durch einen wahrscheinlichen Schluss suchen müssen,
nennet Rüdiger [De sensu veri & falsi] die medicinische
Wahrscheinlichkeit, weil man in der Heilungskunst aus dem
Verhältnisse derer, die an einer gegebenen Krankheit gestorben, oder
durch ein gewisses Arzneymittel genesen sind, zu der Zahl derjenigen
bey welchen dieses nicht erfolgt ist, auf die Wahrscheinlichkeit in
einzelnen vorkommenden Fällen schließt.
    A. RÜDIGER’S (RIDIGERI’S) book was published in 1741 in
Leipzig; see Brit. Mus. Cat.

    Acknowledgements. Professor S. M. STIGLER advised me to
compile an Index, and items 13, 18, 23, 65 and 66 are due to him.
Professor K.-R. BIERMANN noticed a mistake now pointed out in
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item 90. Professors G. COHEN, W. KRUSKAL, E. SENETA and S.
M. STIGLER have sent me xerox copies of some sources to which I
refer in these Corrections.
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VI

History of Medical Statistics

Arch. hist. ex. sci., vol. 26, 1982, pp. 241 – 286
_

1. Introduction
1.1. The Statistical Method. I [129, § 1] have defined the statistical

method in experimental science as a method of reasoning based on the
mathematical treatment of numerical data. Now, I subdivide the
history of the method into three stages. During the first one,
statements based on observed statistical regularities were put on
record [125‚ § 6.2]. In actual fact, the very origin of medicine came
about in this manner [19‚ Proemium, p. 19]:

Careful men noted what generally answered the better, and then
began ta prescribe the same for their patients. Thus sprang up the Art
of medicine.
    Hippocrates’s aphorisms or the assertions of FRACASTORI [41,
book 1, p. 36. and book 2, p. 41]l or even the work of RAMAZZINI
(§2. 2) may serve as relevant examples.
    The second stage is distinguished by the availability of statistical
data. Scholars had then arrived at important conclusions either by
means of simple stochastic ideas and methods, or even directly, as
before. The work of GRAUNT (which marked the beginning of this
stage in medicine) and. the proof, in the middle of the 19th century,
that cholera poison diffuses in (unpurified) drinking water (§ 7.3.2)2

are two good cases in point respectively.
     The third stage, which dates back to the end of the same century, is
the one during which inferences were, and are, checked by
quantitative criteria.
    The statistical method is not clearly separated from the
experimental method. I am not concerned with the latter. In passing, I
note that in medicine it originated with HARVEY and that, in the 18th

century, LIND [69] and WATSON [149] applied it for the study of
preventive measures against scurvy and inoculation of small pox,
respectively.
    I think that, beginning with its second stage, the statistical method
pertains to mathematics. Indeed, the second stage of the method
constitutes the prehistory of exploratory data analysis, a branch of
mathematical statistics which has seen a [mathematical] renaissance in
the 1960’s and 1970’s [l, p. 97].
    1.2. The Statistical Method Established in Medicine. Is it
possible to reconcile the individual approach to a given patient with an
abstract statistical point of view? In 1835, during a discussion at the
Paris Academy of Sciences, POISSON [128, p. 285] mentioned this
problem and contended that in respect to the use of statistics medicine
did not differ from other sciences.
    In any case, the statistical method did gnaw its way into medicine.
First, demography essentially used the method. GRAUNT and PETTY
were pioneers of both demography and. medical statistics.3 Late in the
17th century LEIBNIZ busied himself with demography [127‚ p. 225]
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but his five manuscripts remained unpublished until 1866. LEIBNIZ
did not collect statistical data, but at least he urged practitioners to
record their observations. He also proposed to compile an
encyclopaedia of medical sciences (see note 9) and recommended the
establishment of a special Collegium Sanitatis to supervise shops,
bakeries etc.
    At the close of the 17th century, HALLEY compiled a mortality
table for a stationary population and explained how to estimate
populations from data on births and deaths. Eminent scholars of the
18th century (DANIEL BERNOULLI, LAMBERT, EULER) studied
laws of mortality, birth rates and sickness. Their works belong to the
history of probability theory and of medicine. Beginning with the
researches of SÜSSMILCH population statistics exists as a separate
scientific discipline. He devoted about fifty pages of his main work
[141] to statistics of sickness and mortality. He held that mortality
from any given disease is stable (Bd. 2, p. 408)4; he proposed to
standardize the names of diseases (p. 424) and advocated the
inoculation of smallpox (p. 440).
    Second, the range of application of the statistical method greatly
widened after the emergence, in the middle of the 19th century, of
public hygiene (the predecessor of ecology) and epidemiology5, which
were (and are) close linked with population statistics (and with each
other).
    Third, at about the same time (the middle of the l9th century)
surgery and obstetrics, branches of medicine proper, yielded to the
statistical method. Fourth and last, in 1825 P. LOUIS introduced what
is called the numerical method of studying symptoms of various
diseases. His proposals amounted to the use of the second stage of the
statistical method in its simplest form (without stochastic
considerations). Discussions on the numerical method lasted for at
least a few decades. With all the shortcomings of his method, LOUIS
greatly contributed to the application of the statistical method in
medicine.
    1.3. The Aim of this Paper. The main sections here are devoted to
the second stage of the statistical method, i.e. to the period from the
second half of the 17th and, approximately, to the second half of the
19th century. I restrict my account to medical statistics in a narrow
sense of the expression. Thus, I present a barest possible outline of the
history of public hygiene, and I do not treat obstetrics because the
available literature pertains rather to physical anthropology, e. g.,
SIMPSON’S statistical inquiries into the influence of the duration of‘
labour on proportions of mothers lost, infantile deaths and stillbirths
[135] and the duration of human pregnancy [136]. Of course, I do not
repeat my investigation of the relevant works of DANIEL
BERNOULLI, D’ALEMBERT and LAMBERT [123; 124] or of the
scholars mentioned at the beginning of § 1.2 [127].
    There is no general literature on my subject except for studies [82;
67; 116] devoted to the history of public hygiene. The main
achievement of this paper is a systematic description of its subject,
medical statistics before and including the middle of the 19th century. I
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also describe, for the first time, the work of SEIDEL (§§ 7.4.2 – 7.4.3)
which contains ideas and methods pertinent to mathematical statistics.

2. Remarks on the First Stage of the Statistical Method
    2.1. Astrology. At least until the middle of the 17th century scholars
of the highest calibre believed in, and practised, astrology. There were
at least two different points of view in regard to the manner in which
heavenly bodies influenced earth (and man in particular). For some
savants, this astrological influence was a fatal drive, for others, only a
general tendency. KEPLER resolutely held on to the latter opinion and
even considered himself the founder of astrology as a science [125;
57].
    But he had predecessors, and R. BACON was one of them.
BACON maintained that astrology might discover general tendencies
[28‚ p. 378] and predict human behaviour statistically (p. 382). It
seems likely that physicians of old adhered to one or the other
traditional belief. I present a few examples concerning correlationists
and offer a short comment.
    Astrological almanacs, insofar as they mentioned epidemics,
sometimes spoke of tendencies. This was the case with the
astrological study of the plague for the year 1502 [143, vol. 5, p. 161].
And, of course, there was also the correlative link between the moon
and one or another disease. Thus, in a posthumous publication of 1627
SPIEGEL [143‚ vol. 7, p. 125]6 held that epilepsy was apt (!) to come
on the time of the new moon.
    A prudent, though no less faulty approach of some scholars
consisted in the introduction of intermediate [correlative] causes.
Thus, IBN SINA (AVICENNA) [54‚ 1.2.2.1.8] thought that
remarkable astronomical phenomena brought about changes in
meteorological conditions which in their turn influenced health.
A physician in the early 18th century [78‚ p. 183] asserted  that
bleeding occurs when the resistance (!) of the atmosphere is least and
(p. 187) that alterations in the weight and pressure of the atmosphere
may influence crises in acute diseases.
    He somehow connected the changes in the atmosphere with the
influence of the moon and he even spoke of determining the share
which the alterations may have in them (in the diseases?).
Important questions which I did not answer are:
    (1) (How) did the fatalists allow for the variations between men in
their response to disease and treatment?
    (2) (How) did ancient and medieval philosophers (THOMAS
AQUINAS) take medicine into account in their general studies of the
influence of heaven upon earth? In their explanation of randomness?
Cf. GALEN [125, pp. 119 – 120].
    (3) What did KEPLER think about the links between astrology and
medicine?
    See also my preceding article [125, § 7].

2.2. Occupational diseases. I devote this subsection to the classical
study due to RAMAZZINI [115]. Presenting his account, he recorded
typical, i.e. statistically prevalent cases. At least in one instance
(chapter 37, p. 434) he compared two relative frequencies of a disease:
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J’ai observé que les Religieuses sont attaquées de hernies plus
fréquemment que les autres femmes; ce qu’il faut attribuer à leurs
chants trop violens, aussi bien que celles qui arrivent aux Moines.
    Elsewhere (chapter 4, p. 56) RAMAZZINI obviously recognized
statistical considerations:

Il s’est élevé, il y a quelques années, un procès … entre un habitant
de Final … & un commercant. ... Ce dernier avoit, à Final, un vaste
laboratoire où il fabriquoit le sublimé. L’habitant apella le
commercant en Justice, le pressant de changer son laboratoire de
lieu, parce qu’il incommodoit tout le voisinage par les vapeurs du
vitriol. Pour appuyer son accusation, il avoit une attestation d’un
Médecin … & un nécrologe du Curé, qui démontroient qu’il périssoit
chaque année plus de monde dans ce bourg, & sur-tout dans le
voisinage du laboratoire, que dans les lieux d’alentour, Le Médecin
attestoit, que le marasme, & les maladies de poitrine sur-tout,
tuoient presque tous ceux qui étoient voisins du laboratoire, & il en
attribuoit la cause aux vapeurs du vitriol…. Enfin, les Juges
renvoyerent le marchand absous, & déclarèrent innocent de vitriol. …
Je laisse aux Naturalistes à juger, si ce Juris consulte ne s’est pas
trompé.
    Regrettably, RAMAZZINI did not adduce the relevant figures. His
example bears a direct relation to the history of public hygiene.
    RAMAZZINI also formulated his opinion on the sickness of
physicians and the general appearance of mathematicians (Suppl.,
chapter 14, p. 174). He might have known about ten, or even twenty
of the former, but he was hardly acquainted with more than a few of
the latter. Here is what he wrote:
    (1) During epidemics physicians are affected rather seldom.

As I see it, … this is not because of their prudence, but rather due to
their experience and cheerful mood when they return home with a
lined purse. … Physicians endure hardships only when nobody else
endures them.
    (2) Almost every mathematician … is unworldly, lethargic, suffers
from drowsiness, and is utterly impractical. The organs of
mathematicians and their whole bodies inevitably become numb7.
    The rise of public hygiene in the 19th century led to the resumption
of the study of occupational diseases.

3. Prehistory of the Numerical Method
    3.1. Mead. In the very beginning of the 18th century MEAD [77,
p. x] expressed his rather naive hope that

In a short time mathematical learning will be the distinguishing
mark of a physician from a quack. … He who wants this necessary
qualification, will be as ridiculous as one without Greek or Latin.
    He [78, p. cliii] also maintained that

 Medicine still deals so much in conjecture8, that it hardly deserves
the name of a science. Whether this be owing to the nature of the art,
as being incapable of sure principles; or rather, to the artists …
    3.2. D’Alembert. MEAD did not mention statistics at all, but his
considerations belong to the prehistory of the numerical method (§ 4).
The same is partly true in regard to D’ALEMBERT’S thoughts [29‚
p. 163]:
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La médecine systématique me parait un vrai fléau du genre humain.
Des observations bien multipliées, bien détaillées, bien rapprochées
les unes des autres‚ voilâ à quoi les raisonnemens en médecine
devraient se réduire.
    D’ALEMBERT did not content himself with this rather one-sided
assertion. He (Ibidem and p. 167) also contended that
    (1) A physician is un Aveugle armé d’un. bâton. … Il léve son bâton
sans savoir où il frappe; s’il attrape la Maladie, il tue la Maladie; s’il
attrape la Nature, il tue la Nature.
    (2) Le médecin le plus digne d’être consulté, était celui qui croyait
le moins à la médecine.
    D’ALEMBERT raised objections to the basic principles of
probability theory. Being sometimes altogether wrong, his criticisms
revealed the need to sharpen some propositions of the theory and the
methodology of its application. He specifically attacked DANIEL
BERNOULLI’S study of the inoculation of small pox (§ 7.2.1). At the
same time he [29, p. 175] included medicine among the sciences in
which the [mathematical] art de conjecturer est nécessaire.
    I think that because of D’ALEMBERT’s pronouncements in
mathematics and medicine some scholars regarded him as a bull trying
to put the china shop of science in order.
    3.3. Black. Late in the 18th century BLACK advocated the
application of mathematics and statistics in medicine. Thus, he [8,
p. 38] strenuously recommended Medical Arithmetick, as a guide and
compass through the labyrinth of Therapeuticks. He (p. 56) also
proposed

