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Introduction by the Compiler 

This collection includes translations of some classical work. Before 
inserting general comments on separate items, I will say a few words 
about Laplace and Poisson in connection with the method of least 
squares (MLSq) and theory of errors. Laplace offered his own version 
of that theory and barely referred to Gauss. Just as Legendre (and 
Poisson after him) he applied the inaccurate term MLSq of errors; 
actually, of the residual free terms of the observational (of the 
conditional, as Laplace called them) equations. 

For Poisson, Gauss as though never treated observations, which 
greatly diminished the value of his pertinent works. He was apparently 
unable to see beyond Legendre’s hurt pride although Delambre [vi, 
Note 11] formulated a sober opinion about this issue.  

I (1999) have discussed Gauss’ early application of the MLSq which 
some authors are denying, and now I am adding two more relevant 
points. First, Gauss’ letter to Olbers of 24 Jan 1812 mentions such 
applications made in 1799 and 1802 written down but since then lost 
(Plackett 1972/1977, p. 284). Second, concerning notification of 
colleagues, I note that Olbers testified that Gauss had indeed told him 
about the MLSq in 1802. True, he only went public in 1816, four years 
after Gauss had asked him about it, but in 1812 – 1815 he had not 
published anything suitable for inserting such a statement, see the 
Catalogue of Scientific Papers of the Royal Society. 

I am using later notation n
mC  and n!. 

 
Plackett R. L. (1972), The discovery of the method of least squares. Biometrika, 

vol. 59, pp. 239 – 251; M. G. Kendall & R. L. Plackett, Editors (1977), Studies in the 
History of Statistics and Probability, vol. 2. London, pp. 279 – 291. 

Sheynin O. (1999), The discovery of the principle of least squares. Hist. 
Scientiarum, vol. 8, pp. 249 – 264.  

 
[i] The author provides much information about Jakob Bernoulli’s 

early years and shows his brother Johann’s mean attitude towards him. 
[ii] Nothing is known for certain about the author. A student V. 

Mrocek “edited” Markov’s mimeographed lectures of 1903 in 
differential calculus, see Markov (1951, p. 708), − perhaps took them 
down. The second part of the paper below should have appeared in the 
same source complete with Bibliography, as Mrocek stated, but had 
hardly ever appeared. The Editor was Bukharin, a leading political 
figure, arrested in January 1937 and executed in March 1938, and 
anyone somehow associated with him could have then be shot (or sent 
to a labour camp) just in case, cf. Sheynin (1998). 

Perhaps the author was not a mathematician; his § 7 is hardly 
satisfactory. Another serious shortcoming is that Mrocek made many 
non-mathematical mistakes; apparently, he wrote in great haste. 
Finally, some of his pronouncements are simply unjustified statements 
in the spirit of the repulsive and vulgar Soviet variety of Marxism, in 
itself a highly biased teaching. Finally, much more is known nowadays 
than in 1934; thus, I (1977) have discussed the history of insurance of 
property and life. 



 

Nevertheless, I translated Mrocek’s paper because it is one of the 
first writings attempting to connect probability with social and 
economic factors and because it presents a good negative example of 
Soviet sociological studies. Concerning the former, the reader will 
certainly recall Pearson (1978); and there was yet another deserving 
contribution (Hessen ca. 1931). In his last section Mrocek severely and 
ignorantly criticized the textbook Khotimsky et al (1932). The latter 
published an article (1936) on the history of probability (still suffering 
from sociological vulgarity) and perished in 1937 or 1938 (Kolman 
1982, p. 132). He was a mathematical statistician of Chuprov’s calibre 
and his death was a tragic loss. 

[iv] In the theory of probability Leibniz (Sheynin 1977, pp. 222 – 
227 and 255) is best known as Jakob Bernoulli’s correspondent. He 
also left five manuscripts devoted to Staatswissenschaft (University 
Statistics) and political arithmetic first published in 1866. One of them 
is this, [iv]. My accompanying Notes are critical, but Leibniz 
apparently had not prepared it for publication and, moreover, it is 
surprising that he had found time for political arithmetic. Note also that 
Leibniz obviously considered his manuscript as (his only?) popular 
scientific writing. 

In his other manuscripts Leibniz recommended to compile 
Staatstafeln and compare those describing different periods or states; 
advised to compile medical reference books and establish a Collegium 
Sanitatis which should have also carried out meteorological and 
magnetic observations and formulated recommendations for 
agriculture.  
    [v] Süssmilch, see Pfanzagl & Sheynin (1997), is mostly 
remembered for the vast materials he had compiled and for originating 
moral statistics. He (1758) also indicated the need to study the 
dependence of mortality on climate and geographical features and 
indicated that poverty and ignorance fostered the spread of epidemics. 
His cooperation with Euler proved fruitful for both of them. 
    [vi] Idelson was one of the first to discuss the theory of errors from 
the viewpoint of mathematical statistics. I note that he had not 
commented on Laplace’s belief in the almost universal validity of the 
central limit theorem. 

[vii] Montmort deserves to be better known as an influential scholar 
although somewhat less important than Nic. Bernoulli or De Moivre. 

[viii] The author (1778 – 1870) was an adventurer, a military man 
and a high functionary, until 1851 charged with the Statistique général 
de France (cf. the beginning of his § 6). The first chapters are 
interesting in that Jonnès is very specific when discussing the aims of 
various statistical tasks. However, in my Notes I indicate the 
deficiencies in his exposition. In general, he greatly overestimates 
ancient statistical work and at least in several cases his deliberations 
are superficial. 

[ix] Bernoulli appended the list of the number of births (or rather 
baptisms). It coincides with the list published by Arbuthnot (1712) 
although the number of girls in 1687 became 7114 instead of 7214.  
The yearly number of baptisms in London reached (and exceeded) 
14,000 only once, in 1683, but at the very beginning of the period 



 

under consideration it was less than 10 thousand and even still less (six 
– eight thousand in 1644 – 1660).  
    In 1709, Bernoulli (1687 – 1759) published a dissertation on the 
application of the art of conjecturing to jurisprudence, still only 
existing in its original Latin. It certainly fostered the dissemination of 
stochastic ideas and was mathematically interesting (Todhunter 1865, 
pp. 195 – 196).  

In a tiny note I (1970, p. 232) have shown that Bernoulli had 
actually come to the normal distribution. Denote 

 
p = m/(m + f), q = f/(m + f), p + q = 1, s = 0(√n). 
 

Then his formula can be written as 
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Since then Hald (1984; 1990, pp. 264 – 267; 280 – 285; 1998, pp. 

16 – 17) had studied Bernoulli’s result but did not connect it either an 
integral or a local limit theorem. Indeed, s is restricted and the factor 

2/π  needed in the local theorem is lacking. Nevertheless, 
Youshkevich (1986) reported that at his request three (!) unnamed 
mathematicians, issuing from Hald’s description, had concluded that 
Bernoulli came close to the local theorem.  

[x] This one of the first memoirs which Laplace devoted to 
probability. It shows that he had barely abandoned his general views.  

[xiii] See below my comments on [xix]. Here, I only add that, unlike 
his predecessors, Laplace had freely applied various approximations 
which became a tradition. The theory of probability owes its return to 
rigour to Chebyshev, Markov and Liapunov.  

[xv − xviii] These notes show Laplace from an unusual angle. 
Regrettably, we do not know whether his speeches were followed by 
any discussion. 

[xix] My own comments include harsh criticism. Here is a curious 
statement (Laplace 1796/1884, p. 504; Sheynin 2011, p. 43): 
    Had the Solar system been formed perfectly orderly, the orbits of the 
bodies composing it would have been circles whose planes coincided 
with the plane of the Solar equator. We can perceive however that the 
countless variations that should have existed in the temperatures and 
densities of the diverse parts of these grand masses gave rise to the 
eccentricities of their orbits and the deviations of their movement from 
the plane of that equator. 

The causes mentioned by Laplace were hardly external, and the 
main relevant explanation of randomness, deviation from the laws of 
nature, persisted. Leaving aside the planes of the planetary orbits, I 
question his opinion concerning eccentricities. Newton theoretically 
proved that the Keplerian laws of planetary motion resulted from his 
law of universal gravitation and that the eccentricity of the orbit of a 
given planet is determined by the planet’s initial velocity. 



 

So it really seems that Laplace was mistaken. He certainly studied 
Newton, although a bit later, in t. 1 of his Traité de Méc. Cél. 
(1798/1878, Livre 2, chapters 3 and 4) but did not correct anything in 
the later editions of the Exposition. Witness finally Fourier’s comment 
on the Exposition (1829, p. 379): it is an ingenious epitome of the 
principal discoveries. And on the same page, discussing Laplace’s 
historical works (to whose province the Exposition belonged):  
    If he writes the history of great astronomical discoveries, he 
becomes a model of elegance and precision. No leading fact ever 
escapes him. […] Whatever he omits does not deserve to be cited.  
    Laplace’s version of the theory of errors essentially depended on the 
existence of a large number of normally distributed observational 
errors and was therefore unsuccessful. He should have acknowledged 
the Gaussian demand for studying the treatment of a small number of 
observations and to restrict therefore the importance of his own results. 
Instead, he insisted on his own approach and virtually neglected 
Gauss. Later French scientists including Poisson followed suit, 
especially since they had been much too much offended by the 
Legendre – Gauss propriety strife, and even the most eminent 
mathematicians (or at least those of them who had not studied 
attentively the treatment of observations) became confused. When 
proceeding to prove the central limit theorem, Chebyshev remarked 
that it leads to theMLSq!  
    Laplace collected his earlier memoirs on probability in one 
contribution which cannot, however, be regarded as a single whole. He 
never thought about solving similar problems in a similar way (and his 
Essai (1814) was not a masterpiece of scientific-popular literature. 
Then, many authors complained that Laplace had described his 
reasoning too concisely. Here, for example, is what Bowditch 
(Todhunter 1865, p. 478), the translator of Laplace’s Traité de 
mécanique céleste into English, sorrowfully remarked:  
    Whenever I meet in La Place with the words ‘Thus it plainly 
appears’ I am sure that hours, and perhaps days of hard study will 
alone enable me to discover how it plainly appears.  
    This can also be said about the Théorie analytique. Then, Laplace 
was extremely careless in his reasoning and in carrying out formal 
transformations (Gnedenko & Sheynin 1978/1992, p. 224 with 
examples attached). And here is Laplace’s careless opinion 
(1814/1995, p. 81) about mortality tables: There is a very simple way 
of constructing [them] from the registers of births and deaths. But the 
main point is to study the plausibility of these registers, to single out 
possible corruptions and exceptional circumstances etc. Then, the 
boundaries of the constructed mortality table have to be determined 
both in time and territory. 
    Laplace had not even heuristically introduced the notion of random 
variable and was therefore unable to study densities or characteristic 
functions as mathematical objects. His theory of probability remained 
an applied mathematical discipline unyielding to development which 
necessitated its construction anew. It is opportune to note that 
Boltzmann did not mention him at all. And now I quote Fourier (1829, 
pp. 375 – 376): 