 To spread out and to review, in one general Chart, the enormous
host of diseases which disgorge their virulence over the earth, and,
with frightful rapacity, wage incessant hostilities with mankind. By
this means we shall be warned to make the best disposition and
preparation for defence9.
    BLACK (pp. 65 – 68) compiled a

 Medical catalogue of all the principal diseases and casualties by
which the Human Species are destroyed or annoyed.
    He also appended a Statistical table to his book, a Chart of all the
fatal diseases and casualties in London, during … 1701 – 177610.
    BLACK (p. 235) blamed physicians for their ignorance of statistics:

 Except for the few high priests … the rest of the Esculapian train
are nearly as ignorant as the ancients.
    For his own part, he (pp. 414 (pp. 414 – 430) noticed certain
shortcomings in the compilation of statistical data on the birth-rate,
mortality and sickness in London.
    BLACK’S thoughts on medical observations were self
contradictory. On the one hand, he (p. 394) attacked the empiricism of
licensed murderers and maintained [7‚ p. 430] that

Dans les écrits même désAuteurs qui jouissent d’une grande
réputation, les faits nouveaux & les observations originales de
quelque utilité sont extrêmement rares.
    He (Ibidem, p. 424) even set off observations against theory:
  Les Médecins-Théoricièns au lieu de marcher pas-à-pas dans la

recherche de la vérité, ont essayé de voler. Ils ont cru qu’il étoit



121

nécessaire de rendre compte de tous les phénomènes & d’expliquer
toutes les difficultés d’une manière philosophique & méthodique.
    (BLACK adduced an example to the effect that scholastic
arguments were no substitute for action.)
    On the other hand, he (p. 394) stated:

 Multipliez les observations est le cri général. … Pour combattre
avec plus de succès les maladies [he mentioned fifteen diseases
including cancer] & la mort, il ne nous manque aujourd’hui que des
rémèdes, des rémèdes, & encore des rémèdes.

3.4. Condorcet. He [25, p. 542] stressed that observations
Suivies et multiplies … peuvent nous apprendre de vérités utiles sur

le rapport de notre régime, de nos habitudes, de notre constitution
organique, et de ses dérangements, avec nos facultés intellectuelles‚
nos passions et notre constitution morale. …je ne m’attacherai point à
prouver la nécessité de suivre ces observations dans la vue de
prévénir ou de guérir les difformités naturelles, et les maladies
réputées incurables; d’arrêter les contagions, ou de prévoir et de
dissiper les causes des épidémies11.
    3.5. Pinel. According to PINEL [99‚ p. 3]

Il faut prendre pour guide en médecine la méthode [of attentive
observation of' each object] qui réussit constamment dans toutes les
parties de l’histoire naturelle …
    He (p. 402) remarked that
  Une expérience, pour être authentique et concluante, … doit être

faite sur un grand nombre de malades asservis à des régles générales
et dirigés suivant un ordre déterminé. Elle doit être aussi établie sur
une succession régulière d’observations constatées avec un soin
extrême et répetées. … Enfin, elle doit rapporter également les
événemens favorables comme ceux qui sont contrairesl2.
    Lastly (p 406), stochastic considerations are necessary for a
comparison of two competing methods of medical treatment.
    PINEL devoted the concluding pages of his book to a statistical
study of the treatment of mental patients at his hospital and contended
(p. 424):

Il est nécessaire d’y appliquer les notions élémentaires du calcul
des probabilités, ce qui n’a été fait encore que pour l’hospice de la
Salpêtrière13.
    He calculated statistical probabilities for the recovery of various
groups of cases and compared these probabilities with each other.
PINEL largely repeated his considerations and reprinted his statistical
data in another contribution [100]. He (p. 169) again mentioned
probability theory:

Medicine doit être fondée sur la théorie des probabilités … sur
laquelle doivent désormais porter les méthodes de traitement des
maladies, si on veut les établir sur un fondement solide.
    In spite of PINEL’s references to the theory of probability, his
method did not differ from that later introduced by LOUIS (§ 4).

4. The Numerical Method
    4.1. Louis. He and his numerical method of reasoning based on the
comparison of statistical estimates with each other, occupy a special
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place in the history of medical statistics. LOUIS [74‚ p. xvii]
contended that

Dans une suite d’observations, les données d’un problème à
plusieürs inconnues dont il faut trouver la valeur; et comme en
mathématiques cette valeur ne change pas avec les personnes qui
s’occupent de la solution du problème, on doit nécessairement aussi,
en médecine, obtenir des résultats identiques de l’analyse des mêmes
observations. … Mais quels résultats obtenir de la considération de
faits douteux, incomplets ou faux? (p. xviii).
    The numerical method amounted to the collection and ordering of
numerical facts without stochastic considerations. I do not think that
LOUIS ever introduced a formal definition of his method.
    DAVIDOV [32, p. 84] was the first mathematician to comment
favourably on it. LOUIS (p. 72) studied the frequency of the
occurrence of certain symptoms or other features of illnesses, e. g.,
their duration (p. 185). Sometimes he based his deductions on a small
number of observations [75, pp. 85 – 86], but he noted that the
situation would be better with the accumulation of data. Moreover, he
remarked:

Si done il y a moyen de recueillir l’expérience des siècles en
thérapeutique, ce ne peut être qu’en employant la méthode
numérique14.
    In one instance he (Ibidem, p. 75) advised to use a statistical
procedure, a random distribution of patients, for the comparison of
competing methods of treatment15. Inevitable errors of observation, he
(pp. 76 and 111) thought, would largely compensate each other.
Probably relying upon this belief, LOUIS never estimated the
trustworthiness of his observations. He had many predecessors among
both scholars in general (D’ALEMBE'RT, CONDORCET, §§ 3.2 and
3.4) and physicians (BLACK, PINEL, §§ 3.3 and 3.5).
    LOUIS’S method came to be wide known. A special Société
médicalé d’observation under his permanent chairmanship was
established in Paris. It published three volumes of memoirs (in
1837,1844 and 1856), the last two of which I managed to see.
    4.2. Discussions. In 1835, the Paris Academy of Sciences discussed
the possibility of applying probability theory to medicine16. The
savants did not achieve unanimity [43, p. xi]. Thus, DOUBLE [35, p.
281] maintained:

La méthode éminemment propre aux progrès de [therapeutique
appliquée] c’est 1’analyse logique et non point l’analyse numérique.
    In 1837, the Paris Académie Royale de Médecine debated the
application of the numerical method [44, pp 44 – 52]. This was only
the beginning: the method remained the talk of the town for a few
decades. I describe the opinion of its resolute opponents (§§ 4.2.1 –
4.2.3), discuss the view of its partisans (§§ 4.2.4 – 4.2.5) and
consider the standpoint of those believing in stochastic considerations
(§§ 4.2.6 – 4.2.7). I conclude with an estimate of the numerical
method due to an author of this century (§ 4.2.8).
4.2.1. D’Amador. Generalizing his report at the Paris Académie
Royale de Médecme, D’AMADOR published a book [30] on the
application of statistics in medicine. He did not recognize the theory
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of probability at all. Referring to PASCAL (?), D’ALEMBERT and
POISSON (?), D’AMADOR contended that the logical foundation of
the theory was doubtful (p. 114) and that its application aux faits réels
du monde physique et moral [was] ou inutile ou illusoire (p. 15). As
far as medicine was concerned, probability provided solutions

Ou nuisibles, ou insufiisantes, ou trompeuses. son importation en
médecine est anti-scientifique, abolissant la véritable observation …
( p 31).
    I adduce a few more passages just to describe the common belief of
those times.
    (1) La probabilité des mathématiciens … n ’est guère que la théorie
du hasard. Invoquer la probabilité c’est done invoquer le hasard;
c’est renoncera à toute certitude médicale, à toute règle rationnelle
tirée des faits propres de la science. … La médecine ne sera plus un
art, mais une loterie (p. 14).
    (2) Le vaisseau que je monte périra-t-il ou non ? Le calcul ne me dit
rien sur ce point essential … À quoi me servira cette connaissance [of
the probability for the loss of the ship]? (p. 24).
(3) All these probabilities of success and failure

Varient dans chaque hôpital, à chaque série des expériences. …Que
faire de toutes ces probabilités en conflit? (p. 29).
    D’AMADOR (p. 12) also attacked LOUIS, wrongly supposing him
to advocate the use of the theory of probability:

Il existe actuellement une école qui place les nombres au dessus de
toute chose; qui proclame le calcul des probabilités la seule règle de
certitude possible en médecine.
    On the positive side, D’AMADOR recommended use of analogy
and induction. All discoveries allegedly due to les numéristes,
D’AMADOR (p. 62) attributed to other physicians and to the
application of induction. Indeed (pp. 42 and 52), induction is based on
analogy whereas the numerical method presupposes a non-existing
identity of cases.

4.2.2. Comte. In 1838, he [129, § 3.3.3] put on record his attitude
against the use of statistics in medicine, denouncing it as une profonde
dégénération directe de l’art médical. He specifically maintained that
the existence of biological variations made comparisons between
competing treatments impossible.

4.2.3. Bernard. He formulated a few cautious theses. Scientific
laws, he [4, p. 217] contended, were determinate (in those days no one
thought otherwise) whereas statistics provided only probable results.
At best, it only turns our attention to one or another fact, but it is
unable to lead to a veritable law. Besides, statistics might guider le
prognostic du médecin (p. 221), but could not help in a, particular case
(p. 219).
    From my point of view, BERNARD’S book just did not live up to
its promising title. And one of BERNARD’S assertions (p. 220) was
at least doubtful:
  La statistique ne saurait enfanter que les sciences conjecturales;

elle ne produira jamais les sciences actives et expérimentales.
However (p. 221), La médecine est encore presque partout
conjecturale.
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4.2.4. Simpson. In many of ‘his works he (§ 6.1) essentially used
the statistical method. He [133] also came out in support of the
method and criticized its opponents. Mentioning GAVARRET
(§ 4.3.1) SIMPSON (p. 315) noted that the extent of [normal]
oscillations in statistical data was easily ascertainable.
Nevertheless, adducing numerous examples of the use of statistics, he
himself did not analyse them in the sense just described and his article
(and the statistical side of his work in general) indeed followed the
numerical method17.
    SIMPSON mentioned QUETELET (p. 316), DOUBLE (p. 330;
§ 4.2.1), and even LAPLACE (Ibidem)18 and I think that his failure to
follow the advice of GAVARRET stemmed from the disuse of
stochastic criteria by QUETELET. Note that medical statistics
possessed some means for verifying its conclusions. For example,
SIMPSON (pp. 318, 319 and 325 – 326) proved the existence of
certain regularities by discovering a monotonous change of the
corresponding functions. In the last instance which belonged to
mortality of lithotomy he detected regularity by arranging the initial
data into suitable groups. See also my § 6.1.2.

4.2.5. Pirogov. He [10, p. 125; 103, p. 5] several times favourably
referred to the numerical method. Mentioning syphilis, the stone
disease and amputations, he [101, p. 125] also remarked, without
adducing any references:

Surgeons used the statistical method even before [LOUIS] for the
determination of symptoms of diseases and indications for certain
ways of treatment and operations.
    I describe the work of PIROGOV in § 6.2.
    4.2.6. Bouillaud. Nous avons compté les jours de la maladie, le
nombre des pulsations des artères et du coeur, le nombre des
inspirations etc., … nous avons mesuré la témpérature … la densité
du sang. nous avons ausculté et percuté.
    This is BOUILLAUD [14, p. 385]. No wonder he [13, p. 160] was
dissatisfied with physicians who oublient trop ce principe: Numero,
mensurâ et pondere deus fecit mundum. BOUILLAUD [14, p. 390]
was a supporter of the statistical method in its broad sense:

Par quelle étrange et déplorable inspiration, des hommes auxquels
on ne saurait refuser, sous tant d’autres rapports, une haute portée
intellectuelle, prenant en quelque sorte une académie de médecine
pour une académie de jeux, ont ils comparé à un jeu de hazard. … Le
calcul des probabilités appliqué a des faits médicaux dont une longue
experience, et non le hazard, nous, a enseigné les lois?

Comment les mêmes hommes ont-ils mis en opposition la méthode
numérique et la méthode de l’induction? Comme si une alliance
éternelle ne devait pas toujours régner entre ces deux méthodes …
    BOUILLAUD [13‚ p. 112] characterized his time by

L’art de faire en quelque sorte la statistique des observations
recueillies en nombre plus ou moins considérable.
    In this connection he (Ibidem, pp. 222 and 288) stressed the
importance of the theory of probability19. Elsewhere he (p. 218)
expressed the same idea in more detail:
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La statistique médicale n’est malheureusement encore qu’à son
berceau, et l’avenir lui réserve de grands développemens. Toutefois,
elle a déjà été appliquée avec quelque succès à l’examen de diverses
questions médicales d’un haut intérét et si un plus grand nombre de
bons observateurs avaient le temps, la patience et le zèle nécessaire à
ce mode de recherches, on verrait bientôt se dissiper comme de vains
fantômes une faule d’assertions, dont quelques-unes exercent un si
funeste empire sur la pratique elle-même et partant sur la vie des
hommes.
    BOUILLAUD (Ibidem) reasonably concluded
    Que le calcul approximatif ou des probabilités est presque toujours
le seul dont nous puissions faire usage, quand il s’agit de généraliser
un résultat.

 4.2.7. Gavarret. Before taking to medicine he had graduated from
the Ecole Polytechnique where he studied under POISSON. He
published a book [43], the first of its kind, devoted to the application
of the theory of probability to medicine, and sincerely acknowledged
POISSON’S influence (p. xiii):

Ce n’est qu’après avoir long-temps médité les leçons et les écrits de
l’illustre géomètre, que nous sommes parvenu à saisir toute l’étendue
de cette question … de régulariser l’application de la méthode
expérimentale (!) à l’art de guérir.
    GAVARRET (p. 189) contended that medical knowledge was
[often] based on assertions vagues et confuses and pointed out (p. 50)

La funeste habitude, trop longtemps consacrée en médecine, de
confier les observations à la mémoire, aura de son côté amené ce
fàcheux résultat, que les faits extraordinaires paraissant se multiplier
en raison de l’impression produite sur l’esprit, des auteurs auront pris
la règle‚ ce qui n’était réellement que l’exception20.
    Indeed (p. 60), everyone used statistical experience in one or
another way, so wouldn’t it be better to compile the data thoroughly?
Having taken this stand, GAVARRET did not disown the numerical
method at all, but he definitely noted its shortcomings. Discussions of
the method, GAVARRET (p. x) asserted, were held

 Uniquement de savoir si on remplacerait, par des rapports
numériques les mots souvent, rarement, … etc. La méthode
numérique, considérée sous ce point de vue rétréci, ne pouvait
s’étendre au delà d’une simple réforme dans le langage, mais il était
impossible d’y voir une question de méthode scientifique et de
philosophie générale21.
    This opinion seems too severe: PE'ITY, the cofounder of political
arithmetic‚ also attempted to introduce numerical measure instead of
vague words. I consider GAVARRET’S recommendations concerning
the use of stochastic methods in § 4.3.1.

4.2.8. Greenwood. He [46, p. 139] contended that
Some heart-breaking therapeutic disappointments in the history of

tuberculosis and cancer would have been avoided if the method of
Louis had been not merely praised but generally used during the last
fifty years22.
    He (p. 133) also lamented over possibilities which LOUIS himself
allegedly did not explore:
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One wonders what might have been the future of clinical statistics
if Louis had secured the collaboration of … Poisson.
    But the real point was that LOUIS evidently did not lend an
attentive ear to POISSON’s one-time student, GAVARRET.
    4.3. Elements of Mathematical Statistics. I describe here the work
which pertains to mathematical statistics. I discuss  the grouping of
observations in § 7.2. Then‚ in §§ 7.1 and 7.3.3 I mention the
application of empirical formulas.
    4.3.1. Gavarret. He [43] introduced two formulas necessary for the
application of probability theory.
    (l) Denote the unknown probability for the appearance of a random
event in a binomial trial by p. If the event appeared m times in μ trials
then (p. 256)

2
3

m 2 2(| | ) 1 exp( ) .
μ μ π

mnP p u t dt- £ = - -ò                     (1)

    Evidently, (1) corresponds to the DE MOIVRE – LAPLACE
integral limit theorem, a theorem of probability theory proper.
Referring to POISSON, GAVARRET supposed that, as a rule, the
confidence coefficient in therapeutics should be equal to 0.995323.
    (2) Let a random event happen m times in a series of μ trials, and ml
times in a series of μ1 trials. Then, if no cause perturbatrice (see
below) was involved,
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- £ + n = μ – m, n1 = μ1 – m1.    (2)

    This inequality is a simple corollary to a formula due to POISSON
[128‚ p. 279‚ with an obvious mistake] for binomial trials with
variable probabilities. However, POISSON clearly pointed out the
restrictions superimposed on the nature of variations in probabilities
whereas GAVARRET (pp. 65 and 265) vaguely mentioned un
ensemble permanent de causes possibles24.
    GAVARRET adduced examples on the use of formula (2) and, in
particular, on the comparison of competing methods of treatment. He
(p. 194) also added an advice on the check of the null hypothesis:

Le premier travail d’un observateur qui constate une différence
dans les résultats de deux longues séries d’observations, consiste donc
à chercher si l’anomalie n’est qu’apparente, ou si elle est réelle et
accuse l’intervention d’une cause perturbatrice; il devra ensuite …
chercher à déterminer cette cause.
    Thus, GAVARRET’s main achievement was the introduction of the
principle of the null hypothesis and of its check into medicine (and
natural science in general)25.
    GAVARRET (p. x) did not consider himself the only partisan of the
statistical method:
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Quelques hommes distingués luttaient avec persévérance pour faire
adopter l’emploi de la statistique en médecine. C’était, disaient-ils, le
seul moyen de recueillir l’expérience des siècles en thérapeutique.

4.3.2. Guy. Referring to CELSUS (§ 1.1), he [48, p. 40] stressed
the importance of statistics for activities connected with public health:
  If we consider the health of large masses of men placed under

different circumstances, and acted on by different influences, it is to
the numerical method that we must look for accurate information as to
the effect of these circumstances.
    GUY did not mean the method due to LOUIS. Elsewhere he [50,
p. 803] offered a definition of the numerical or statistical method and
he preferred the use of the former adjective because statistics might be
wrongly confused with Staatswissenschaft. He (Ibidem, p 801) also
claimed that medicine had a special relation to statistics:

There is no science which has not sooner or later discovered the
absolute necessity of resorting to figures as measures and standards of
comparison; nor is there any sufficient reason why physiology and
medicine should claim exemption. On the contrary, they belong in an
especial manner to the class of sciences which may hope to derive the
greatest benefit from the use of numbers.
    And (p. 802):

Without statistics a science bears to true science the same sort of
relation which tradition bears to history26.
    GUY attempted to prove the importance of extreme rather than
mean values in medicine by remarking [48‚ p. 42] that the action of
poison can manifest itself only during a certain interval of time; most
essential, he explained, was the knowledge of the extreme points of
this interval. See § 6.2.2 for a description of PIROGOV’s use of
minimal mortality in surgery27.

4.3.3. Bienaymé. He was a mathematician and a statistician. He [6]
formulated general recommendations on the application of the
statistical method in medicine. It seems [52, pp. 103 – 104] that
BIENAYMÉ founded his considerations on the use of the central limit
theorem and one quantitative statistical test. His contribution,
essentially ahead of its time, was too concise and remained scarcely
noticed for more than a century.

4.3.4. Davidov. He, to whom I referred in § 4.1, was also a
mathematician. He took interest in the theory of probability and was
partly responsible for CHEBYSHEV’S attention to the theory [126,
p. 182].
    DAVIDOV [32] stressed the need to estimate the plausibility of
statistical deductions and recommended the use of formulas of the
GAVARRET’S type (§ 4.3.1). He (p. 66) believed that

 Vague ideas on probability and an inexact distinction between
subjective and objective probabilities are among the main obstacles
against the speedy development of practical medicine.
    DAVIDOV evidently underestimated the importance of trustworthy
statistics: exactly its absence most impeded the application of the
statistical method. Russian physicians came to recognize the need to
use stochastic methods as a result of DAVIDOV’S efforts [86].
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4.3.5. Parkes. He is the author of a manual on hygiene [87]
prepared, according to its full title, especially for the use in the army.
He explained the use of GAVARRET’S formula (4.3.1.2) and noted
(p. 481) that

 The group-building ... can only be done by the most subtle and
logical minds [a remark which might have been made in regard to
statistics in general]. The dividing character must be [absolutely]
definite. … The dividing character must be precise enough.
    Probably he was the first to consider grouping in medical statistics
though certainly not the first to use it (§ 7.2.1).
    PARKES (p. 484) also described the method by (?) successive
means. Denote n observations by xl, x2, …, xn. Then the successive
means will be

1 2 31 2 , ,...
2 3

x x xx x + ++

    PARKES recommended to calculate the successive means in both
the direct and inverse order. The degree of uncertainty of
observations, he continued, will then be the mean variation between
the … means. PARKES did not claim this method for himself. The
attempt to determine the uncertainty of observations was important
insofar as the study of the stability of statistical series had properly
started with LEXIS (in 1879). Successive means are a particular case
of moving averages. I doubt whether anyone followed PARKES’s
recommendations and I do not understand the second part of his
explanation.

4.3.6. Further Work. In 1874, two authors, HIRSCHBERG and
PESKOV, published writings devoted to the application of statistics in
medicine. The former [53] described the elements of probability
theory and explained the use of GAVARRET’S formulas. The latter
[89, p. 89] contended that
    Medical statistics should have at its disposal mean values as
accurate as those used in meteorology28 to enable the construction of
lines of equal sickness, mortality etc. and thus to discover the laws of
sickness.
    The geographical distribution of diseases was studied in those days
within the framework of public hygiene (§ 5) but PESKOV, as it
seems, was the first to mention lines of equal sickness (mortality).
    The work of SEIDEL is also relevant to my subject. It is very
important and I describe it in §§ 7.4.2 and 7.4.3.

5. Public Hygiene
    It originated in the middle of the 19th century29. From its very
beginning, the new scientific discipline stood in need of a statistical
backbone (cf. GUY’S opinion in § 4.3.2). Thus, LEVY [68]
considered such global problems as the influence of external agents
(atmosphere, water, climate) on man, and the choice of suitable type
of clothes and appropriate food, i.e. the very problems that
belong to hygiene to this day and demand the use of statistics.
    BOUDIN [ll] collected vast statistical data on seasonal periodicities
in crime and suicide30, on fertility of man and animals, geographical
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distribution of diseases, zoogeography and on many other topics. He
described periodical phenomena using graphs constructed in polar
coordinates with ordinal numbers of weeks as the arguments of the
corresponding points (vol. 1, pp. 32 – 33).
    In 1851 the first international sanitary conference discussed
measures to prevent the spread of transmissible diseases and several
subsequent meetings took place before 1875, i. e. before the advent of
the bacteriological era Though 1851 is generally regarded as the
beginning of international [movement for] public health [116, p. 290],
no real success was then achieved (Ibidem, pp. 290 – 293).
    From 1855 onward, international statistical congresses debated
statistical problems of public health31. Meeting in Paris, the Congress
[26‚ pp. 121 – 132 and 336 – 340] discussed studies of settlements,
mostly from the point of view of preventing cholera epidemics from
spreading; see also § 7.3.4.
    In 1857, the Congress [26, pp. 39 – 81 and 359 – 389] examined the
statistique des établissements et des associations

Destinés à venir en aide aux malades et aux infirmes, ainsi que des
résultats de l’organisation sanitaire.
    The next meeting of the Congress (in 1860) adopted proposals for
uniform hospital statistics and sanitary statistics in general [26,
pp. 173 – 183, 247 and 264]; see my § 6.1.2. The Congress also
recommended an international registration of epidemics. In 1863, the
Congress considered problems of vitality and mortality of the civil
population and military personnel [26, vol. 2, pp. 227 – 272, 494 –
499 and 549 – 560].
    Lastly, in 1872, the Congress adopted a special terminology. It [26,
t. 2, p. 161] resolved that the aim of Statistique anthropologique was
the description of the état physique de la population and that its
branches were Statistique somatologique (which had to do with la
vigueur physique et l’état général de santé de la population),
Statistique nosologique (influence of disease on population),
Statistique hygiènique, and Statistique du service médical32.
    Late in the 19th century ERISMANN [36, vol. 1, p 7] remarked on
the role of statistics for public hygiene:

Achievements of no small importance … have been made lately in
the deepening and dissemination among the medical profession of the
understanding that statistics must needs be the foundation of all our
sanitary activities, … and the cornerstone of specific studies in public
hygiene.
    The second volume of ERISMANN’s work contained a lengthy
appendix devoted to sanitary statistics. Here he (p. 3) noted that, using
statistical data, physicians often came to wrong conclusions, so that
until recently famous practitioners did not recognize medical statistics.
He (p. 7) reasonably concluded that statistical data ought to be
trustworthy.
    He discussed the methodology of data compilation, referred to a
number of mathematicians and statisticians and described the opinion
of DAVIDOV regarding quantitative tests (§ 4.3.4)33.