 

    We cannot affirm that it was his destiny to create a science entirely 
new, like Galileo and Archimedes; to give to mathematical doctrines 
principles original and of immense extent, like Descartes, Newton and 
Leibniz; or, like Newton, to be the first to transport himself into the 
heavens, and to extend to all the universe the terrestrial dynamics of 
Galileo: but Laplace was born to perfect everything, to exhaust 
everything, and to drive back every limit, in order to solve what might 
have appeared incapable of solution. He would have completed the 
science of the heavens, if that science could have been completed. 
    I believe that the first version of the theory of probability was 
completed by Bayes (Sheynin 2010) rather than Laplace.  
    Laplace introduced partial differential equations and, effectively, 
stochastic processes into probability, and non-rigorously proved 
several versions of the central limit theorem by applying characteristic 
functions and the inversion formula. In the not yet existing 
mathematical statistics Laplace investigated the statistical significance 
of the results of observation, introduced the method of statistical 
simulation, studied his version of sampling and extended the 
applicability of the Bayesian approach to statistical problems. He knew 
the Dirichlet formula (even in a generalized version), introduced the 
Dirac delta-function and integrals of complex-valued functions. 

[xx] Poisson kept to the usual contemporaneous distinction between 
possible and probable, and I also note that Laplace certainly had not 
rigorously proved the central limit theorem which Poisson actually 
mentioned at the end of his review. Poisson (1837, §§ 110 and 111) 
had returned to Laplace’s problem about the inclinations of celestial 
bodies.  

[xxii] This review shows that Poisson had not then been 
knowledgeable about probability. I myself (1976) had described the 
contents of the separate chapters of Laplace’s Théorie and I see that 
Poisson had indeed missed some important points, see also my Notes 
to [xxi]. Poisson was also careless; he did not even mention the last 
chapter of Laplace’s contribution. 



 

I 
 

R. Wolf 
 

Jacob Bernoulli from Basel, 1654 – 1705 
 

Biographien zur Kulturgeschichte der Schweiz, 
1. Cyclus. Zürich, 1858, pp. 133 – 166 

 
    [1] On 27 December 1654, old style, Margaretha Schönauer, wife of 
councillor Nicolaus Bernoulli, gave birth in Basel to a son baptized 
Jacob. He became the first of the seven Bernoullis1 who, without there 
being any other such example in history, for more than a century 
cultivated mathematical sciences so perfectly that a Newton, and a 
Leibniz, and later a D’Alembert and an Euler must regard them as 
their equals; that the scientific societies had been really owing them 
interest; that even now each mathematician discovers their footprints 
almost at each step and only mention their names with deep respect; 
and, yes, that Switzerland also became worthy abroad in matters of 
intellect just like it happened previously owing to body strength, 
courage and loyalty. 
    Jacob Bernoulli was meant to be a theologian. He attended school, 
then the university of his home city, learned the languages of antiquity 
and in 1671 became Master of Philosophy. As stipulated, he then 
continued to study further. At the same time, however, mathematical 
disciplines, which he had accidentally noticed when considering some 
geometrical figures, irresistibly attracted him. He was only able to 
study them in his spare time, without any guiding, and almost without 
aids since his father wished him to follow strictly the previously 
chosen course of studies. 
    Nevertheless, being 17 years old, he already solved the rather 
difficult chronological problem posed by Schwenter: to determine the 
year of the Julian calendar’s period given the solar cycle of 28 years, 
the Metonic period of 19 years and [financial] indiction cycle of 15 
years. Then he began mostly pursuing astronomy in general and, in 
accordance with the custom of the time, chose an emblem, showing 
himself driving the solar chariot with an inscription Invito patre sidera 
verso2.  
    [2] In 1676 Bernoulli passed his examinations in theology and on 20 
August went travelling across Switzerland and France. At first, on 27 
August, he arrived in Geneva and stayed there for seven quarters. He 
described his life there in travelling notes still in possession of the 
respected Professor Rudolf Merian in Basel, and there he (Peter 
Merian 1846) wrote in particular:  
    On 6 October I came to Mr. Waldkirch to instruct his children in 
exchange for board and continued to perform that duty until 
departure, three hours daily. I taught his blind daughter complete 
courses in logic and physics and partly Matthiae’s history [later 
translation, 1841] and Woleb’s compendium [1626], taught her to 
write and to sing various spiritual songs3. For some time I have also 



 

instructed […, noblemen from Schaffhausen] in geography, physics, 
and German and a German nobleman […] in Latin.  
    In addition, during my stay in Geneva I had 18 times lectured on 
various events, three times dispensed the chalice at Holy Communions 
and twice publicly opposed Turretin. 
    Just like the Frenchmen who are everywhere pigs [?], they keep the 
city in a very dirty condition. When someone walks through the allées, 
nose turned to the sky, he must beware of being baptized at night from 
above. They have to thank the north-easter that prevents the air to be 
infected.  
    Water of good quality is greatly lacking; they only have three 
regular wells, one of them in an obscure and sombre place (bourg de 
four), another near the city hall and the third one by the gymnasium, 
but the water there is bad, so they fetch it from the Rhône. That water 
is repulsive because of the public toilets found here and there along 
the river. Men and women go there when necessary and call it going 
on the Rhône. It can be easily imagined that sometimes a lump will be 
concealed in the drink. For my part, I drank wine that did not taste 
bad. 
    Ordinary houses are built mostly for comfort rather than delicacy. A 
stone spiral staircase leads from below towards the top. It sometimes 
serves 12 – 15 apartments, three or four to a storey. Otherwise, it is 
swinish. They do not know sideboards, pictures, spacious halls 
(Luftsälen), candlesticks, gratings under the staircase for wiping off 
the footwear. While sitting at the table, they could really throw 
gnawed off bones over the shoulder. Usually, just like in the entire 
France, there are no stoves here and people warm themselves by the 
kitchen fire; from the front, legs get roasted, but the back freezes. 
Walls are not panelled, they either show the bare stone or are 
papered. There are no quilts, only bare mattresses. 
    Near the St. Peter cathedral there is an auditorium in which lectures 
on law and philosophy are read. Across is the theological auditorium 
for services in German, Italian, and, during the winter, in French. 
Both are badly equipped and I would have wished them to have our 
Basel geese coop [instead], it would then be better.  
    The cemetery is beyond the city, behind the Plainpalais. It is 
enclosed in a square by four walls and old and young are thrown there 
into graves like dogs, without song and music, without lux, crux et 
Deus4. The Genevans do not celebrate any holidays, do not know the 
Holy Week or Christmas, the New Year etc.  
    The only exception is the Escalade on 12 December when they 
recall their corporeal liberation from the Savoyards’ yoke in 16025. 
They should have thanked the Lord much more for the spiritual 
liberation from Satan’s power by a marvellous humanization of our 
Saviour, by his bitter suffering and death. Their Escalade celebration 
is more a holiday of gluttony and hard drinking, of defying the 
Savoyards by getting blind drunk rather than of devotion to God. Even 
the poorest citizen is not poor enough for abstaining and one of the 
citizens was able to give a capon in exchange. 
    On 8 May 1678 Bernoulli departed from Geneva to take over an 
offered position with the  



 

 
    Marquis de Lostanges residing in his estate in Nede, Limousin, for 
instructing his only son for some time and afterwards travelling with 
him. In exchange, I was promised free board [and lodging] and 15 
pistoles yearly. 
    He was disappointed.  
    And I was to find out how the Frenchmen were keeping their 
promise. Apart from an only son, as I was informed, there were three 
children, two sons and a mignone whom I had to instruct, and not only 
in Latin and German, but had to teach them to read and write. Instead 
of going travelling with them after a short while, I saw that they were 
just children and will not be separated from their mother for six years. 
Again, each Sunday I had to read them a sermon and pray with them 
daily, morning and evening.  
    That position did not please him, and he only stayed there for a little 
more than a year, gave during that time sermons in French and 
constructed two gnomons in the court of the mansion. 
    After being in Nede for 13 months and getting 12 louis-d’ors of the 
Marquise, I wished to leave that back of beyond as soon as possible 
and to seek fortune in Bordeaux. 
    He arrived there on 10 July 1679 and stayed quite agreeable for six 
months at the home of a Protestant lawyer, teaching his son in 
exchange for board and lodging. On the contrary, the manners of 
Frenchmen (of eigentlichen Franzosen) did not please him. Thus, for 
example,  
    The young and the old all over France have four meals daily. In the 
morning, they do not go out of their place without breakfast and a 
glass of wine, just like our drunkards do. They have little household or 
kitchen appliances, no knives or spoons, and both nobleman and 
peasant gobble up soup with their fingers. 
    [3] On 16 February 1680 Jacob went from Bordeaux to Paris, stayed 
there for seven weeks, then returned to Basel via Strasbourg safely 
arriving there 20 May of the same year. Soon after that appeared the 
noteworthy comet of 1680. It was viewed with trepidation by the 
superstitious and, on the contrary, with highest interest by him himself. 
The olden fear of comets reached its highest level, then had to lower 
(Wolf, Jahrgang 1857). From 4 December 1680 to 17 February 1681 
Bernoulli determined a series of the comet’s positions although 
“owing to the lack of suitable instruments, only by the naked eye and a 
cord” and attempted to attach them to a theory that he devised at the 
same time.  
    So was his first contribution (1681a) compiled. There, he considered 
comets as satellites of a [of an unknown] planet situated far beyond 
Saturn. Having adopted that hypothesis, he calculated the period of the 
comet of 1680 as being equal to 38 years and 147 days.  
    We will see this very comet again in its perigee on 27 May 1719 
(provided that we are still living) and actually at 1°12' of the Scales. 
    Then he reasonably added:  
    If my prediction coincides with the outcome, my principles can at 
once sweeten you; if not, they can be arbitrary. 



 

    It seems that Bernoulli was rather free of the cometary superstitions 
of his time but that he did not wish to oppose them sharply: 
    I thought of concluding here because of the fear of being 
reproached for teaching that comets were bodies created at the 
beginning and destined to appear at definite times as though I wished 
to contradict the clergymen who understood the comets as signs of 
wrath of God. And therefore I must reject such strained opinions by 
explaining that they never follow from my principles; it can really be 
that the wise Creator, who foresaw everything and according to whose 
will everything occurs, arranged and ordered the motion of comets so 
that they only then appear when He wants to announce to us His 
punishment. Or, on the other hand, that such signs He wishes to 
announce only then when the comet according to His ordered and 
arranged course should not be lowered to its perigee. 
    And here is [here begins] the conclusion, perhaps funny, but now 
quite distasteful: 
    A prediction for the old womenfolk, for the devoutly faithful, the 
laymen and numerous animals, or for the jovial men who are glad to 
have something to laugh about. 
    [4] Soon after completing that work, which, in spite of its small 
extent introduced him to the scientific world, on 27 April 1681, 
Bernoulli began travelling once more, this time having a definite 
intention to establish scientific acquaintances which to his regret he 
had neglected [to think about] during his first travel. 
    At first he went to Amsterdam via Mainz and stayed there for a long 
time so as to give two contributions (1682; 1683) to publishers6. The 
first of these, in Latin, was an extension of his earliest work and due to 
it he became really well known and commented on7. On 11 May 1682 
it was announced in the Journal des Sçavans (Savants) and prompted 
La Montre, a professor of mathematics at the Collège de France, to 
publish there a note on 25 May entitled Démonstration physique de la 
fausseté du système des comètes proposé dans le dernier Journal. He 
wrote, in part, that 
    At first, Bernoulli’s system seems ingenious, but nevertheless it is so 
contrary to the laws of nature, that it can be doubted whether that 
author was serious. It is easily seen that his suppositions are unworthy 
of that mathematician. 
    Neither did Montucla (1799 – 1802) mention Bernoulli quite 
worthily, but I cannot agree with that opinion. Although it cannot be 
denied that Dörfl (Dörffel) (1681) had a more fortunate idea [about the 
same subject], Bernoulli’s contribution has nevertheless advanced the 
state of cometary science of his time since he considered comets as 
periodic heavenly bodies and attempted to calculate their return. A few 
years later he naturally laid down other principles, but in that second 
edition he remarkably made a larger sacrifice to the existing 
superstitions: he saved the nucleus of the comet, but not its tail. 
    Bernoulli’s second contribution (1683) partly dealt with the weight 
of the air and partly with that of the finer matter in whose pressure on 
bodies he thought to have found the cause of their cohesive relations. 
In February 1685 it was reviewed in the Journal des Savants and in 
connection with that paper Bernoulli remarked that he had given that 



 

[contribution] to Wettstein who, in turn, promised me [Bernoulli] 
Boyle’s Opera, Wallis (1670) and Guericke (1672). 
    [5] After staying in Holland for about two months, Bernoulli 
travelled through Belgium to England where he became acquainted 
with Flamsteed in Greenwich, attended a conference of the Royal 
Society, then returned to his home town via Hamburg and Frankfurt 
and safely arrived there 26 October 1682. Except for a more extensive 
travel across Switzerland the following year, he never quitted Basel for 
a long time. Instead of an offered position as preacher in a reformed 
community of Strasbourg or at Heidelberg University, he settled down 
in Basel and married Judith Stupan who delighted him by a daughter 
and son. Contrary to his father’s wish, that son preferred art to 
science8. 
    Bernoulli’s public reports on mathematics and physics accompanied 
by experiments had been very successful and quite new for Basel; 
Fontenelle (1706) remarked that his method of philosophising, the only 
reasonable, was nevertheless so late to emerge. In 1687, after the 
death of Peter Megerlin, the chair of mathematics at Basel became 
vacant and was faithfully entrusted to him although no one at the time 
could have suspected that it will be held by him and his family for a 
full century and soon become the highlight of the entire university. 
    And so, Fontenelle continued, his new talent appeared, the gift of 
instructing,  
    capable of attaining highest knowledge and leading others to that 
level, so that more intelligence was sometimes needed for stepping 
down from it than for continuing higher up9. Lecturing with extreme 
clarity and soon achieving great [scientific] progress, Bernoulli 
attracted to Basel many foreign listeners10. 
    In 1684, as soon as Bernoulli’s external circumstances were 
properly dealt with, and he became able to devote undisturbed studies 
to his favourite sciences, Leibniz published in the Acta Eruditorum a 
specimen of his differential calculus. It was incomprehensible for most 
mathematicians11 but for our Bernoulli a hint was sufficient. With 
depth and excellence distinguishing most of his works, he slowly but 
confidently penetrated Leibniz’ secrets, although his letter of 1687 to 
the latter asking further explanations did not find the addressee at 
home12. In 1690, after returning from a great travel over Germany and 
Italy, Leibniz finally answered, but he did not need help anymore. He 
even adopted the new calculus so well, that soon afterwards he became 
able to publish a sketch of the differential and integral calculus in the 
Acta Eruditorum. There, Bernoulli developed general rules for 
[dealing with] tangents, rectifications, quadratures etc and applied 
them to parabolas, logarithmic spirals, loxodromes etc.  
    His brother Johann, thirteen years younger, whom after returning 
home he with unprecedented success, as could well be said, introduced 
into mathematics, did not remain behind him so that Leibniz felt 
himself obliged to explain that the new calculus belonged to both of 
them as much as to himself13. 
    [6] And now discoveries followed one after another: the problems 
concerning the isochrone, the brachistochrone and catenary, the 
isoperimetric problems etc. were nobly treated, although that work was 



 

somewhat overshadowed by the fierceness of Johann Bernoulli’s 
competition. Their glory rose so rapidly, that in 1699, when the eight 
foreign members of the Paris Academy were first appointed, both 
brothers were included14, and in 1701 the same happened when, as 
recommended by Leibniz, the Berlin Academy was established.  
    Neither did the later authors of works on the history of mathematics, 
when treating the discovery of the differential calculus, fail to praise 
deservedly both of them. Savérien (1775) even burst out 
extraordinarily honourably but almost strongly that  
    Neither did the English, the German, the French, nor their authors 
understand at all the value of their discoveries. To Switzerland 
belongs the glory of producing two rare men, the brothers Bernoulli, 
who perceived the pertinent scope. 
    It would lead us too far to discuss all the separate contributions with 
which Jacob Bernoulli promoted mathematics, to deal with all the 
disputes in which he confidently and calmly participated, unlike his 
opponents whose behaviour often entirely lacked those qualities. It is 
generally sufficient to mention the richness of his Opera (1744) which 
shows us that he more or less studied all branches of pure and applied 
mathematics. For example, he annotated Descartes (1695); in physics, 
he considered caustics and oscillations; in astronomy, the problems of 
the shortest twilight [?] and of determination of longitudes at sea, etc.  
    However, he preferred to investigate the theory of series that, in 
particular, led him to the Bernoulli numbers15; the theory of 
combinations and its application to the theory of probability; to 
develop further the differential and integral calculus, which for 
example owes him the first integration of a differential equation, and 
its applications to the theory of curves and certain related problems in 
mechanics. 
    We will only follow him by a somewhat more detailed discussion of 
two of his fields of work, isoperimetry, where we will find him in a 
bitter contest with his brother Johann, and the theory of probability, 
where we will see his nephew Nicolaus I on his side instead of his son, 
see Note 8. 
    [7] As mentioned above, Jacob Bernoulli initiated his younger 
brother Johann into mathematics with exceptional success. After 
reading with him the most important mathematical authors and 
introducing him into the new field traced by Leibniz that he then 
wished to pick up, both had been at first most harmoniously working 
together, Jacob appreciating the impatient views and skill of his 
younger brother, and Johann recognizing the calmness and depth of his 
elder brother. 
    However, time and time again Johann’s immeasurable ambition had 
wakened up and made it impossible for him not only to consider 
properly his elder brother and former teacher, a circumstance at which 
Jacob perhaps hinted now and then; it also led him to attempt at any 
price to elevate himself above Jacob. The latter naturally became 
colder and more reserved towards him, and when, in 1695, Johann 
departed to Groningen and their personal contacts ended, they became 
more and more alienated one from another and finally the 
abovementioned battle erupted between them. 



 

    In June 1696 Johann formulated a problem for mathematicians: To 
determine until the end of that year the line of quickest descent 
somewhat later called brachistochrone. At first, Jacob did not wish to 
occupy himself with that problem in earnest since, with regard to the 
problems published by him, Johann lately behaved the same way. 
    Only when Leibniz informed him on 13 September that he had 
solved the new problem and invited him to study it as well, did Jacob 
really take it up and solved it in a few days, at least before 6 October, 
that is, long before the initial deadline. And he had witnesses, Samuel 
Battier and Jakob Hermann. However, since Leibniz had informed him 
that the deadline was extended to Easter 1697 and asked him not to 
publish his possible solution until then, and since he had been working 
on the isoperimetric problem, Jacob did not hurry so as to present both 
problems at once. 
    By the end of 1696 everything was prepared for publication, and the 
only question was, whether he, for the time being, sends to Leipzig [to 
the Acta Eruditorum] only the result of his investigation of the 
brachistochrone, or also the appropriate analysis. He decided to take 
the middle ground and, on the one hand, to convince Johann that his 
brother had really discovered the solution, not simply guessed it, and, 
on the other hand, to prevent outsiders from appropriating the course 
of his study.  
    Then, however, he received a programme [no reference provided] 
published by Johann on 1 January 1697 in which he personally was 
challenged to solve the problem by a malicious allusion to one of his 
previous works. And now he could not hesitate anymore and that same 
January sent his solution to Leipzig adding a new problem: 
    Curves of equal length connect two points situated on the x-axis. 
Determine that curve the arbitrary powers of whose ordinates form a 
curve with the maximal area between it and the x-axis16. 
    At first, he sent it to his brother Johann and promised him 50 
reichsthaler on behalf of a friend (who was astonished by Jacob’s own 
solution) should he submit a proper solution before the end of the year. 
When Johann saw that communication as well as Jacob’s solution of 
the problem concerning the brachistochrone published in the Acta 
Eruditorum in May, he did not hesitate to take up the gauntlet. He 
believed to conclude the work in a short time and already in June 1697 
wrote about it partly to Leibniz, see their correspondence (1745, p. 
414) and partly to Basnage, see Basnage (compiled 1687 – 1709) and 
also Johann Bernoulli (1742, t. 1, p. 194). 
    [8] After complimenting Newton, Leibniz and l’Hospital on their 
solution of the brachistochrone problem, he referred to his brother:  
    He presumed (because, he said, Leibniz had asked him and he does 
not anymore wish to evade the task of studying it) that that problem 
occupied him for a long time and demanded much effort. Actually, he 
had believed from long ago, as Galileo did, that our curve was a 
circumference17 which surprises me since that kind of problems does 
not at all demand either much work or long or difficult calculations. 
Ordinarily, they are algebraic and at least I may say that as soon as 
that problem was proposed to me, I solved it.  