5.1. Statistics of Settlements. The study of settlements and
especially large cities had become a most important object of public
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hygiene of the time. The Industrial Revolution in England, which
commenced in the middle of the 18th century, caused the urban
population to grow rapidly. By the middle of the next (19th century, its
poorer sections had found themselves in horrible (DICKENSIAN)
living conditions. The thoughts of the founders of political arithmetic,
GRAUNT and PETI'Y, as well as of statisticians of the 18th century
(SÜSSMILCH) on the social value of man had gone out of fashion.
    CHADWICK clearly depicted the sanitary state of the British
nation. He crammed his book [20] with descriptions of specific facts
accompanied by relevant figures and adduced statistical tables. Thus
(pp. 228 – 231), he published a table of Comparative chances of life in
different classes [of society]. According to this table, among children
of Liverpool gentry and professional persons only two out of three
lived to the age of five years, and only three out of five lived until
twenty.
    CHADWICK devoted a section of his book to the estimation of
damages due to the disregard of sanitary measures. For example,
referring to the Rev. G. LEWIS, he (p. 272) noted that the [typhoid?]
fever bill in Dundee for 1833 – 1839 amounted to £ 175,000.
    Later PETTENKOFER published a thorough and much better
known sanitary study of Munich [93]. He estimated the financial loss
ensuing from such diseases as typhoid fever thus proving the case for
public hygiene. The city council adopted PETTENKOFER’s
recommendations and mortality from typhoid fever fell from 0.15 %
in 1871 – 1875 to 0.08 % in the next five years [94, p. 12]. The
number of fever cases likely diminished just as well.
    I end by quoting FARR’s telling conclusion [38, p. 148] on the
general role of sanitary conditions (ca. 1857).

Any deaths in a people exceeding 17 in 1000 annually are
unnatural deaths. If the people were shot, drowned, burnt, poisoned
by strychnine, their deaths would not be more unnatural than the
deaths wrought clandestinely by disease in excess of seventeen deaths
in 1000 living.
    He corrected himself remarking that 17 deaths in 1000 were also far
too many because sanitary conditions were unsatisfactory even in
localities in which mortality did not exceed 1.7%34.

6. Surgery
    One of the first branches of medicine which began to use statistics
was surgery. Thus, CIVIALE [22, p. xix] even contended that

C’est par l’application de la loi des grands nombres qu’ont été
résolues les principales questions relatives aux luxations, aux
fractures, aux amputations (he mentioned eight more items)35. It
seems that C1VIALE exaggerated the role of the law of large
numbers; besides, the principales questions are of an everlasting
nature and each new generation of physicians must consider them
anew. CIVIALE regrettably adduced no references.
    Later SIMPSON [133, p. 331] noted that, as far as surgery was
concerned, a perfect and undoubted diagnosis was comparatively
easier to arrive at than in some [other] departments of the physician’s
study. Therefore, SIMPSON argued, it was easier to apply the
statistical method in surgery.
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    For his part, PIROGOV [103, p. 6] maintained that that method was
absolutely concordant with the spirit of surgery. See also § 4.2.5.

 6.1. Amputations. PHILLIPS [98] was probably the first to conduct

a statistical study of'amputations. Collecting results of 640
amputations in several European countries, he determined the relevant
mortality (23%) and concluded that physicians unjustly disregarded
the danger of the operation. Both SIMPSON [133, p. 320] and
PIROGOV (§ 6.2.2) confirmed the former existence of this general
misbelief.
    PHILLIPS’S work was not comprehensive at all. He discussed
amputations in general and did not study mortality from
complications.

6.1.1. Anaesthesia. It earned its place of honour only because of
statistics. SIMPSON, for one, from the very beginning understood the
need to follow the statistical path [134, p. 93]:

 Some eagerly and stoutly doubted, in toto, the possibility of making
operations painless; and many who admitted its possibility, denied
altogether its propriety on the alleged ground of its increasing‚ the
general subsequent dangers of the patient. … I became convinced that
there was only one method of arriving at the truth, viz. by instituting a
statistical investigation, upon as large a scale as possible.
    SIMPSON continued (Ibidem, footnote):

In my letter of application [asking for data], I stated, that the
effects, whether favourable or unfavourable, of anaesthesia upon the
ultimate recoveries of patients from surgical operations is still a
matter of much doubt and uncertainty. We have as yet had no proper
collection of data to ascertain whether the mortality of operations has
been increased or not by patients being placed under the influence of
ether. … In order to determine as far as possible this important point,
I have been induced to undertake the statistical investigation. …
    Amputations have been selected for this purpose … because they
are … nearly and everywhere alike, and because the general average
mortality accompanying most of the greater amputations [without
anaesthesia] is already known [from published inquiries].
    SIMPSON [134‚ p. 102] also answered criticisms levelled against
him (by whom?):

The data I have adduced … have been objected to on the ground
that they are collected from too many different hospitals, and too
many/different sources. But, on the contrary, I believe all our highest
statistical authorities will hold that this very circumstance renders
them more, instead of less, trustworthy.
    Elsewhere SIMPSON [133, p. 327] contended that general averages
excluded the influence of runs of successes or failures. He
undoubtedly used heterogeneous data. Thus, some of his figures
corresponded to the period 1794 – 1839 whereas the aim of his study
demanded that he compare the use of ether only with the least
dangerous (most recent) amputations without anaesthesia.
    SIMPSON’S initial data were not comprehensive also insofar as he
was unable to determine mortality from hospital gangrene and similar
complications which often obscured the action of all the other factors
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taken together. Then, he obviously had no possibility of separating
other causes of death after amputation as, e.g., pneumonia.
    Even a few decades later HODGES complained of the lack of
relevant statistical data; LISTER [72, p. 156] quoted him as saying

As regards deaths from ether, I make no doubt many occur which
are never reported [as such], for the simple reason that the death …
occurs some hours later [after amputation] from bronchitis36.
    PIROGOV [102] studied amputations (and operations in general)
under anaesthesia at about the same time as SIMPSON. He compiled
data and used them in the same way as SIMPSON. Note however that
PIROGOV was the first to use anaesthesia in the field.
     PIROGOV [102, pp. 7 – 8; 103, p. 191] contended that in some
instances anaesthesia increased the rate of mortality. But even then
(§ 6.l) he noted that the data were not trustworthy and that
amputations without anaesthesia were partly performed in small
hospitals.

6.1.2. Hospitalism. This term was likely coined by SIMPSON, or at
least it is the title of a contribution [137] in which he studied the
influence of hospital conditions on amputation cases. According to his
data which covered 2,098 patients (p. 303), mortality from
amputations performed at home (usually under unfavourable
conditions) amounted to 10.8%37. In hospitals morta1ity was
immensely higher (p. 338) and increased with the number of beds38.
    As SIMPSON (p. 341) supposed, the real reason for the latter fact
was the related worsening of ventilation and decrease of air space
per patient. He [137‚ p 399] noted that a small hospital if
overcrowcled‚ becomes as insalubrious as a large hospital under one
roof39.
    S1MPSON discussed the causes which led to the performance of
amputations at home. Thus (p. 332), many physicians were afraid to
refer serious cases to hospitals though the patients themselves often
knew nothing about the danger which 1ay in wait for them in medical
institutions. In any case, SIMPSON made a special point (p. 372) of
the fact that home amputations had concerned a relatively higher per
cent of traumatic (more serious) cases.
    In 1860 the International Statistical Congress adopted FLORENCE
NIGHTINGALE’S Proposals for uniform plan of hospital statistics
[26, p. 247; 83, p. 159]. She [83‚ p 171] separated statistics of surgical
operations and recommended (p. 173) to introduce a common
nomenclature of complications. Poor conditions in a surgical hospital,
she (pp 5 and 10) contended, led to complications:
    (l) Perhaps the most delicate test of sanitary condition in hospitals
is afforded by the progress and termination of surgical cases after
operation, together with the complications which they present. … The
origin and spread of fever in a hospital, or the appearance and spread
of hospital gangrene, erysipelas, and pyaemia generally are much
better tests of the defective sanitary state of a hospital than its
mortality returns40.
    (2) There is no such thing as inevitable infection.
    FLORENCE NIGHTINGALE had good reason indeed to begin her
book with a very special statement:
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It may be a strange principle to enunciate as the very first
requirements in a Hospital that it should do the sick no harm. … The
actual mortality in hospitals, especially in those of large crowded
cities, is very much higher than any calculation founded on the
mortality of the same class of diseases out of hospital would lead us
to expect.
    For a description of NIGHTINGALE’s statistical work see KOPF
[64].

6.1.3. Antiseptics. The introduction of (LISTERIAN) methods of
antiseptics had transformed surgery to such an extent that no statistical
study of the advantages of the new practice seemed necessary. In 1878
a Munich physician, I. N. NUSSBAUM, published an essay on
LISTERISM. He [70, vol. l, p. xx] wrote:
    Formerly. almost all patients in whom bones were injured, were
attacked by pyaemia. For example, of 17 cases of amputation 11 died
from this cause. … 80 per cent of all wounds and ulcers were attacked
[by hospital gangrene]. … Almost every wound was attacked with
erysipelas. Now, No pyaemia. No hospital gangrene. No erysipelas41.
    According to LISTER himse1f [71‚ p. 129],

Before the antiseptic period, [there were] 16 deaths in 35 cases
[amputations]. … During the antiseptic period, 6 deaths in 40 cases.
… These numbers are, no doubt, too small for a satisfactory statistical
comparison; but, when the details are considered, they are highly
valuable.
    LISTER adduced non-statistical considerations regarding his data.
He could have remarked (as the editors of his Collected papers did
[70, vol. 1, p. xx]) that before the introduction of antiseptics surgical
intervention was … limited more or less entirely to operations
necessary for the saving of life.
    Even in 1870 LISTER [71‚ p. 124] noted that there was

A striking evidence that the emanations from foul discharges …
constitute the great source of mischief' in a surgical hospital.
    Referring to statistical data (which he did not publish) he
(Ibidem, footnote) added:

The ground-floor wards were, on the average, most liable to
pyaemia, whoever might be the surgeon in charge; … those on the
floor immediately above come next in this respect42.

6.2. Pirogov. I mentioned PIROGOV in §§ 6, 6.1 and 6.1.2 in
connection with statistics of amputation, comparison of conditions in
small and large hospitals and the use of the statistical method in
surgery.

6.2.1. Use of Statistics. PIROGOV [107, p. 5] called himself ein
eifriger und aufrichtiger Verehrer der medicinischen Statistik. Though
individuality was important even in surgery, PIROGOV [106, p. 7]
believed that it could be studied statistically [103, p. 5]43.
    PIROGOV [107, p. 685] singled out an important reason for the
unreliability of statistical data:

Die Statistik nur dann sicher ist, wenn sie keinen anticipirenden
Zweck hat und die persönlichen Interessen dabei nicht im Spiele sind.
    In this connection he [105, p. 31] accused even die berühmtesten
Hospitalärzte and noted [106, pp. 9 and 68] that unsuccessful cases
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were not always recorded. But the main point was that under military
conditions surgical statistics was just nicht zuverlässig [110, p. 297].
He obviously took into account inevitable displacements and
evacuation of large numbers of wounded (and sick) personnel.
PIROGOV [108, p. 438] also noticed a particular source of mistakes
in statistical data or its interpretation. Comparing results of early and
late amputations, he argued, one must understand that the former are
not always performed early while the latter are really above their
reputation: surgeons postponed amputations in the hope of preserving
the limb and in some cases they obviously succeeded. In other
instances report cards were easy to tamper with [110, pp. 427 and
456].
    Still, PIROGOV (Ibidem, p 529) expected much of statistics:

 Wenn wir gewillt sind alte, sich immer wiederholende Fragen der
Kriegschirurgie mit Hülfe der Statistik zu entscheiden, so ist … ein
besonderes Institut von Specialisten erforderlich, welche verpflichtet
sind auf den Verbandplätzen und, in den Hospitälern … persönlich
zugegen zu sein.
    His programme was of course unrealistic. But in a modest way,
PIROGOV [104, p. 382] elsewhere suggested that surgeons
themselves should compile statistical data, observing the fate of the
wounded right from the operating room to the bitter [or happy] end.
    As the years went by, PIROGOV became more sceptical of
statistics. In the second (Russian) edition of his book [108, p. 20] he
writes:

Even a slightest oversight, inaccuracy or arbitrariness makes [the
data] far less reliable than figures founded only on a general
impression with which one is left after a mere but sensible observation
of cases.
    In the first (German) edition he [107 p. 6] had written:

In Ermangelung einer sicheren [Statistik] will ich also lieber gar
keine, sondern eben nur die Resultate eines solchen Eindruckes in
dieser Schrift mittheilen. [In 1849] I [108‚ p. 20] … did not yet
imagine myself all the blind alleys into which figures sometimes
lead44.
     Only a gifted physician (as PIROGOV) could have allowed himself
this mode of action if one is to understand its description literally. The
rule for the ordinary man is, to trust only plausib1e data, to rely only
on statistics of sensible observations. By (following) blind alleys
PIRQGOV probably meant an unwarranted confidence in the
calculated rates of mortality from various injuries and operations.