 

    Yes, I solved it not by chance, as someone convinces himself, but, as 
challenged, by deliberate intention. Leibniz and Newton will say the 
same because both had discovered the solution as soon as they saw the 
problem. Be that as it may, my brother had finally found the proper 
solution by exactly the same method or slightly different from that 
applied by Leibniz who was long ago pleased to inform me about it in 
his relevant letters. 
    In addition, I find that Leibniz reasoned more succinctly without all 
those detours to similarities which my brother had applied for 
supporting his own solution18. My brother was then the fourth of those 
from the three great nations of Germany, England and France, each of 
whom competed with me in such a fine research and arrived at the 
same result. That marvellous agreement can therefore prove the high 
quality of our methods for those who have no time to examine them 
and who without comprehension wish to refute them. 
    Then Johann comes to the new problem of his brother: 
    No matter how difficult these problems seem to be, I do not shirk 
from studying them the very moment I see them. But look now how 
successful I am: Instead of the three months given me for exploring the 
ford, and instead of the rest of the year for discovering its solution, I 
have only spent three minutes to attempt, to begin and penetrate 
deeply all the mystery19. And much more than that, since I provided a 
solution a thousand times more general than demanded20. 
    He concludes:  
    Finally, I have already sent my solutions to Leibniz and asked him 
to be our judge; indeed, it is justified and necessary for the unknown 
person promising a reward to hand it over to the judge and that is 
what, as I expect, an honourable man will not refuse to do. Once that 
is achieved, Leibniz will publish my solutions and at the same time 
pronounce his verdict on whether they are valid or not. 
    However, I am also assuring that it is not the desire to win but only 
the interest of the poor for whom I earmark that money which obliges 
me to take pains. I would be ashamed to receive the money for 
something that gave me so little trouble and only demanded time for 
writing this explanation. Even if it occupied me somewhat, money is 
not the means for recompense the mind in such cases. The noble 
ardour felt when studying these sciences is much beyond all money 
and the least discovery costs more than all the riches. 
    On 15 October 1697 Johann sent a similar letter to Varignon and 
communicated his alleged solution (JS21 2 Dec. 1697; Joh. B. Opera 
omnia 1742, t. 1, p. 206). As soon as Jacob saw it, he explained (JS 7 
Febr. 1698; Jac. B. Opera 1744, t. 1, p. 214) that it could not be correct 
and offered: 
    1. To discover by a justified analysis what led his brother to the 
solution published in that periodical. 
    2. Be that as it may, to show the faulty conclusions if that is 
desirable for publication. 
    3. To provide the veritable solution of the problem in all its parts. 
    He obliged himself, should anyone wish to set prizes on those three 
points, “to lose as much, or twice, or thrice as much if unable to 
achieve them, respectively”. 



 

    After Johann (JS 21 April 1698; Jac. B. Opera 1744, t. 1, p. 215) 
acknowledged a somewhat barely noticeable and slight error made due 
to haste, Jacob (JS 26 May 1698; Jac. B. Opera 1744, t. 1, p. 220) 
simply advised his brother to check the supposed solution once more. 
Johann (JS 23 June 1698; Jac. B. Opera 1744, t. 1, p. 221) insisted that 
his method was correct and explained that he had something better to 
accomplish than to check his solutions once more. 
    Jacob meanwhile had sharply criticized his brother’s solution in a 
letter of 26 June 1698 to Varignon (JS 4 Aug. 1698; Jac. B. Opera 
1744, t. 1, p. 222) and reproached him for accidentally arriving at a 
particular correct answer issuing “from a faulty hypothesis by a faulty 
reasoning”. Neither was Jacob satisfied by that refusal and stated (JS 4 
Aug. 1698; Jac. B. Opera 1744, t. 1, p. 230) that he never believed that 
his 
    Brother possessed the veritable method for solving the isoperimetric 
problem, and now I doubt [he doubted] it more than ever before owing 
to the difficulty that he encounters in checking his solutions. Because, 
finally, why refuse to do something done recently if not lacking trust in 
his own method? If it only takes him three minutes, as he says, to 
attempt, to begin and penetrate deeply all the mystery, then it seems 
that the reviewing of what was discovered will not be advantageous to 
him. And even if he spends twice that time, that is, six minutes, for that 
check, will it so much diminish the number of his new discoveries? 
    Then Jacob once more invited Johann to examine again at least a 
certain part of his solution, to explain it not only to Leibniz, but also to 
Newton, l’Hospital and in general to all those whom all 
mathematicians recognize as judges and only to ask them to postpone 
their decision until he completely reviews his brother’s solutions. 
    [9] And now Johann flared up. His answer of 22 Aug. 1698 (JS 8 
Dec. 1698; Jac. B. Opera 1744, t. 1, p. 231) showered his brother with 
accusations such as, for example, 
    My brother acknowledges that he had not yet at all seen my analysis 
but nevertheless strangely refutes it. At first he fabricates an analysis 
and wrongly attributes it to me; he reasons unboundedly, invents 
absurdities, contradictions, nonsense. He is not looking for 
advantages, he is obstinate, imputes me everything as consequences of 
my imagined analysis. Throughout his letter he certainly refers to it 
with an inconceivable self-assurance as belonging to me. What 
audacity! What impudence! To wish to impute me entirely an analysis 
that is not my at all, that I myself forbid and disapprove of! 
    Johann concludes somewhat calmer: 
    Anyway, I am very glad that he finally really wishes to accept 
Leibniz as an arbiter and I am also content with the Marquis de 
l’Hospital and Newton. If rather accepting that suggestion, he will be 
able to evade many very useless debates. It was a long time ago that I 
sent Leibniz all my solutions for keeping together with my analysis and 
methods, both direct and indirect, which he approved and much 
praised, very far from finding those faults whose correction will 
encounter the truth22.  
    And I am inviting my brother to send Leibniz also and at once his 
own method, solution and analysis. Leibniz will publish all at the same 



 

time for our readers and for all of our judges for them to be able to 
confront, examine and judge them. Let us stop now and let my brother 
be silent until our solutions and methods appear. I will not accept 
anything more from him than at least that he delivers his solutions and 
methods to Leibniz and that they be published together with mine, and 
in the same place. Justice also demands his unknown friend to give 
over the prise to someone of our judges and he will do it if he is a 
decent honourable man. I have already said, and am saying it once 
more, that I am not soliciting anything. Indeed, the poor will claim the 
money. 
    Jacob did not answer at once, and so it all remained as it was for 
more than a year except that the 50 reichsthaler were sent to Varignon 
(1745, p. 572). Only 6 May 1700 Jacob (1700) passed a candid 
message to his brother23, and here is how it began: 
    Bearing in mind the squabble mutually carried on for some time, 
dearest brother, I fear that it can worsen our reputation in the eyes of 
many not because, when considering such a difficult subject, I regard 
our disagreement as insulting us (even friends, to say nothing about 
brothers, may without damaging the bonds of their friendship have 
differing views), but since we could have stopped quarrelling long ago 
and since our readers (or at least the readers of one of us) had almost 
always picked up from us more boasting and gossip than honesty and 
reliability, I have reasonably took care to avert that suspicion from us.  
    I thought I should brotherly start you up and caution you at the 
same time to deal with them a little more candidly, abandon any 
indecision and achieve that [honesty and reliability] so that finally the 
truth is provided for the public and its general instruction and benefit 
looked after in such a way that, on the one hand, science is advanced 
and, on the other hand, neither of us loses the glory of discovery 
(which is, as our good Leibniz stated somewhere, the most honourable 
reward for work that can in future spur us and others). And so that 
now all will occur the more properly and each of us recognizes what 
part in that subject is due him, I consider it advisable to recall and 
enumerate briefly everything not less known to you than to me over 
which we had been arguing. 
    Then Jacob worthily and calmly, although being confident about his 
legitimate cause, described what is already known to us about the 
emergence and course of those arguments and invited Johann to 
publish his method. In concluding, he provided his own solution of 
isoperimetric problems although without analysis and criticized both 
Johann’s solutions. 
    Johann bitterly complained to Leibniz about that letter24, sent him 
its copy supplied with marginal comments and implored him to stand 
by. He still thought that his previously sent solutions, although not 
coinciding with Jacob’s, were good enough and sent them 1 February 
1701 with an analysis in a sealed package to Varignon for depositing it 
at the Paris Academy not to be opened without his consent. He (JS 21 
Febr. 1701; Jac. B. Opera 1744, t. 1, p. 377) once more gave full vent 
to his bile, as for example: 
    I am reserving for another time, should it become necessary, [the 
right] to reveal other contradictions, errors and blunders in the 



 

writings of the author of those problems, even with respect to the main 
axioms of geometry, without however wishing at all to corrupt the 
beauty of his other mathematical discoveries possible to achieve by 
justified reasoning. Even the greatest men can stumble, and he is all 
the more pardonable who does not wish to blame others, especially if 
not wrongly. 
    [10] Jacob however did not answer those compliments anymore but 
in March 1701 he published his analysis together with a disputation 
(1701)25 as soon as becoming aware of Johann’s deposit at an 
impartial judge, and that actually ended the tiresome strife. It could be 
thought that Johann will now attack the work of his brother or at least 
made at once public his own deposited work, but nothing happened. 
He was beaten and kept himself completely silent.  
    He recognized the mistake he made and the excellence of his 
brother’s work26 but lacked the generosity to acknowledge that 
publicly. He hesitated under hollow excuses until, hoping after Jacob 
had died, that he did not have to fear anything anymore since no one 
else could have penetrated the subject deeply enough and appreciate 
the difference between their methods27.  
    He was not mistaken, he was really left unchallenged until at least in 
1748 he felt it advantageous to admit that28 
    I have [he had] looked over my long ago forgotten solutions anew 
and, after examining them again as attentively as possible, I finally 
recognize that I was actually mistaken in a certain way. Aspiration for 
truth compels me to acknowledge frankly what I had not noticed 
before and to recognize it with all the less shame since that is expected 
from an honest person and since the public will be grateful owing to 
the new discoveries it offers me the occasion to communicate. 
    Had I not reviewed my manuscripts which much contributed to the 
advance of fine geometry, those discoveries could have remained 
forever buried there. 
    At the same time, he published a new solution which was no more 
than a remake of his brother’s, a fact that he deemed best not to 
mention. It is so painful to see two otherwise exceptional men of great 
merit, two brothers, violently struggling for years that we thought it 
necessary to deal with that subject in detail because, in spite of all of 
its dark sides, it still formed a high spot in the scientific life of both of 
them. 
    Jacob’s decided victory, a victory over an opponent powerful by 
himself and supported by Leibniz, was perhaps the greatest ever 
achieved in the purely intellectual field. It should not be forgotten, that 
their battle had been going on in the highest parts of mathematics, that 
already the acumen of Johann’s works dazzled his contemporaries; 
that later mathematicians have also regarded Jacob’s work as a wonder 
of discovery and depth and even thought that, considering his lifetime, 
no more difficult problems were then solved; and that no geometer of 
that time had publicly ventured to intervene in their battle or even to 
try to solve those problems although they were formulated for 
everyone. 
    Bossut (1804, Tl. 2, p. 181) correctly stressed that  



 

    All advantageous combined to excite ardour of competition: the 
novelty of the subject, the need to surmount serious difficulties, and the 
possibility of enriching geometry29. 
    [11] The celebrated Laplace (1814/1995, p. 118) stated, after 
indicating the merits of Huygens, Hudde, Witt and Halley in furthering 
the theory of probability first attacked by Pascal and Fermat, that 
    About the same time James Bernoulli put various problems in 
probability to the mathematicians, problems whose solutions he 
[himself] later gave. Finally he wrote his classic work entitled Ars 
Conjectandi, which only appeared seven years after his death in 1706 
[eight years; died in 1705]. The science of probabilities is much more 
deeply examined in this book than in that of Huygens; the author gives 
there a general theory of combinations and of series and applies it to 
several difficult problems in chances. This book is moreover 
remarkable for the accuracy and ingenuity of its insight, for its use of 
the binomial formula in this kind of questions, and for the proof of the 
following theorem: [Laplace provides his own formulation of 
Bernoulli’s law of large numbers and continues]30 
    This theorem is extremely useful in discovering the laws and causes 
of phenomena from observations. Bernoulli attached, with reason, 
great importance to his proof which he said he had mulled over for 
twenty years. 
    After this testimony of the most competent judge about the 
importance of Jacob Bernoulli’s work in the field of probability, it is 
sufficient to add a few relevant historical notes and add somewhat 
more details about his merit.  
    The name of his nephew Nicolaus I is so intimately connected with 
that of his great teacher. Jacob Bernoulli had already earlier dealt now 
and then with probability and, for example, already in 1685 formulated 
a pertinent problem (JS; Opera 1744, p. 207)31, but only in the last 
years of his life he had been working on his main study definitely 
intending to compile his own systematic theory. That occurred exactly 
when his nephew became happy to be introduced by him into 
mathematics and had to some extent breathed in the flowery scent 
issuing from Jacob’s work32. 
    Jacob was regrettably unable to bring it to its desired goal and 
perhaps the Ars Conjectandi would have been forgotten forever to the 
great evil for the sciences had not Nicolaus developed it as is mainly 
shown by his own exceptional contribution (1709) which earned him 
the degree of Doctor of Laws and created a new branch of applied 
mathematics. 
    He showed there, in particular, how certain legal propositions, 
previously considered arbitrarily and quite differently in various 
countries, can be led to scientific principles. For example, in his 
Chapter 3 he recommended that a missing person be declared dead and 
his property given over without indemnity to his relatives if he is 
absent so long that the probability of his death becomes twice higher 
than that he is still alive. That means that, according to mortality 
tables, 2/3 of people of his age have died33. 
    [12] The appearance of Montmort (1708)34 also led to new studies 
and when, on 17 March 1710, Nicolaus’ uncle Johann sent Montmort, 



 

with whom he had already been in correspondence for a long time, 
remarks about his book [Montmort 1713, pp. 283 – 298], Nicolaus also 
appended his own Remarques (pp. 299 – 303) which Montmort 
received with much interest. 
    And so was a scientific correspondence with that respected 
mathematician initiated also for Nicolaus. Montmort regarded the 
letters of his new friend so valuable, that he published all their 
correspondence [Montmort (1713)] with the following complimentary 
words [pp. XXV – XXVI]: 
    It is not necessary for me to praise those letters since they 
recommend themselves. It will be seen that in that field there can be 
nothing better and I hope that geometers will be grateful to me for 
sacrificing my author’s vanity to the love of the public and the 
perfection of sciences by inserting these letters into my book. 
    In those letters and the replies to them many new and very difficult 
studies not mentioned in the body of my book will be found.  
    We see in those letters that, for example, in 1711 Nicolaus had 
published in the Journal des Savants his solutions of the problem On 
the Lorraine lottery formulated by Montmort; that he provided 
Montmort with many hints for revising the [future] edition of his book; 
that he used his stay in London (see Note 32) in particular for 
ascertaining from the bulletins of births for 1629 – 1710 that 18 boys 
were born there for 17 girls35. And, first of all, that while living and 
working together (see Note 32) Montmort learned how to estimate all 
magnitudes [?] since soon after their separation, on 20 August 1713, 
he [Montmort 1713, p. 400] wrote Nicolaus: 
    You are a terrible man; I believed that for going ahead I did not 
need to begin at once, but I see well enough my mistake. I am now far 
behind you and am compelled to apply all my ambition to follow you 
from afar. If I were jealous because of estimating you too highly, I 
would have liked you less; but not at all, Sir, your superiority and 
great talent only increase my attachment to, and if only I dare to use 
that term, my sincere friendly feelings about you. 
    [13] After all the above it will be hardly ventured to state that Jacob 
Bernoulli could have left for publication his unfinished Ars 
Conjectandi in better hands than those of his nephew Nicolaus. It is 
only to be regretted that he himself did not leave any such provision. 
Nevertheless, Nicolaus did not lose such publication from sight, and it 
was not his fault, as we will see, that he did not quite attain the desired. 
At first he thought, as it follows from a letter of 26 Febr. 1711 
[Montmort 1713, pp. 308 – 314, see pp. 313 – 314], to accept 
Montmort’s offer to look after the printing in Paris and said that he had 
written about it to Jacob’s son Nicolaus. He added: 
    It is a great loss that the fourth part of that treatise that should have 
been the main part, was not concluded. It is not even commenced and 
only contains five chapters where only general things are treated. 
What is the most remarkable is the last chapter [the fifth]36 where he 
provided the solution of a very curious problem that he even preferred 
to the quadrature of a circle, that is, To find how many observations 
should be made to achieve the desired degree of probability, and at the 
same time he proved that by repeated observations the ratio between 



 

the number of cases leading to a certain event and those not leading to 
it can be precisely discovered37. 
    That indication of the manuscript’s value drew the attention of 
Jacob’s heirs, but they preferred however to sell it to a bookshop in 
Basel, and Nicolaus, in a letter of 25 Oct. 1712 from London to 
Leibniz, regretted that the printing in his absence had begun without 
professional supervision. He also made known his intention to work 
after returning back at the extension of Jacob’s manuscript if only the 
heirs will entrust him the pertinent materials (Papiers). When, 
however, he arrived in Basel the printing was too much advanced so 
that it was impossible to think about fulfilling his intention and he 
restricted his participation by adding an explanation of the 
circumstances38: 
    At last, here is the art of conjecture, the posthumous treatise of my 
uncle which has been so long awaited. The Brothers Thurnisius, 
thinking to do a public service, have acquired the manuscript from the 
author’s executors, and have printed it at their own expense. The 
author wanted to make known in civil life the usefulness of that part of 
mathematics which is directed towards the measurement of 
probabilities. We have already seen in the memoirs of the Academy of 
Sciences of 1705 [Fontenelle (1706)]39 and in the Scientific Abstracts 
of Paris of the year 1706 [Journal des Savants, Saurin (1706)], by 
what method and up to what point the author has fulfilled the task 
which he set himself.  
    He has divided his work into four parts. The first contains the 
treatise of the illustrious Huygens [1657] with notes, in which one 
finds the first elements of the art of conjecture. The second part is 
comprised of the theory of permutations and combinations, theory so 
necessary for the calculation of probabilities and the use of which he 
explains in the third part for solution of games of chance. In the fourth 
part he undertook to apply the principles previously developed to civil, 
moral and economic affairs. But, held back for a long time by ill-
health, and at last prevented by death itself, he was obliged to leave it 
imperfect.  
    The editors would have liked the brother of the author (John – F. N. 
D.[apparently Johann]), so capable of achieving this work, to have 
taken over completing it, but they knew that he had undertaken so 
much that they did not even ask him about it. As they knew that in an 
inaugural dissertation [1709] I have given some trial to this theory as 
applied to law, they asked me to undertake the completion. But my 
absence on travels did not allow me to do this. On my return they 
asked me again and I think I ought to mention why I did not. I was too 
young and inexperienced to know how to complete it. I did not feel I 
had enough initiative and I was afraid not only that I would not hold 
the attention of the reader but even that by risking the possibility of 
adding trivial and ordinary things I would do wrong to the rest of the 
work. The printing of this treatise being already fairly advanced, I 
advised the printers to give it to the public as the author left it40.  
    However, as it is necessary that so useful a thing as the application 
of probabilities to economic and political affairs should not be 
forgotten, we beg the illustrious author [Montmort (1708)] and the 



 

celebrated De Moivre who wrote a little time ago some excellent 
fragments of this art [De Moivre (1712)], to set themselves to this 
work and to consecrate to it a little of the time that they set aside for 
the public good41. We hope especially that the generalisations given by 
the author in the five chapters of the last part will offer to the readers 
the principles of application important for the solution of particular 
problems. 
    This is all I have to say on this treatise. The editors have added to it 
the theorems on infinite series which the author made the subject of 
five dissertations and which are out of print. It was for this reason that 
they have reprinted them at the end of this work. The affinity of the 
subject-matter has made us also add the paper written in French by 
the author entitled Letter to a friend on chances in the game of 
tennis42. 
    [14] To end my essay it still remains necessary to add something 
about Jacob Bernoulli’s activity in his home town and his last days. 
Meier von Knonau, see Note 1, describes the former: 
    During the civil unrest that occurred in Basel owing to the serious 
abuses in the public management, he provided in 1691 a memorandum 
about the practice (of cunningly acquiring positions) at the university, 
about the invasion of incompetent applicants for acquiring better paid 
chairs, appointment of uneducated elected representatives 
(supervisors of theology (Kirchenwesen) and educational system), of 
improper holidays, privileges enjoyed by professors of the 
philosophical faculty by occupying profitable vacant positions, etc. 
    The academic senate suspended him from the regency for a year. He 
explained that he never called himself the author of that memorandum, 
defended its contents and remarked that his misdemeanour consisted 
in that he turned to the investigation office established by the state. But 
he also indicated that if the senate will not improve the situation, the 
government or the citizens could arrange changes in the university 
which will not perhaps be pleasing to its staff. 
    It can be obviously regretted that Jacob Bernoulli’s memorandum 
(1691/1993), that so clearly described the main evils from which the 
university suffered and will still suffer for a long time, had almost no 
other result except to quarrel him with his colleagues. However, it 
seems that they soon began to have second thoughts and found their 
behaviour towards him reprehensible. That probably was connected 
with the decision entered in 1692 into the records of the regency to 
destroy the pages concerning Jacob Bernoulli’s affair43. 
    It is hardly necessary to say that, owing to the incessant mental 
activity coupled with his slowness and depth and demanding many 
hours of work at night, and to the sedentary way of life essentially 
connected with his scientific efforts, his strength had to be exhausted 
early. The tiresome long-standing battle with his brother contributed to 
that process and harmed him the more the more he attempted to endure 
it while keeping outwardly calm. 
    Already in 1702 he complained to Leibniz that for many years he 
had been suffering from irritability and gout. In summer 1704 he went 
on a health cure to Baden [Baden-Baden] without however, as it 
seems, any considerable success and did not fail to understand that his 