6.2.2. Conservative Treatment and the Death-Rate. One of the main
problems which confronted PIROGOV and demanded the application
of statistics was the estimation of the conservative treatment of
fractures and bullet wounds of the limbs versus their amputation. In
1847, compiling statistics of amputations, PIROGOV [106, p. 66] for
the first time questioned their inevitability. Later he [107, p. 690]
expressed his views quite definitely:

Bei dieser Unbestimmtheit des Quantums von beiderseitigem Risico
schwankt man in der comparativen chirurgischen Statistik
fortwährend zwischen zwei Extremen: bald setzt man zu wenig Risico
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auf Rechnung der Amputation, bald auf die der conservativen Kur zu
viel45. Die alte, nicht statistische Schule überschätzte übrigens den
Werth des Lebens. … Die mit der Amputation selbst verbundene
Lebensgefahr hielt Sie für zu geringfügig, um sie in die Wagschale zu
legen. … Wir leben ofifenbar in einer Übergangsperiode. Die
geheiligten Grundsätze der alten Schule, deren Ansichten im ersten
Decennium dieses Jahrhunderts vorherrschten, sind durch die
Statistik erschüttert – dass muss man ihr lassen, mit neuen
Grundsätzen hat sie aber die alten nicht ersetzt, was auch unmöglich
ist, so lange die kriegschirurgischen Statistiker nicht nach einem
bestimmten und für alle Nationen festgestellten Plane handeln.
    The single plan advocated by P1ROGOV was in line with
QUETELET’s lifelong efforts to standardize population statistics.
PIROGOV also formulated a natural test for the advisability of the
conservative method. He [10, p. 525] proposed to compare the
minimal death-rate peculiar to this method with that of amputations.
    Thus, PIROGOV stood in need of minimal (or, maybe, mean) rates
of mortality from various injuries of the limbs for the two competing
methods of medical treatment. He [l06‚ p. 2] supposed that, for a
given moment,

Jede Krankheit und jede chirurgische Operation in Bezug auf
Nichtgelingen und tödlichen Ausgang ihr festes und bestimmtes
Verhältniss hat46. Dies Verhältnis hängt ab von der continuirlichen
Einwirkung der äußeren Bedingungen auf die verschiedenen
Krankheitsformen, von der Natur der Krankheit, von der
Individualität der Kranken, so wie von der Art des traumatischen
Eingriffs der mit jeder Operation verbunden ist. Der Einfluss des
Arztes aber, die verschiedenen Curmethoden und die mechanische
Fertigkeit spielen eine so secundäre Rolle, dass sie nur ein in der
großen Masse kaum bemerkbares Schwanken der Zahlenverhältnisse
hervorrufen.
    PIROGOV [104, p. 382; 107, p 5] repeatedly professed his
confidence in the stability of death rates. Did he think of mean, or
minimal, rates? Before 1879 he did not elaborate, but later m life he
mentioned the minimal rate [1l0, p. 297]; see also above.
    According to PIROGQV [103 p. 5], even

Individual peculiarities are subject to statistical regularities … so
that the influence of the patient himself on the course and treatment of
his illness can be determined only by statistical considerations.
    (See also § 6.2.1.) Therefore, only changes in external conditions
(especially in times of war) can throw the figures of mortality into
utter confusion. However, under perfect external conditions death-
rates may be considered as random magnitudes, i.e. quantities with
stable probabilities of their various values. One may well assume then
that with probability 0.95 (say) the value of a certain death-rate is not
less than some number c (0 < c < 1).
    This is my explanation of PIROGOV’S choice of the minimal rates
of mortality. However, he did not resolutely change from mean to
minimal mortality: even in his last contributions there are quite a few
places [109, p. 80;’110, pp. 440, 476 and 524] where he discussed
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unspecified mortality. Moreover, he noted that the (mean or minimal?)
death-rates were stable only in some instances.
    To ensure meaningful statistics, PIROGOV strove to secure
stability of death-rates and he began to distinguish amputations of
each third of each limb [108, p. 439; 110, p. 442]. SIMPSON [133,
p. 331] did the same even in 184747.

7. Epidemiology
    Continuing the HIPPOCRATIC and ARISTOTELIAN tradition,
SYDENHAM [125, § 6.2] and physicians of his time connected
epidemics with the constitution of the locality; see § 8.
GREENWOOD [45, p. 9] did not agree that the constitution
impressed a common character upon the illness of an epoch. His
opinion, which of course contradicted the ancient tradition, was
scarcely true; see § 7.3.1.
    Modern epidemiology uses determinate or stochastic models to
foretell the progress of epidemics [3‚ chap. 9]. The aims of scholars in
the l8th and 19th centuries were different (§§ 7.2 – 7.4), but a study
conducted by FARR belonged to the modern type (§ 7.1). For this
reason I ventured to describe it although his study did not belong to
medicine.
    Statistical studies of smallpox had commenced in the middle of the
18th century (§ 7.2) and in about a hundred years from then studies of
cholera (§ 7.3) and typhoid fever (§ 7.4) had ensued.
    A figurative picture of a later period, of the second half of the 19th

century, belongs to GREENWOOD [45, p. 19]:
We devoted ourselves as a profession to the task of tracking down

bacilli, to segregating the infected and presumably infective members
of our herd and to immunising the remainder; the herd ceased to be a
herd, it was an aggregation of individuals, what was found to be true,
or believed to be true, of individuals was assumed to be true of the
herd.
    Does this mean that the advent of bacteriology had checked the
development of the statistical branch of epidemiology?
    7.1. The First Modern Study. In 1866 FARR published a letter in
a newspaper in connection with the cattle plague which then invaded
England. BROWNLEE [15] reprinted that letter and provided related
information. Denote the number of attacks of the plague during four
weeks by Δ. According to FARR, the third differences of log nat Δ
were constant, so that

    Δ = exp(a + bt + ct2 + dt3) =Cexp[dt(t + m)2 + n], C > 0

(d is negative because Δ > 0 as t → ∞). Of course, FARR had no
possibility of adducing any formulas in his letter.
    FARR’s calculated values of Δ did not agree with actual figures48

but at least he correctly predicted a rapid decline of the epidemic, an
event in whose occurrence no one then had dared to believe. FARR
produced certain arguments in favour of the decline: individuals who
did not fall victims of an attack, he argued, were less prone to the
disease and will hardly be ever affected, while its violence diminished
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as the epidemic poisons … lose part of the force of infection in every
body through which they pass49.
    The effects of slaughtering in the later weeks of the epidemic
obviously worsened FARR’S prognosis. BROWNLEE (p. 252)
quoted G. H. EVANS who maintained that FARR himself was (or,
rather, became) aware of this circumstance.
    In his main letter FARR noted that he made (similar?) studies of the
visitations of cholera and diphtheria which took place in 1849 and
1857 – 1859, respectively.
    7.2. Smallpox

7.2.1. Inoculation. Inoculation of smallpox in England dates back to
the 1720’s [60] and, in France, to the middle of the 18th century [62,
p. 283]. The practice of inoculation involved various statistical
problems. JURIN [60, pp. 3 and 30] remarked on the need to estimate
the efficiency of inoculation and the ensuing danger both to those
inoculated and the population at large. He (p. 17) noted that the
number of inoculated persons in England had reached 474 of whom
nine (1.9%) died50. However, he argued, at least in several cases death
had resulted from causes other than inoculation. Comparing the
danger of this procedure with that of natural smallpox (mortality
16.1%)51 JURIN concluded that inoculation was beneficial.
    As to the danger of inoculation to the general population, JURIN
[60, p. 30] dismissed it in comparison with the risk of contracting
smallpox in the natural way, there being about 20,000 cases of the
disease per year. He also noted (p. 5) that even natural smallpox can
attack the same person twice, but he was reasonable enough to
disregard such highly improbable events.
    JURIN’s table of the results of inoculation (p. 17) is an early
example of group-building in medical statistics. His table showed the
general number of those inoculated with figures entered for each of
the observed outcomes of the procedure (Had the smallpox ...; Had an
imperfect smallpox ...; No effect; Suspected to have died of
inoculation). JURIN subdivided all his figures into age-groups.
    The danger of inoculation did after all cause certain measures to be
adopted. During 1728 – 1740 inoculation was not practised in England
at all [27, vol. 2, p. 489]. In 1763 the French parliament provisionally
banned that practice dans l’enceinte des villes & des faux bourgs [23,
p 249]. In England, in 1807 the exclusion of inoculated persons from
communication with others had become the law of the land [10,
p. 344; 27, vol. 2, p. 609].
    DANIEL BERNOULLI [124, pp. 114 – 116] formulated simple
statistical hypotheses on the progress of, and mortality from smallpox
epidemics and worked out. and solved a differential equation
determining the relative number of persons not attacked by the
disease. Supposing that inoculation protected against smallpox but
was fatal in a small number of cases, BERNOULLI noticed that
inoculation lengthened the mean duration of life by about two years.
He therefore resolutely came out in favour of that practice. He did not
consider the danger of inoculation to the general population52.
    Nevertheless, his work (1766) is justly considered a classic.
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D’ALEMBERT criticized his study. His thoughts were reasonable
and, moreover, important for the development of mathematical
statistics, see TODHUNTER [144, Chap. 13] who, as usual,
accurately adduced all the references and I myself have given a short
record [124, p. 130] of the subject.
    A rough estimate of the overall influence of inoculation on the
mortality of the population is due to BLANE [10]. Remarking that the
greatly diminished [during 1706 – 1818] general death-rate was not
quite a just scale, he [10, p. 337] nevertheless asserted that inoculation
seems to have added to the mortality.
    GUY [51, p. 205] considered other periods, viz., 1710 – 1719, 1740
– 1749 and 1790 – 1799, and arrived at an exactly opposite
conclusion. Mortality figures for those times are available only for
London, not for England, and this circumstance seems to prevent the
possibility of a trustworthy analysis. Besides, the extracts from the
London bills of mortality as used by BLANE possibly contained
errors. In any case, CREIGHTON [27, vol. 2, pp 531, 535 and. 568]
adduced extracts for the same years and in a few instances those
extracts differed from BLANE’S.
    But the main difficulty for any analysis stems from the large errors
in the bills themselves; according to OGLE [85, p. 451]

It is necessary to correct the bills in the eighteenth century by an
addition of from 39 to 44 per cent of the recorded burials [and] it is
necessary in the nineteenth century, or at any rate from 1832
onwards, to make a much larger correction.
    One may well assume that the data on mortality from smallpox
were not accurate either.
     Even this is not the end of the story, at least with respect to the last
period studied by BLANE (1804 – 1818). CREIGHTON [27, vol. 2,
 p. 586] testified that, during the 1820’s, The original mode of
inoculation … was far from being supplanted by its rival [by
vaccination].
    KARN devoted a portion of her contribution [62] to the history of
smallpox and inoculation. She (p. 290) noted that in actual fact the
main problems posed by the practice of inoculation had been left
unanswered53.

7.2.2. Vaccination. A new era and, as it seems, the final one, in the
battle against smallpox commenced with the introduction of (the
JENNERIAN) vaccination. Having examined a large number of cases,
JENNER [55] proved that cowpox ensured immunity against smallpox
for a good few dozens of years and conducted a special study of
vaccination [57, p. 146]:

Upwards of six thousand persons have now been inoculated with
the virus of Cow Pox and the far greater part of them have since been
inoculated with that of Small Pox, and exposed to its infection in every
rational way that could be devised, without effect.
    JENNER [56, p. 91] asserted that cowpox

Is to be attributed to matter conveyed to the animal … from the
horse. One of the arguments which he adduced in favour of his
opinion was
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The total absence of the disease in Ireland and Scotland, where the
men servants are not employed in the dairies.
    In one instance JENNER [55, p. 49] appealed to an imaginary
randomization of subjects.
    SIMON [13, vol. 1, p. 230] pointed out a particular statistical
problem connected with vaccination:

Did the extensive use of degenerated lymph, he asked, lead to
too frequent impermanence of protection against post-vaccinal
smallpox? It is chiefly from [the yet imperfect] national statistics that
the answer must be sought.
   I do not know how this and other practical problems were eventually
solved, but it seems that always nothing short of total success was
demanded of any version of the new procedure, a principle which
doubtless made comparisons of competing versions easier.
    7.3. Cholera. In 1831 European physicians had begun to take
(timid) measures against cholera [132, p. 169]. In 1832 (p. 832)

 It was well understood that foul linen, bedding and clothes were a
most certain means of carrying the poison. This was precisely the old
experience of plague. The theory that the poison of cholera was
conveyed in the drinking water, of which illustrations were collected
in 1849 and 1854, was not applied.
    The Reserches [40, 1823, table 8] contained a qualitative
description of the drinking water and (in table 9) information on its
physical and chemic composition. The authors even ranked the waters
of numerous rivulets according to their healthfulness. At the same
time they said nothing about the contamination (or possible
contamination) of water by organic substances.
    But how did the spread of cholera epidemics depend on local
geographical etc. features? Physicians hotly debated this problem for
some thirty years. About 1818 [90, p. vi] J. JAMESON [37, p. 166]
contended that

There is abundant proof that in high, dry, and generally salubrious
spots [cholera] was both less frequent in its appearance and less
general and fatal in its attacks than in those that were low and
manifestly unwholesome.
    The wording of his conclusion was obviously lame‚ but see § 7.3.3.