 

life was drawing to an end. Indeed, this follows from his last letter to 
Leibniz of 3 June 1705 (Bernoulli Jakob 1993, pp. 149 – 151) which 
he prophetically ended by stating: 
    If rumour has it correctly, my brother will definitely return to Basel, 
although to take over not the Greek [chair] (since he himself is 
analfabetos) but rather my position about which he, perhaps not 
unreasonably, feels that I will soon die and abandon it44.  
    And actually a severe fever strengthened his other ever repeating 
and increasing suffering. Being still fully conscious, he summoned his 
family and died on 16 August 1705 deeply mourned by his relatives, 
fellow citizen and the entire scientific world. According to his 
repeatedly expressed and pressing request, an ever again generating 
itself logarithmic spiral with the inscription Eadem mutate resurgo 
(Having changed, I am resurrected as I was previously) was carved on 
his tombstone. He thus reminded posterity not only about one of his 
most beautiful works, but also about his faith in the immortality of 
memory. 
 

Notes 
    1. Two Jacobs, two Johanns, two Nicolauses and a Daniel, and a third Johann, a 
second Daniel and a Christoph can also be added. For preventing any confusion 
between the many learned members of that celebrated family it would be proper to 
give room to a genealogical note for the compilation of which the praiseworthily 
known by his technological contributions, his Vademecum etc Prof. Christoph 
Bernoulli (Basel), the son of Daniel II, had generously informed me that Jakob 
Bernoulli (1598 – 1634) was a merchant from an outstanding Antwerpen family who 
fled to Frankfurt in 1839 and then moved to Basel because of Alba’s religious 
persecutions and in 1622 acquired civil rights there. From his son, 
    a) Nicolaus (1623 – 1708), a councillor in Basel, the following offspring can be 
mentioned: 
    b) Jacob I (1654 – 1705), the son of (a), professor of mathematics in Basel, 
discoverer of the logarithmic spiral, reviser of the theory of probability, etc, and 
teacher of Johann I (d) and Nicolaus I (e). Fontenelle (1706) is the author of an 
eulogy on him. 
    c) Nicolaus, painter, son of (a). 
    d) Johann I (1667 – 1748), son of (a), professor of mathematics in Groningen and 
Basel, teacher of l’Hospital, Euler and others; the first reviser of exponential 
magnitudes etc, Leibniz’ correspondent and advocate. [Forney] in the Memoirs of 
the Berlin Academy (1747) and [Fouchy] in the Memoirs of the Paris Academy of 
Sciences (1748) are the authors of eulogies on him. [These dates are either of actual 
publication, or of the für, the pour.] 
    e) Nicolaus I (1687 – 1759), son of (c), professor of mathematics in Padua, later 
professor of law in Basel, editor of the posthumous papers of Jacob I. 
    f) Nicolaus II (1695 – 1726), son of (d), professor of law in Bern, then 
academician in Petersburg. An eulogy on him is Anonymous (1729). 
    g) Daniel I (1700 – 1782), son of (d), academician in Petersburg, later professor of 
physics in Basel, the author of Hydrodynamics published in 1738. The authors of 
eulogies on him are Condorcet (1785) and Daniel II (1783). [Daniel II had also 
published a German translation of Condorcet (1785) with corrections and comments, 
see Condorcet (1785) in the appended Bibliography. O. S.] 
    h) Johann II (1710 – 1790), son of (d), professor of mathematics in Basel. 
    i) Johann III (1744 – 1807), son of (h). Director of astronomical observatory in 
Berlin, later of the mathematical class of the Academy there. 
    k) Daniel II (1751 [1757?] – 1834), son of (h), professor of physics in Basel. 
    l) Jakob II (1759 – 1789), son of (h), academician in Petersburg. An eulogy on 
him is Anonymous (1793).  
    Johann I and Daniel I will be separately described in the next volumes of my 
collections, the other members of the Bernoulli family will be at least mentioned on 



 

occasion in more detail. For the current work about Jacob I and Nicolaus I, in 
addition to Fontenelle (1706) and Battier (1705) with 44 funeral odes appended to it 
the papers of Lacroix (1811), Meyer von Knonau [apparently: his article on Jacob I 
or Nicolaus I] in Ersch & Gruber (1818 – 1889) should also be taken into account. 
Then, the works of Montucla (1799 – 1802), Bossut (1802) and others and naturally 
my speech at the bicentenary of Jacob’s birth (1855). R. W. 
    Jakob Bernoulli (1598 – 1634) mentioned in the beginning of this Note certainly 
was not persecuted by Alba who died in 1582. O. S. 
    2. Fontenelle (1706) translates this [into French] as I am among the celestial 
bodies in spite of my father. R. W. 
    3. Wolf outlines the life of that daughter, Elisabeth, who, although blind, became 
well educated. He referred to the pertinent discussion in the Journal des Savants, 
1680, to the correction published there in 1685 by Jacob Bernoulli and to Schalch 
(year?, Bd. 2, pp. 191 – 196). O. S. 
    4. Translation: In a simple way, without cross or God. O. S. 
    5. Actually, in 1602 the Savoy troops attempted to storm the city, but were beaten. 
O. S. 
    6. In 1744 Gabriel Cramer published both these contributions in Geneva [in Jacob 
Bernoulli’s Opera] as well as Jacob Bernoulli’s other dissertations and 
communications to the Journal des Savants, Acta Eruditorum, etc, although not the 
Ars Conjectandi, and some of his posthumous papers and also his [in his] Opera in 
two volumes in quarto dedicated to Nicolaus I. In 1719 Weidler published the first 
contribution (1682) once more, and Lalande (1803) somewhat sharply stated that “It 
seems that Weidler was not yet as great an astronomer as he became later”. R. W. 
    7. The German publication seems to have been distributed mostly in the 
neighbourhood and, for example, it remained entirely unknown to Lalande (1803). R. 
W. 
    8. Johann III Bernoulli (1777), after imagining the portraits of the learned friends 
of his family hanging in Basel in the house of his father, tells us that  
    The portrait of the Marquis l’Hospital was thought to be a good copy of the one 
drawn by Rigault and perhaps retouched by that great painter himself. I think that I 
heard that, being not at all the worst likeness made at the time, it was painted by the 
only son of Jaques Bernoulli, a councillor of the state who died a few years ago. He 
was devoted to painting but did not paint for a long time. His father destined him for 
science, and his cousin Nicolaus [I – R. W.] became a painter. Their mentality did 
not conform to the main intentions of their fathers, and the sons often remained alien 
to them.  
    Jacob [I] also named his son after his grandfather [after his own father] Nicolaus. 
R. W. 
    9. Each of those responsible for elections should even now imagine this statement 
pronounced already 150 years ago […] as though written in golden letters. 
Regrettably, it is ever again been neglected […]. However, Exempla sunt odiosa 
(odious) and I will therefore better keep silent. [Wolf’s own gaps. O. S.] R. W. 
    10. It can be added in passing that, according to Leu & Sons (1747 – 1765), Jacob 
Bernoulli had also put out an Übersetzung des andern Teils der Stimm [Stimme?] 
Gottes (a translation of the other/the next? Part of Richard Baxter from Dutch, Basel, 
1686) and that he was also praised for his not unfortunate poetical trials in Latin, 
German and French. One of them was published (1681b). R. W. 
    11. I am not dealing with the repeated and mostly passionately carried out priority 
strife between Newton and Leibniz about the discovery of the differential calculus 
since it did not essentially affect Jacob Bernoulli. However, I refer to the relevant 
contributions of Gerhardt, Biot, Sloman (1857) and others and to what I will briefly 
say in one of the next volumes of my collections as far as it concerned Johann 
Bernoulli. R. W. 
    12. The previously entirely unknown, so to say, correspondence between Leibniz 
and Jacob Bernoulli was included in Gerhardt (1855 – 1856, Bd. 3) [in Leibniz; 
Gerhardt was editor]. That volume also contains Leibniz’ correspondence with 
Nicolaus I and Johann Bernoulli as also a new and supplemented edition of his 
correspondence with Johann as published previously (Lausanne, 1745, tt. 1 – 2) 
where many letters were corrupted. Although I only came across that volume a short 
time before concluding my present essay, I have attempted to make use of it as much 
as possible. R. W.  