7.3.1. Pettenkofer. He [90, p. vi] expressed his high opinion of
JAMESON and other British physicians who worked in India during
1817 – 1819:

 Alle bis jetzt cursirenden Ansichten über die Art der Entstehung und
Verbreitung der epidemischen Cholera bereits in den Beobachtungen
und Bemerkungen der englischen Aerzte enthalten sind.
    His book contained extracts from the German edition of
JAMESON’S Report on epidemic cholera.
    PETTENKOFER was the most distinctive scholar among those who
studied cholera before KOCH. In his earlier years (1854) he [96,
Bd. 5, p. 379] was

Noch ein sehrgläubiger, wenn auch kein unbedingter Contagionist.
In later life he [91, p. 329] repeatedly stressed that no cholera
epidemic was possible at a certain moment wenn der Ort keine lokale
Disposition besitzt. In this connection PETTENKOFER attached
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special importance to the level of subsoil water and the rate of its
change54. SEIDEL [118, p. 176], who noted this opinion, adduced no
references and I did not find the relevant place.
    In 1886 PETTENKOFER [96, Bd. 5, p. 354] mentioned KOCH but
did not budge (p. 381):

Vom Einfluss bestimmter Fluss- und Drainage- und Regengebiete
habe ich nun immer mehr Belege gefunden, hingegen von der
Infection Gesunder durch die Dünndarmausleerungen
Cholerakranker gar keine55.
    In 1886 – 1887 PETTENKOFER [96] published a monstrous
survey of writings devoted to cholera and adduced a large number of
graphs and statistical tables. He was unable to analyse his data, but he
repeated. his early pronouncements [96, Bd. 6, p. 78]: bei den
Choleraepidemien Ort und Zeit eine entscheidende Rolle spielen.
    In 1892, being 74 years old, PE'ITENKOFER conducted an
experiment on himself by drinking some water infected with comma
bacilli [97]. Escaping with a stomach disorder, he considered this fact
as an additional argument in favour of his theory.
    WINSLOW [151, p 335] offered a modern estimate of
PETTENKOEER’s views.

7.3.2. Snow. Searching for an understanding of the sudden
extensions peculiar, to cholera SNOW [139‚ pp. 58 – 59] compared
mortality from cholera in 1832 and the nature of water supply in
various districts of London at that period. But his  main study (Ibidem,
pp. 74 – 86) concerned the epidemic of 1849 and a particular
metropolitan district with a population of about 500,000. Two
companies supplied the water which either contained the sewage of
London (former case) or was quite free from such impurity (latter
instance). Mortality per 10,000 houses amounted to 315 deaths in the
former case, 37 deaths in the latter instance (p. 86).
    SNOW (p. 47) also delimited a small outbreak of cholera in 1854 in
a certain district of London as being due to the water from one of the
local wells56. FARR [38, p. 143] cautiously remarked that

Subsequent [after 1854] investigation by a committee … placed it
beyond a doubt that the mortality of cholera in London was
augmented by the impure water.
    PETTENKOFER did not agree with SNOW. He [90, p. 40]
maintained that
    (1) Alle Bemühungen, in der allgemeinen Luft-Beschaffenheit und
im Trinkwasser eine Ursache zu finden, haben bis heute nur negative
Resultate gegeben.
    (2) Das Wasser als einen allgemeinen Verbreitungsweg zu
betrachten, widerspricht den Thatsachen, welche an andern Orten und
in andern Epidemien gesammelt worden sind. In München wurde der
Verlauf der Epidemie ebenso genau, wie in London auf den Einfluss
verschiedenen Trinkwassers, aber mit völlig negativem Resultate
untersucht [91, p. 353].
    (3) SNOW’S theory agreed with facts only in some instances [96,
Bd. 5, p. 383]; facts concerning cholera in Munich during 1873 – 1874
contradicted his theory, but
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Die contagionistische und Trinkwassertheorie zerschellen
jämmerlich an diesem Felsen (Ibidem, Bd. 6, p. 79).
    PETTENKOFER also produced a special argument against SNOW.
In 1866, as he [95, p. 31]57‚ contended, [H.] LETHEBY

Questioned … the correctness of the facts and pointed out that …
the water mains [of the two London companies] have been gradually
entangled.
    PETTENKOFER adduced no reference and did not repeat
LETHEBY’s (?) statement in his later works. Neither did PARKIN
mention his compatriot. Maintaining that cholera invariably presented
a more malignant form at the commencement of an epidemic and a
milder form towards its termination, PARKIN [88, p. 215] concluded:

This infective water theory … is unsound, illogical and false.
And he simply brushed aside SNOW’s statistical data explaining them
away as merely … a coincidence. His is a strange point of view, and
his attitude seems all the more surprising in the light of his own
previous pronouncement made in 1833 [145]:

The cause of cholera is a noxious matter or poison which is
generated in the earth, … this finds its way into springs … the water
from such springs should be flltered through charcoal.
    SIMON [130‚ pp. 416 – 417] supported SNOW confirming his
theory by new statistical data. In his later years SIMON [132,
p. 263] noted that For immediate practical use, [SNOW’s] broad
verdict in itself was abundantly enough.
    ROSEN [116 p. 183] arrived at the same conclusion:
   Contagionist and non-contagionist viewpoints alternated in the

public favour, and during the early decades of the nineteenth century
the latter position had achieved dominance. [Living organisms] played
practically no part in the sanitary movement of the mid-nineteenth
century58.
    Considering epidemiology in general, PESKOV [89‚ p. 10]
contended, perhaps too resolutely:
  The development of medical statistics had begun exactly after

mankind had to convince itself too clearly and too bitterly of the utter
helplessness of medicine against such of its evils as cholera,
[typhoid?] fever etc.

7.3.3. Farr. In 1849 he [38, pp. 343 – 345] offered a formula
connecting mortality from cholera in London with the height of the
districts above the Thames. Being satisfied with reasonably small
discrepancies between calculated and actual values of mortality, he
did not use any formal rule for the estimation of the precision of his
fit.
    FARR also noted that mortality depended on the number of the
river terrace on which the relevant district was situated. Just as in the
previous case, he did not estimate the overall accuracy of his fit. The
data on later epidemics either in London itself or elsewhere did not.
corroborate FARR’s conclusions [131, vol. 1, pp. 105 – 106; 96,
Bd. 5, p. 395].
    In 1862 FARR [38, p. 386] estimated the increase of deaths of
cholera with age, again resting content with a comparison of actual
and calculated values In 1854 he [38, p. 356] conducted a more
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general study which belongs to the prehistory of rank correlation, and
qualitatively concluded:

After arranging the districts [in London] in the order of
mortality ..., in  the order of the density of population, … it was found
that the variations of density had some connexion with the mortality,
that wealth und poverty exercised more influence, that unclean water
was pernicious (!), and that there was a certain relation between the
diminution of the mortality of cholera and the elevation of the ground
on which the people lived.

7.3.4. International Statistical Congress. In 1855, [J.- D.]
THOLOZAN delivered a report on the statistics of epidemics at the
Congress. He [26‚ p. 337] advocated the need to establish

Quelques principes généraux relatifs à la marche des maladies
epidémiques et aux moyens d’en diminuer les ravages.
    One may well wonder, THOLOZAN continued, that the statistics of
epidemics

N’ait point été, au Congrès de Bruxelles [in 1853], l’objet d’une
discussion, d’une élaboration, d’une conclusion particulière.
    He also recommended a programme for the study of settlements
(cities) which had suffered from epidemics. It included registration of
phénomènes météorologiques qui ont précédé et accompagné
l’ invasion.
    In 1872 the Congress debated statistical problems of cholera and
syphilis. The report of the first section ran as follows [26, vol. 1, p. 45,
separate paging for proceedings of each section]:

 L’expérience corfirme chaque jour davantage la théorie
scientifique, d’apres laquelle le choléra provient de l’importation et
du développement dans une localité d’un agent spécifique special
appelé miasme cholérique. …
    La statistique montre … que le développement du choléra est
intimement lié à la présence de certaines conditions locales et
passagères.
    The authors of the report obviously had in mind the theory due to
PETTENKOFER. A resolution [26‚ vol. 2, pp. 126 – 127] adopted by
a subsection of the same section stressed its utmost importance and
asked the general assembly to check the theory statistically59.
    One of the participants, ERICHSEN, (p. 154) noted that

Il n’y a aucun doute que dans beaucoup de cas le rapport entre le
choléra et l’eau souterraine sera constaté. …
    At the same time he (p. 153) contended:

Les travaux de vingt ans ont donné des résultats qui détruisent
plutôt qu’ils ne confirment la théorie de Pettenkofer.
    7.4. Typhoid fever

7.4.1. Buhl. PETTENKOFER’S theory which concerned cholera
stimulated studies of typhoid fever. BUHL [16] collected data for
1857 – 1864 on the quantity of precipitation, level of subsoil water
and deaths from fever in Munich. He concluded that at least the
second factor influenced mortality. But he (p. 7) doubted the action of
precipitation since die jährliche Gesammtmenge … durchaus keine
Congruenz mit der jährlichen Typhusmortalität beurkundet.
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    SEIDEL used BUHL’S data to conduct a more thorough research
(§§ 7.4.2 and 7.4.3). He examined the number of monthly cases of the
sickness which he supposed to equal (I might add, proportional) to the
(known) mortality for the next month.

7.4.2. Seidel (1865). In his first contribution SEIDEL [117]
compared the number of fever cases with the level of subsoil water
measured downward from the surface of the earth. Denote the mean
monthly value of the latter and the number of fever cases per month
by xi and yi respectively (i = l, 2, …‚108). In a preliminary version of
his calculations SEIDEL introduced differences

ui=xi , i ix v y y- = -                                                    (1)

where  andx y  were the mean values of x and y respectively. Then
SEIDEL excluded the influence of year cycles. Suppose, for sake of
simplicity, that the observations he used commenced in the beginning
of a certain year (1857). Then xl, x13, x25, … will denote the January
levels of water in the subsoil for 1857, 1858, 1859, … The mean of
these levels, i. e., the influence of year cycles for January, should be
subtracted from x1. And similar corrections should be applied to the
number of fever cases. In general, SEIDEL changed from (1) to

ˆ ˆ,  .i i i i i iX x x Y y y= - = -                                               (2)

Here, in my own notation, iˆ ˆand ix y  are the influences of year cycles.
Thus, for example,

1 1 13 25 14 2 14 26ˆ ˆ( ...)/9,  ( ...)/9y y y y x x x x= + + + = + + +

where 9 is the number of years in the period studied.
    Counting coincidences and non-coincidences of the signs of
differences (l) SEIDEL found out that there were l.67 times more of
the former than of the latter60. After the elimination of the influence of
the year cycles the corresponding ratio was 2.13.
    Using the well-known normal approximation to the binomial
distribution, he then maintained that his results were not accidental
and that (p. 230) a high level of subsoil water involved a low rate of
fever and vice versa. Note that SEIDEL (Ibidem) explained the
increase of the ratio studied in the second version of his
calculations by successful elimination of the yearly cycles of mortality
die mit dem Gange des Grundwassers nichts zu thun haben.
    Here (and also below) SEIDEL studied correlation61, but introduced
no quantitative measures. I think that this fact once again proves the
profoundness and originality of the reasoning of GALTON, the
founder of the correlation theory. Indeed, over the centuries many a
scholar noticed correlative relations between various quantities while
during the second half of the 19th century even geophysicists, i.e.
people really knowledgeable in mathematics, studied such
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dependences statistically. And still, no one before GALTON had
thought of placing correlation under the rule of mathematics.
    As to SEIDEL, he was able to estimate quantitatively the
significance of the correlative relation between two (and even three;
§ 7.4.3) variables. However, he did so in a roundabout way connected
with a loss of information.
    SEIDEL’s article also contained a straightforward example of rank
correlation. Arranging the studied years in the order of, first,
decreasing mortality, and, second, decreasing mean yearly values of x,
SEIDEL (p. 235) contended that the correspondence between the two
sequences

    1857, 1858, 1856, 1863, 1864, 1862, 1859, 1860, 1861
    1857, 1858, 1863, 1864, 1862, 1856, 1859, 1861, 1860

was frappant. Readers can calculate the SPEARMAN’S coefficient,
rho, and thus to check his conclusion.