 

    13. 21 March 1694 Leibniz wrote Johann Bernoulli: “Vestra enim non minus haec 
methodus, quam mea est”. R. W. 
    14. Wolf mentions other foreign members of the Paris Academy up to Albert 
[Johann Albrecht] Euler and notes that “perhaps no other country and at least no 
other country as small as Switzerland” had so many of its sons appointed to that 
membership and that only Switzerland possessed a family with a foreign 
membership there for almost a century. O. S. 
    15. Bernoulli numbers are 
 
    1/6, 1/30, 1/42, 1/30, 5/66, … 
 
and tend to a in the equality 
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    Jacob Bernoulli calculated the first five of them; later, they became important for 
the advanced theory of series. However, only De Moivre and Euler discovered the 
general law for calculating them, see Raabe (1848) and Staudt (1844). R. W. 
    The Bernoulli numbers are taken as  
 

    Bn = 1, – 1/2, 1/6, – 1/30, …, the coefficients of the series  O. S.
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    16. I have formulated that problem in my own wording. O. S. 
    17. Here, Johann based himself on a note written by his brother: 
    Curva pag. 269 proposita videtur esse circulus fig. 5 cujus centrum est in 
intersectione horizontalis per punctum A transeuntis et alterius rectae ipsam rectam 
A B ad angulos rectos bisecantis. 
    Obviously, Jacob had written it when first reading his brother’s problem and put it 
in the appropriate volume of the Acta Eruditorum which he later sent to l’Hospital 
without thinking about it anymore. L’Hopsital indiscreetly appended it to a letter to 
Johann remarking nevertheless that “You will however please me to say nothing”. 
Johann did not pay any attention to that remark and at once sent the note together 
with a gloating comment to Leibniz who in his previous letters had also sent Johann 
fragments of writings in Jacob’s hand. 
    It is thus seen that during the battle with his brother Jacob had reasonably became 
suspicious about many of his previous friends which in particular for a long time 
hindered his correspondence with Leibniz. The latter, although repeatedly asking 
Johann to restrain himself, was still not entirely impartial. On 15 November 1702 
Jacob (Bernoulli Jacob 1993, pp. 100 – 104) bluntly wrote him that he, Leibniz, did 
not make use of his position to suppress the strife in embryo. R. W. 
    18. It is opportune to note that Jacob had deliberately chosen such a form to 
conceal the course of his thoughts. R. W. 
    19. That estimation of time intervals should not at all be understood literally. 
Johann Bernoulli also said in his biography that he and his brother unriddled 
Leibniz’ secret in a few days whereas it actually demanded many years, see § 6 
above. R. W. 
    In § 6 Wolf mentioned this without providing any documentation; moreover, he 
only had Jacob in mind. Later, Wolf (1859, p. 71n) stated that he had mentioned that 
biography as published by Roques (1750). O. S. 
    20. Instead of the ordinates of the second curve being equal to a given power of 
the corresponding ordinates of the first one, as was formulated in the initial problem, 
Johann stated that the former were some given function of the latter. R. W. 
    21. Here, and many times lower, JS means Journal des Savants. O. S. 
    22. Johann had indeed sent his first solution to Leibniz in June 1797 [perhaps 
1697] and his revised second one a year later. Leibniz’ approval possibly contributed 
to his being so sure about that subject. However, Leibniz had either considered it 
wrongly, or deceived himself, as we will see at once, by Johann’s Raisonnement. R. 
W. 



 

    23. Probably according to Johann’s desire the Epistola [see title of Jac. B. (1700)] 
was not included together with the reprints of his brother’s contribution. Bossut was 
very interested in the strife and dealt with it in detail (Bossut 1802), then had it [its 
description] reprinted in the Journal de Physique for September 1792. R. W. 
    24. In particular, he wrote: 
    Tota fere conflata est ex calumniis, mendaciis et falsis pro more suo 
suspicionibus; nonnullis in locis me laudare videtur, sed aspero veneno latente 
acerrimo, 
see p. 640 of their correspondence. R. W. 
    25. Wolf remarked that that analysis (1701) was dedicated to the “incomparable” 
l’Hospital, Leibniz, Newton and Nicolas Fatio de Duilleri and reported that same 
year in the May issue of the Acta Eruditorum and later in the author’s Opera. O. S.  
    26. Jacob had examined, just as it was necessary, three elements of the curve; 
Johann, on the contrary, only two which was sufficient, for example, for the 
brachistochrone, but let him down in the general case although in some particular 
instances, when one condition being satisfied the second one was also necessarily 
complied with, he arrived at the correct result. For more details see letters and 
contributions JS 4 Aug. 1698; Opera t. 1, p. 222; Jacob Bernoulli (1700; 1701) as 
well as Giesel (1857). R. W. 
    Wolf’s explanation is not sufficient. Johann dealt with a differential equation of 
the second rather than of the third degree (Hoffmann 1970, p. 48). O. S. 
    27. Mém. de Paris (1706); Jacob Bernoulli Opera, t. 1, p. 424. Johann’s solution 
deposited at Paris was only opened on 17 April 1706, after the death of Jacob. R. W. 
    28. Mém. de Paris (1718); Johann Bernoulli (Opera, t. 2, p. 235). In the 
Introduction, Johann says that a suspicion was voiced that he had intentionally 
published his work mentioned in Note 26 after Jacob’s death but that the [real] 
reason for his hesitation was described by Fontenelle (1706). However, I had vainly 
searched there for such reasons which would have been still valid after March 1701 
and must therefore share that suspicion.  
    Yes, fear overwhelmed Johann when early in 1701 he came to hear rumours that 
Jacob wished to bring his analysis to Paris in person and be present at the opening 
and checking of his, Johann’s, deposited packet, see the correspondence of Leibniz 
and Johann, pp. 654 and 659, and it seems to strengthen that suspicion. R. W. 
    29. It is remarkable and deserving to be mentioned that later the field of 
isoperimetry was also for the time being studied by Swiss mathematicians. In the 
analytical direction Bernoullis followed Euler (from Basel) and in the synthetic 
direction, they were led by Lhuilier (Geneva) and Steiner (Bern). R. W. 
    30. I think I may mention here the six series of trials I had studied (Wolf 1849 – 
1853). R. W. [1849 – 1851– O. S.] 
    31. Here it is. A and B play with a die on the condition that the winner will be he 
who first tosses 1. They both, in turn, toss once, then twice each, at first A, then B, 
then thrice each etc. Or, A tosses once, B tosses twice, A tosses three times, etc. It is 
required to determine the ratio of their expectations (sort). See Jacob Bernoulli 
Opera, p. 207. 
    No one provided the answer, and Jacob himself published it in the Acta 
Eruditorum in January 1691 somewhat changing the conditions of the game. Similar 
problems are studied in his Ars Conjectandi, in the Supplement to its part 1. R. W. 
[In the commentary to the solution of Huygens’ Additional problem No. 1. O. S.] 
    32. Nicolaus I was born 10 October 1687, early turned with special liking to 
mathematics, cf. Note 7. Already in 1704 he earned his Master degree defending his 
thesis (1704), later included in Jacob Bernoulli’s Opera, under the chairmanship of 
his uncle [Jacob]. He then studied the law without, however, deserting mathematics 
as testified by his paper of 1708 Regula generalis inveniendi aequationes, per quas 
alia quaepiam data, modo reducibilis sit, dividi potest prompted by Newton’s 
Arithmetica Universalis [1707; reprinted many times, translated into English many 
times and into French in 1802]. Nicolaus’ uncle Johann sent the Regula to Leibniz, 
see their correspondence, pp. 827 – 835, and in an enlarged version in the previous 
edition of their correspondence, t. 2, pp. 179 – 209.  
    Then, his mathematical pursuits are also seen in his dissertation of 1709 [see 
beginning of § 12], in his letters to Montmort written in 1710 – 1713, to Leibniz in 
1712 – 1716 and to Euler in 1742 – 1743, see Note 11 and Fuss (1843). Nicolaus 
also compiled a number of scattered contributions; in the summer of 1712 he 



 

travelled via Holland to England where he became acquainted with Newton, De 
Moivre and others and probably for this reason he was elected in 1714 Fellow of the 
Royal Society; previously, in 1713 he became member of the Berlin Academy, and 
later, in 1724, of the Academy of Bologna.  
    Newton presented Nicolaus a copy of his Analysis (1711), still kept at the Basel 
Library, De Moivre gave him his Animadversiones (1704) also to be found there 
with many marginal comments made by Nicolaus and his Mensura sortis (1712). At 
the end of the year [of 1712] Nicolaus went through Brussels to Paris where 
Montmort received him most obligingly and later took him to his estates where they 
were diligently occupying themselves for three months with their favourite science.  
    Nicolaus was also welcomed at the Paris scientific world which is unquestionably 
testified by the names of those meeting him there; and he was indeed also admitted 
into the high life: the Duchess de Angoulème, well acquainted with Montmort, 
affectionately received him. She died at an old age on 12 August 1713 [Montmort 
(1708/1713, p. 395].  
    Exactly a year after his departure, Nicolaus came back to Basel and first of all 
became busy with the printing of his uncle Jacob’s posthumous papers. After 
Hermann left Padua, Leibniz recommended him in 1716 to the vacant post, but he 
did not stay there for a long time and in 1722 took over the professorship of logic in 
Basel for which he applied by publishing his Theses (1722). 
    In 1731 he became professor of law and remained in that position until his death 
on 29 November 1759. Having been deeply respected by his colleagues, he was four 
times appointed rector. His post and other [related] duties had left him no spare time 
for serious mathematical work as he already in 1742 with regret informed Euler. 
Otherwise, bearing in mind his keen perception, he would have certainly excelled in 
such studies. According to Leu & Sons (1747 – 1765), he published shorter 
contributions already in 1719 and 1720 in the Acta Eruditorum and in tt. 7 and 9 of 
their Supplements, in tt. 20, 24, 29 and 33 of the Giorn. de lett. [Giornale de letterati 
d’Italia], in No. 341 of the Philosophical Transactions of the Roy. Soc. [1717] and in 
the Paris Mémoires for 1711. Then, his published contributions to jurisprudence are 
his Theses (1711; 1720; 1722; 1731). Finally a volume in quarto of his manuscripts, 
it being a medley of studies and fragments on geometry, mechanics, astronomy etc, 
is kept at the Basel Library. R. W. 
   On Bernoulli’s correspondence with Montmort see Henny (1975). O. S. 
    33. Wolf describes an episode in which that Nicolaus’s recommendation became 
harmful to him himself. O. S. 
    34. The Basel Library keeps a copy of that book with the following lines inscribed 
by Bernoulli:  
    Francisce Christ, Amice mi/Tuas mihi doctissimas/De sorte dedicas 
theses,/Mihique sic das symbolum/Amoris erga me tui./En offero munusculum/Tibi 
vicissim, et hoc erit/Amoris erga te mei/Animique grati symbolum. R. W. 
    35. That statement should be essentially supplemented and corrected. First, 
Bernoulli had copied his statistical data from Arbuthnot (1712/1970, pp. 201 – 202) 
who, in turn, referred to “Observations […] of the births in London” (actually, of the 
baptisms there). Second, Bernoulli achieved much more (and Wolf’s description 
above of his correspondence with Montmort is not adequate at all). In 1713 he 
(Montmort 1708/1713, pp. 280 – 285) studied Arbuthnot’s data and indirectly 
derived the normal distribution thus anticipating De Moivre’s note of 1733. See my 
general comment on [ix]. 
    Finally, bearing in mind Wolf’s description below of Bernoulli’s participation in 
publishing his uncle’s Ars Conjectandi, I ought to refer to Kohli (1975b, p. 541): not 
only did N. B. pick up in his thesis of 1709 some hints included in the manuscript of 
the Ars, he also borrowed separate passages both from it and from Jacob’s 
Meditatione (Diary) never meant for publication. The stochastic part of that source is 
published: Bernoulli Jacob (1975, pp. 21 – 89). Also see Yushkevich (1986 and 
Kohli (1975a). O. S. 
    36. That statement partly contradicts the previous phrase. O. S. 
    37. The coincidence of Nicolaus’ judgement with Laplace’s statement above is 
certainly most interesting. R. W. 
    Note the use of probability and favourable/unfavourable cases in the same phrase. 
O. S. 