7.4.3. Seidel (1866). In his companion paper SE1DEL [118] first
made a similar study in regard to precipitation. He carried out separate
calculations for each three years and, moreover, took into account
statistical probabilities for the appearance of each sign in each of the
two sequences. Again, applying the normal approximation to the
binomial distribution (and the multiplication theorem), SEIDEL
concluded that there was a real connection between precipitation and
the number of fever cases. He also studied the relation between all
three variables (x, the level of subsoil water, y, the precipitation, and z,
the number of fever cases). Denote the corresponding differences
(§ 7.4.2) by Xi, Yi and Zi.
    The signs of numbers Xi, and Yi, coincided 56 times, and, in 46
cases, the sign of Zi coincided with the common sign of Xi and Yi.
Once more SEIDEL proved this result to be significant and also
noticed the correlation between factors X and Y.
    According to SEIDEL, a small (large) amount of rain and/or snow
and a low (high) level of subsoil water was correlated with an increase
(decrease) in fever cases. Referring to PETTENKOFER, SEIDEL
(§ 7.3.1) asserted that mortality from cholera depended also on the
rate of the fall or rise of subsoil water. Studying fever, he did not
allow for this factor at all, thus sparing himself considerable additional
difficulties.
    SEIDEL’s contributions [117; 118] are not listed either in his
obituary62 or in general bibliographic sources.

7.4.4. Further Work. JESSEN [58] corroborated SEIDEL’S
conclusion. Dividing  the same period into intervals during which the
level of subsoil water was higher (lower) than usual, he used
GAVARRET’s formula (4 3.1.2) to prove that the difference between
mortality in the two intervals was significant. He tacitly (and quite
unnecessarily) assumed that the intervals must be of the same
duration.
    SOYKA [140] presented graphs showing the dependence of
mortality from typhoid fever in various German cities on the level of
subsoil water but he did not study his data analytically. SOYKA’s
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graphs seem too convincing to be true, and WINSLOW [151, p. 330],
for one, explained the depicted regularities by accidental
coincidence63.
    VIRCHOW [148] examined mortality in Berlin. He (p. 330)
maintained that

Der Gang der Sterblichkeit [he really meant infantile mortality
from typhoid fever, see his pp. 330—338] in hohem Maasse entspricht
dem Gange des Grundwassers und den Wasserständen der Spree, so
jedoch, dass das Steigen des Wassers mit der Periode des Sinkens der
Todesfälle und das Sinken des Wassers mit der Periode des häufigeren
Sterbens züsammenfällt.
    VIRCHOW (p. 338) repeated his assertion in the shortest possible
way: Trockene Jahre sind Typhusjahre. However, he did not prove his
conclusion.

8. Appendix: Meteorology and Medicine
   SYDENHAM [142, p. 42] supposed that the violence of an
epidemic disease and the peculiarities of its spread depended on the
general state of the weather. Describing the connection of mortality
with the weather BLANE [9, pp. 131 and 135] continued this ancient
tradition.
    BOYLE [18, p. 303] noticed the connection between weather and
sickness:

In 1666, John Locke … with the encouragement of Boyle, … began
a weather register. [He (p. 304)] avidly collected figures of the vital
occurrences of European cities.
    During 1699 – 1703 LOCKE [34, pp. 300 – 301] attempted to
correlate weather with information gleaned from a wide survey in
social medicine.
    Efforts to determine the influence of weather on man had properly
begun in the 19th century64. GUERRY [47] collected meteorological
data and information on the number of patients admitted into
hospitals, on the number of marriages, births deaths and suicides.
    SMITH [138] Compared meteorological data (air temperature and
moisture, direction of wind) with the number of cases admitted at the
London Fever Hospital, their sex, occupation, etc. Like GUERRY, he
was unable to do anything with the information compiled.

It was found impossible to include, SMITH complained in the
Preface, some researches of a statistical nature which it was at first
intended to incorporate in the work65.
   \ QUETELET [113] collected data on deaths in various age groups,
air temperature, moisture and pressure, etc. Considering a large
number of factors, he was unable to use his information to any
reasonable degree. He (p. 30) did note, however, that mortality
depended on the variations of the daily temperatures.
    In an earlier contribution QUETELET [112] studied the distribution
of births and deaths by months.
    GUY [49] showed. the progress of mortality, sickness and of
several meteorological variables during the year 1842 by arranging,
separately, the quarters of the year in the decreasing order of each
quantity. He (p. 135) concluded:
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 It appears that there is no relation … between the mortality and any
single condition of the air, but that the sickness follows the exact
order of the temperature and dew-point, varying directly as each of
them.
    Taken together, the writings of various authors which I have
described up to this point did not amount to the origin of a new
scientific discipline. The conception of medical climatology had
occurred in the middle of the 19th century, or even later, perhaps in the
1880’s. In § 5 I mentioned the works of BOUDIN and LEVY which
were published in 1857 and 1862, respectively, and which had a direct
relevance to the rise of medical climatology. And during 1877 – 1880
LOMBARD [73] discussed applications of meteorology to medicine,
the geographical distribution of diseases, and the influence of climate
on the life and health of man. Needless to say, all these subjects were
directly connected with statistics. LOMBARD dedicated his work

 A la mémoire vénérée de mes maitres Andral [a French physician]
et Louis (!) et de mes amis Sir James Clark66 et Quetelet.
Acknowledgement. Professor W. KRUSKAL turned my attention to
DEBUS’S contribution [33], see § 4.1.

Notes
1. In the latter instance FRACASTORI maintained: Derartige Fieber befallen
vornehmlich Kinder, seltener Erwachsene, am spärlichsten Greise. He also adduced
qualitative statistical considerations in respect to the foot-and-mouth disease in cattle
(book l, p. 33).
2. An example which proves that for the community as a whole, there is nothing so
extravagantly expensive as ignorance. The author of this passage [121, p. v] was
concerned with meteorology, but the lack of statistical data in any branch of science
or public life and/or the reluctance to study them were just as expensive, or even
disastrous.
3. Those responsible felt the lack of statistical data on epidemics of plague and
sweating sickness even in the 16th century [18‚ p. 285]. Comments on GRAUNT’S
table of mortality (contained in his Natural and political observations made upon
the bills of mortality) continue to appear to this very day [63, pp. 519 – 520].
PETTY’s contribution to medical statistics is not readily seen, but it is thought [127,
p. 221] that he at least helped GRAUNT to compile his table.
4. JACOB BERNOULLI’S considerations which precede the proof of his law of
large numbers [5, chap. 4 of pt. 4] are highly relevant. The probability of a certain
throw of a die was known beforehand, he noted, but no one was able to determine
the [stable!] probability of one or another disease, of rain, etc. However,
BERNOULLI continued, probabilities of such events might be calculated
inductively. In the sequel, he repeated his example concerning diseases. Thus, to say
the least, BERNOULLI would not have objected to the application of his law of
large numbers to statistical studies of various diseases.
5. Elements of the latter date back to the second half of the 17th century and
GRAUNT is sometimes called the father of modern epidemiology [45, p. 10]. Note
that GRAUNT’s achievements in medicine impressed even his contemporaries [61]
and that F. BACON, who published an essay on mortality which proceeds from
decay and the atrophy of old age [2‚ p. 217] did not utter a single word about the
need for relevant statistical studies.
6. Even in 1857 BOUDIN [11, t. l, p. 8] testified that La théorie des [correlative or
fatalistic] influences lunaires sur les maladies compte encore un bon nombre de
partisans.
    I adduce one more passage just to show that an insufficiently precise expression (a
not infrequent occurrence) makes it impossible to understand its meaning [8,
p. 132]:
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In tropical climates, the moon is observed to have considerable influence on
febrile paroxism, and crisis.
    Considerable' in each case (this is a fatal drive), or in a considerable number of
cases (a tendency)? The moon does after all influence man and DARWIN [31,
p. 248] explained this fact without any recourse to astrology:

 In the lunar or weekly recurrent periods of some of our functions we apparently
still retain traces of our primordial birthplace‚ a shore washed by the tides.
7. The Supplement was not included in the Essai [115] and I translated these
passages from the Russian translation (1961) of RAMAZZINI. Note
RAMAZZINI’S lenient approach toward smoking and chewing tobacco. On ne doit
blâmer, he maintained (chap. 16, p. 192), que l’usage immodéré [of tobacco], ou à
contre-temps.
8. CELSUS whom I referred to in § 1.1 argued [19, Book 2, § 6, p. 115] that the art
of medicine is conjectural adding though that signs are deceptive in scarcely one out
of a thousand (!) cases.
9. LEIBNIZ [127, p. 224] advocated the compilation of Staatstafeln and contended
(p. 225) that the zusammensetzung der bereits vorhandenen wissenschafften,
Erfindungen, Experimenten und guther gedancken will bring under control vielen
Kranckheiten.
    Compilations of this kind may be related to the corresponding activities in the
field of Staatswissenschaft. Some scholars‚ as for example LEIBNIZ, were partisans
of both this Wissenschaft and political arithmetic, the predecessor of statistics
(Ibidem, § 2.4.4 and p. 255).
10. GRAETZER [44, pp. 21 – 23 and 28] described and reprinted a portion of the
Berlin bills of mortality published by J. D. GOHL (1665 – 1731) in 1721. He even
called GOHL the founder of medical statistics. GRAETZER also put on record
information about another scholar, J. C. KUNDMANN (1684  – 1751), who worked
in the same field and published his main writing in 1737.
11. Note that CONDORCET (p. 536) recommended an international plan général
d’observations in meteorology including observations made at sea and in balloons. I
mention him in § 5 (note 29) in connection with public hygiene.
12. Suppression of unsuccessful cases, PINEL pointed out elsewhere [100, p. 169,
footnote], brought about un aveugle empyrisme.
13. PINEL (p. 406) wrongly attributed the Ars conjectandi [5] to DANIEL
BERNOULLI.
14. Note a related passage [75, p. 82]: la science, j’entends la vraie science, n’étant
que le résumé des faits particuliers. But LOUIS hardly meant his own statement in
the literal sense.
15. In 1648 VAN HELMONT [33‚ p. 27] rhetorically advocated the same
procedure.
16. See § 1.2 for the relevant opinion of POISSON.
17. Many physicians probably practised the method just out of common sense. Thus, PANUM
[42] studied an epidemic of measles by compiling scrupulously all the relevant data.
18. For some reason he did not refer to LOUIS.
19. He referred to LAPLACE more than once and he (p. 288) repeated the latter’s
assertion [66‚ p. viii] that probability est relative en partie à notre ignorance, en
partie à nos connaissances sur les causes dont il s’agit.
20. KEPLER offered a similar remark in connection with a sudden fulfilment of a
[fraudulent] forecast [125, p. 114].
21. He also maintained (p. xiv) that the members of the Paris Académie Royale de
Médecine n’avaient qu’une idée fort imparfaite de l’emploi du calcul en médecine.
22. METCHNIKOV [79, chap. 12] pointed out the great importance of the statistical
method in the study of cancer and other diseases.
23. In his example which pertained to jurisprudence POISSON chose 0.9853 [128,
p. 288].
24. Cf. POISSON’S definition of randomness [128, p. 248]:
    L’ensemble des causes qui concourent à la production d’un événement sans
influer sur la grandeur de sa chance est ce qu’on doit entendre par le hasard.
    GUY [50, p. 806] repeated GAVARRET’S remark in a slightly different French
(!) wording: l’invariabilité de l’ensemble des causes possibles‚ etc.
25. ARBUTHNOT’S memoir with its idea of the same motion appeared in 1712. It
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indirectly led to a most important development of the theory of probability,
but more than. a century had passed before POISSON derived formulas specifically
intended for the check of the null hypothesis. Yet even he did not apply them to
natural science.
26. GUY mentioned the faulty treatment of syphilitic cases with mercury which took
place in the absence of relevant statistical data. His example does not directly
contradict a remark due to PIROGOV (§ 4.2.5).
27. Being a physician, GUY (1810 – 1885) was engaged in forensic medicine and in
1868 he published a book on this subject. During 1852 – 1856 GUY edited the
Journal of the (Royal) Statistical Society. In 1869 –1872 and 1873 – 1875 he held
the offices of the vice-president and president of the Society, respectively. GUY was
also a fellow of the Royal Society and, during 1876 – 1877, served as its vice-
president (Dict. Nat. Biogr., vol. 23, 1890, pp. 392 – 393). See also FITZ PATRICK
[39, pp. 190 – 192]. I mention GUY in §§ 4.3.1, 7.2.1 and 8.
28. QUETELET [114, p. 322] compared the accuracy ascertained in astronomical
and physical observations with that secured by statistical inquiries. Geomagnetic
forces were known up to the third, or even fourth, decimal place, the relative error of
weighing small bodies (weight about a kilogram) was of the order of 10–6 etc. but
statisticians were bien loin encore from conducting censuses whose errors did not
exceed one or two units (people) in 10,000. Records of births, deaths and marriages,
QUETELET continued, atteint à peu près le degré d’exactitude désirable, a
statement which I do not quite believe.
    He could have well remarked that the general situation in medical statistics was
much worse than in the field of censuses. Quetelet (Ibidem, pp. 266 – 267) also held
that toutes les sciences d’observation, à leur début, ont subi les mêmes phases;
c’étaient des arts ... and that statistics still had to acquire a scientific skeleton.
29. LEIBNIZ formulated recommendations on public hygiene (§ 1.2).
CONDORCET [24, pp. 544 and 552] described the aims of mathématique sociale
(as he preferred to call political arithmetic) and mentioned the study of the influence
of temperature, climate, properties of soil, food and general habits on the ratio of
men and women, birth-rate, mortality and number of marriages. Condorcet (Ibidem,
p. 549) also paid attention to the relation between political arithmetic and the
mathematical treatment of observations. He reasonably supposed that La théorie des
valeurs moyennes doit être considérée comme un préliminaire de la mathématique
sociale.
30. Of course, QUETELET also worked in this field [111, p. 51ff]. By that time both
demography and medical statistics had recognized the problem of suicide. Indeed, in
1820 LAMARCK [65, p. 226] argued that l’individu qui se suicide est alors malade
but in 1825 CASPER [17‚ pp. 3 – 95] studied that problem from a statistical
viewpoint. He published data on suicides in Prussia (pp 13 and 48), estimated the
number of suicide cases among the drowned (p. 20), pointed out errors in statistical
returns on suicides (p. 26) and compared the number of suicides in Berlin with the
weather (p. 34). CASPER (p. xi) did not fail to stress the importance of his subject:

Statt verklingender Moralpredigten … habe ich sprechende Thatsachen
angeführt, die ich der Aufmerksamkeit der hohen Regierungen dringend empfehle.
31. These congresses took place from 1853 to 1876. Being too official, they did not
conform to the spirit of the time and were ultimately discontinued. In 1885, the
International Statistical Institute was established in their stead. SPERK [26, vol. 2,
 p. 158], a participant of the Petersburg Congress, noted that, over the years, the
congresses had treated medical statistics d’une façon très-superficielle. During the
discussions, as he explained, medicine was not duly separated from questions
entièrement étrangères. For my part, I suspect that the real reason for the
superficiality was the just mentioned bureaucratic nature of the congresses.
    According to official language [26], the congresses preferred to consider
themselves as a permanent body. Referring to them (see for example my next lines) I
shall therefore use the definite article.
32. Nowadays sanitary (medical) statistics is divided into two branches, viz.,
statistics of health and statistics of the public health service (Great Sov. Enc., third
edition, vol. 24/1, 1976, pp. 1314 – 1315, art. Sanitary Statistics). [This edition was
translated into English.]
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33. ERISMANN was a student of PETTENKOFER [36, vol. 1, p. 7] whose work on
prevention of cholera epidemics I describe in § 7.3.1. PETTENKOFER originated
the experimental method in hygiene, a fact which I leave aside.
34. A more or less comprehensive study of public hygiene should include the
description of works on disease and mortality of the population, and of
institutionalized populations (military, prison, and hospital populations). Except for
the so-called hospitalism which I discuss in connection with surgery (§ 6.1.2), I do
not treat these subjects.
35. Note, however, the beginning of this passage: Pour ne citer ici que des faits de
chirurgie. CIVIALE (p. 549) compiled data on the prevalence of the stone disease in
various European countries and in Buenos Aires, minutely studied cases of the
disease in Paris subdividing them in a number of groups (pp. 613 – 630) etc.
36. SIMPSON (pp. 75 – 85) discussed objections against anaesthesia based on
religious grounds and returned to the same subject in regard to childbirth (chap. 7).
Any innovation, he noted, mentioning vaccination (pp. 75ff), was given a hostile
reception. WHITE [150‚ vol. 2, pp. 55 – 63] offered an instructive relevant study.
37. SIMPSON (p. 345) also remarked that the mortality of women in childbirth was
0.5 and 3 – 4% respectively. Drawing on independent sources, FLORENCE
NIGHTINGALE [84, p. 11] corroborated the former conclusion, but adduced a
somewhat different figure for hospitals, viz., 1.1 – 2.1%.
    Simpson adduced separate data on amputation of thigh, leg, and forearm and
noted [134‚ p. 105] that the results of the amputation of thigh were more remarkable.
    Of special interest is SIMPSON’s study of the dependence of mortality from
amputations on the number of these operations (not more than 5 – not less than 12)
performed by the practitioner. The ratio of the mortalities after those mentioned
amputations amounted to 0.55 – 0.59.
38. PIROGOV [102, p. 191] arrived at the same conclusion even before SIMPSON,
but he did not prove it:

  Je me suis convaincu par expérience, combien les résultats sont différents entre
les operations faites dans les petits établissements cliniques, et les opérations
exécutées dans les grands hôpitaux; et même, combien la différence est grande dans
les résultats obtenues par les opérations dans les diférents hôpitaux de la même
ville, exécutées‚dans des conditions exactement semblables en apparence.
    An important feature, he continued (p. 192) was
    La constitution générale d’un hôpital. Cette constitution générale, comme étant
la consequence de l’organisation d’un hôpital, de son installation, de sa situation, et
enfin aussi souvent de certaines maladies que l’on traite particulièrement dans tel
ou tel hôpital.
    In 1863 SIMON [131, vol. 2, p. 137] maintained that the death-rate of the large
general hospitals in large towns is twice as great as the death-rates of small
hospitals in small towns. A fellow of the Royal Society, Sir JOHN SIMON (1816 –
1904) devoted life-long efforts to sanitary reforms. His achievements in the sanitary
science outweighed his outstanding career in the field of surgery (Enc. Brit., vol. 20,
1965, pp. 695 – 696). 1 mention him in §§ 7.2.2 and 7.3.2.
39. Cf. V1RCHOW’s remark [147, p. 21):

Nicht die Grösse und Ausdehnung eines Spitales ist das Gefährliche, sondern die
Luftverderbnis. Was die Patres von Regensburg bereits von 600 Jahren sagten, ist
noch heute vollkommen wahr.
   I mention Virchow once more in § 7.4.4 in connection with his study of typhoid
fever. His Ges. Abh. [146] contain seven articles on statistics of sickness and
mortality published during 1849 – 1875, and a note on military hygiene (1870).
40. Even at the beginning of the century BLANE [9, p. 140] asserted: A large
mortality may even be considered as a presumption of an hospital being well
conducted. [If the hospital admitted only serious cases.]
41. However, METCHNIKOV [79, p. 43] put on record the existence of criticisms
of Listerian methods pronounced by SIMPSON (of all men! see note 36) and
SPENS. The latter s’appuyait sur les données statistiques qu’il avait rassemblées
pour tâcher d’anéantir une fois pour toutes la méthode antiseptique.
METCHNIKOV gave no references.
42. The lack of antiseptics led to the spread of puerperal fever (not a surgical
disease) in maternity wards. SEMMELWEIS [119] attacked this problem
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statistically. In the first department of the hospital under his investigation, the mean
maternal mortality for 1841 – 1846 amounted to 9.9 % with variations from 6.8 to
15.8%; in the second department it was 3.4% (from 2.3 to 7.5%) (p. 13); cf. note 37.
Mortality of the newly born was also significantly higher in the first department
(p. 27). And, on top of all this, some ill women in childbirth from the first
department, but not the second, were being transferred to another hospital so that the
real difference between the departments in regard to deaths was even more striking.
    On many pages SEMMELWEIS described his search for the cause of high
mortality in the first department. At last (p. 38) be discovered the reason. Medical
students who worked there, without taking any precautions, reported regularly at
their lying-in wards straight from dissecting rooms. And there were no students in
the second department at all. Note that SEMMELWEIS's data just did not demand
any special methods of treatment and his common-sense conclusion was
unquestionable.
43. Cf. CIVIALE’s opinion [22, p. xviii]: Les individualités ne sont ni plus
variables, ni plus capricieuses que le sort qui amène telle carte ou tel coup de dés.
44. The texts of the two sources [107; 108] do not coincide; the passage in English
lacking in the first German edition [107] is my translation from the second (Russian)
edition [108].
45. I see no practical difference between these cases.
46. Cf. my note 4 in § 1.2
47. l note PIROGOV’s famous pronouncement [110 p. 295]: Der Krieg ist eine
traumatische Epidemie. This is yet another proof of his belief in the existence of
statistical regularities, this time in the number of killed and wounded.
48. It follows that FARR could have rounded off his figures. He likely used data
which related only to four periods, but he did have figures for every week at his
disposal; see another of his letters published at about the same time [15; p. 250].
49. A good example of argumentation offered during the pre-bacteriological era.
50. In 1721 or thereabouts NETTLETON [81] inoculated 62 persons of whom only
one (the last one) died, though possibly not from the contacted smallpox.
NETTLETON concluded, somewhat vaguely, that the danger of death from
inoculation did not exceed 1/62. This estimate is almost arbitrary.
51. I do not understand why he did not allow for the fact that a percentage of the
population escaped smallpox altogether, a fact which he himself noticed in an earlier
contribution [59].
52. BERNOULLI also studied (although in a purely mathematical way) the ratio of
male and. female births [122]. His junior contemporary, J. H. LAMBERT, attempted
to determine infant mortality from smallpox (1765, Anmerkungen über die
Sterblichkeit etc., § 125) and the distribution of families by the number of their
children and in general made an important contribution to mathematical demography
[123, pp. 247—249].
53. JURIN, who possibly was the first to formulate these problems, gave an
incomplete answer to one of them (see above).
54. PETTENKOFER [91, p. 344] also pointed out the relation between stagnant
subsoil (?) water and malaria.
55. At the same time he [90, p. 294] recommended disinfecting dubious spots wo
Fremde möglicherweise ihre Excremente ... deponiren könnten.
56. Almost at the same time as SNOW, BUDD contended that the cause of

 Malignant Cholera [was] a living organism and that these organisms were
disseminated through society, (l) in the air …, (2) in contact with articles of food,
and (3) and principally, in the drinking-water of infected places [15a, pp. 5 – 6, see
also p. 19, footnote].
57. I refer to the Russian edition (Petersburg, 1885), the only one which I managed
to see.
58. Witness the experience of sanitary improvements in a small city [120, p. 14]:
    The total deaths from Cholera m Exeter, in the two epidemics of 1832 and 1849
amounted to 445; of these 402 … took place with the concomitants of bad drainage
and a deficient [in quantity] water-supply; while with, in great measure, an absence
of these conditions, the complementary number of 43 … only occurred. Can any
more convincing statement be offered of the beneficial influence of sanitary
improvements?
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59. Detailed statistical investigations of cholera outbreaks in small localities had
been made long before this meeting of the Congress [76; 21] but they were evidently
not up to the purpose; for one thing, they did not even contain information on
subsoil water.
60. He allowed for an occurrence of a zero by splitting the case in half. Thus, he
counted (0, 1) as a ha1f-coincidence and, at the same time, as a half-
non-coincidence.
61. In this and the next subsection I use modern terms correlative and correlation.
62. Astron. Nachr., Bd. 141, No. 3379, 1896, pp. 319 – 320. A pupil of BESSEL,
SEIDEL (1821 – 1896) was an astronomer, a mathematician and an optician. He
devised a well-known version of the method of successive approximations for the
solution of systems of linear algebraic equations, a fact not mentioned in the Astron.
Nachr.
63. As to PETTENKOFER, referring to his own experience, he stated [92, p. 31]
that epidemics. of typhoid fever occurred also during periods of high levels of
subsoil water. Taking into account the opinion of other authors (see §§ 7. 4.2 – 7.4.3
and below), it may be desirable to conduct a special investigation of the subject. Of
course, other factors, such as the air temperature arid moisture, insofar as they
influence the life of bacilli of typhoid fever, should also be allowed for.
64. I have quoted PETTENKOFER (§ 7.3.1) who contended that cholera epidemics
occurred in a given district only if it was predisposed accordingly (and, I would
specify his idea, if certain meteorological conditions prevailed). SEIDEL and other
authors conducted studies on the dependence of typhoid fever on either
meteorological, or both meteorological and geological factors (§ 7.4).
65. MURCHISON [80] published further statistical data pertaining to the same
hospital.
    It has been my humble intention, he declared (p. v), … to follow the example of
Louis (§ 4.1).
66. A physician (1788 – 1870) who accumulated observations on the effect of
climate on chronic diseases (Dict. Nat. Biogr., vol. 10, 1887, pp. 401 – 402).
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