 

    38. Bernoulli Jacob (1713/1975, p. 108). I am inserting the translation from David 
(1962, pp. 133 – 134). Neither Wolf, nor she had translated that Introduction in full. 
O. S. 
    39. Bearing in mind Fontenelle’s aim, Hermann informed him about the 
posthumous manuscript [of the Ars Conjectandi]. R. W. 
    40. This explanation does not completely agree with Wolf’s description above; 
moreover, it would seem that Nicolaus did not really wish to “complete” the Ars 
Conjectandi as it indirectly follows from Note 35. O. S. 
    41. Montmort (1708/1713, p. XIII) felt himself unable to do anything of the sort: 
he should have studied the application of probability to political, economic and 
moral problems, but did not know “where to find the theories based on factual 
information which would allow me [him] to pursue” that research; translated by 
David (1962, p. 150). 
    42. See Bernoulli Jacob (1713) in Bibliography. O. S. 
    43. According to the verbal information from councillor Peter Merian in Basel. R. 
W. 
    44. The chair of Greek language in Basel was indeed offered to Johann, who, 
answering the pressing request of his father-in-law, resigned from his position in 
Groningen and on 18 August 1705 departed from there to Basel with all his family. 
On 23 August, while passing Amsterdam, he received information about Jacob’s 
death. R. W. 

 
Information about Scientists and Others Mentioned by Wolf 

 
    Baxter, Richard, 1615 – 1691, theologian 
    Bossut, Charles, 1730 – 1814  
    Cramer, Gabriel, 1704 – 1752, mathematician 
    Euler, Johann Albrecht, 1734 – 1800, mathematician. Son of Leonhard Euler 
    Fatio de Duillier, Jean Christophe, 1656 – 1720, mathematician. Jakob 
Bernoulli corresponded with him, see Bernoulli Jakob (1993)  
    Flamsteed, John, 1646 – 1719, astronomer 
    Gerhardt, Carl Immanuel, 1816 – 1899, mathematician 
    Hermann, Jakob, 1678 – 1733, mathematician 
    Hudde, Johannes, 1628 – 1704, mathematician 
    La Montre, Jean Joseph, 17th century, mathematician 
    L’Hospital, Guillaume François Antoine, 1661 – 1704, mathematician 
    Megerlin, Peter, 1623 – 1686, mathematician 
    Meton, – V century, Greek astronomer. Metonic period covers all the changes of 
the Moon 
    Rigault, Rigaud, Hyacinthe, 1659 – 1743, painter 
    Schwenter, Daniel, 1585 – 1636, orientalist and mathematician 
    Steiner, Jacob, 1796 – 1863, mathematician 
    Turretin, Jean Alphonse, 1671 – 1737, theologian and historian 
    Varignon, Pierre, 1654 – 1722, mathematician 
    Waldkirch, Esther Elisabeth, born 1660. See beginning of § 2 
    Weidler, Johann Friedrich, 1691 – 1755, mathematician, astronomer, lawyer 
    Witt, Jan de, 1625 – 1672, mathematician, statesman 
    Woleb (Wolleb), Johann, 1640 – 1675, professor of music, later of physics in 
Basel 
    Wolf, Rudolf, 1816 – 1893, astronomer. Author of much important work on 
history of science in Switzerland, see Bibliography 
 

Geographical Names 
    Limousin, region in central France 
    Schaffhausen, capital of a canton of the same name in Switzerland 
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1. Introduction 

The origin of the main concepts of the theory of probability, like 
most foundations of our science, is lost in the darkness of the bygone 
times.  

Thus Grave (1924) begins his short historical essay in Chapter 2 of 
his popular book. The history of the calculations of probabilities is 
connected with the empirical search for methods of enabling capitals 
to increase, which was not however allowed by the canon dogmas of 
feudalism with its closed economies of separate estates. In the 
beginning, the canonical doctrine utterly prohibited interest, gain and 
[the corresponding] increase of capital. Production for the market 
rather than for consumption had been compelled to look for 
roundabout ways, sometimes very witty. […]  

During the era when municipal economy had been developing (the 
13th century), the main theoretician of the catholic church, Thomas 
Aquinas, 1227 – 12741 studied the issues of commerce in his Summa 
Theologiae (about 1250) and considered profit as payment for labour. 
In isolated cases, under conditions of risk, he also tolerated increases 
in the initial price, especially in the intercity and international 
commerce. In Thomas’ words, the creditor may, without committing a 
sin, arrange matters with the debtor about being compensated for loss 
(damnum emergens). 

This opened a wide field for speculations of any kind. Anyone 
became able to levy interest with clear conscience (Kulisher 1918, p. 
221). Thus began the medieval bacchanalia founded on risk and loss: 
the usual rate stated when concluding agreements was each two 
months, one mark for each 10 marks (60% yearly). It became 
necessary to yield further, i. e., to allow the levy of interest although 
lowering its rate. In the 14th century2, it was allowed to take 431/3% for 
consumer credit. For commercial crediting, Venice levied 25 – 50%, 
not yearly but for the duration of a voyage, and the same applied to 
Florence. This often amounted to 250% yearly. An ordinance of 1311 
allowed levies of 20% [on deals concluded] at fairs in Champagne. 

Having begun with theoretical concessions, the Church passed on to 
usury. Monasteries, convents, city churches, monastic orders became 
in essence bank institutions accumulating the moneys obtained from 
the believers either as gifts or for keeping. In Bruges and Novgorod as 
well as in other places churches kept wares and balances and the 
buying and selling went on before the altars […]. 

Under feudalism, risk and loss in general did not yield to qualitative 
[quantitative] definition; each instance was difficult in itself. For sea 
voyages, the situation was especially complicated: the number of 



 

chances favouring a successful shipping of commodities had to be 
calculated3. Similar to dicing, then spread over the whole world, the 
case in which only one chance among all the possible ones was 
favourable, was called difficult, azari, from the Arabic asar4; hence, 
hazard. Sea operations were indeed as hazardous as gaming and it was 
necessary to find methods for making them profitable allowing for the 
risk and loss in accord with the canonical dogma. Gradually, chances 
of operations (chance, a face of a die) or cases (casus, the fall of a die) 
began to be calculated and a special branch of mathematics, the theory 
of probability, appeared. La Grande Enc., t. 27, p. 720 (end of the 19th 
century) clearly stated that Le calcul des probabilités a pur but de 
mesurer les chances d’arrivée des événements due au hasard5. 

2. Marine Insurance 
Already in the 11th century commercial sea operations required legal 

regulations. A number of statutes appeared, at first connected with 
separate harbours, under a common title Ordo et Consuetudo Maris, 
see the details in one of the next issues of the Arkhiv Inst. Istorii Nauki 
i Techniki. 

In the 12th century marine traders introduced promissory notes 
(Wechsel, exchange) transformed in the next century into bills of 
exchange. In the 14th century the latter were officially recognized, and 
many cities began discounting them and the bill of exchange passed on 
to trading in general. After the promissory notes came the marine loans 
(foenus nauticum) on the security of either the ship or the freight. This 
was one of the methods for sidestepping the canonical doctrine. 

Finally, the joint-stock risk replaced the individual risk, or the fear 
of losing both ship and freight: marine insurance societies had 
appeared. They already calculated (roughly, of course) the probability 
of ship-wrecks and capture of ships by pirates. For shipping, the cost 
of insuring distant voyages was higher. Although the Atlantic 
impressed special fear [?], and a sea trip from Pisa to Bruges was 
considerably shorter than a voyage down the Rhein and by land, the 
insurance premium in the former case amounted to 12 − 15% because 
of the additional risk as sea as compared with 6 − 8% in the latter 
instance. 

The first marine insurance societies appeared in the 14th century in 
Italy, Amsterdam and Bruges; in the next century, they acquired 
charters (in 1435, the Barcelona ordinance, and in 1498, the Genoi 
statute). In the 16th century, marine insurance was introduced in 
Florence, Naples, Spain, Portugal and Holland. The Florentine banks 
insured commodities and moneys for 10 − 15% a tutto periglio di 
mare e di genti, di foco e di corsali. Concerning the attitude towards 
calculating chances, the Grande Enc. (t. 4, p. 331) stated: 

Toute compagnie d’assurance doit être considérée comme jouant au 
jeu de hasard avec le public qui est infiniment plus riche qu’elle6.  

3. Calculating the Chances of a Gambler 
We already find the first published indication in the 15th century. In 

1477, in Venice, Benvenuto d’Imola published Dante’s Divina 
Comedia with his comments and considered there the frequency of the 
occurrence of the faces of a die. It is there that the term azari was used 
to designate a case having only one chance. A more interesting 



 

problem about an interrupted game is contained in the celebrated work 
of the monk Fra Luca Paciuoli [Paciolo, Paccioli, Luca di Borgo] 
Summa Arithmetica … of 1494. Cardano (Practica [Arithmetice], cap. 
61, De extraordinariis et ludis), Fr. Peverone, ca. 1550, and Tartaglia 
in 1556 (Generale Trattato, I, entitled Error di Fra Luco del Borgo) 
followed suit.  

In the 16th century it became necessary to study all the possible 
combinations which pushed the summing of series into the foreground. 
Already Cardano offered a table of chances based on the calculation of 
the cubes of numbers. Further on we find sums in Stiffel’s well-known 
Arithmetica Integra of 1544. It contained a comparison of arithmetical 
and geometric series which Bürgi about 50 years later [in 1620] 
developed into a method of taking logarithms; a calculation of the 
powers of numbers by using the binomial, for example, 124 = (10 + 
2)4; the triangular table of the binomial coefficients perfected later by 
Pascal; and, finally, various summings.  

Buteo (Logistica, in 1559) and Harriot (Artis Analyticae Praxis, 
written about 1600, published only posthumously in 1631) calculated 
combinations. In 1612 − 1619, Faulhaber and Remmelin published 
rules for summing arithmetical series. Fermat (letter to Roberval of 16 
Dec. 1636) described a method for summing any powers of integers 
and in 1634 Herigone (Cursus mathematicus, t. 2, p. 102) offered the 

formula for calculating .n
rC   

In 1653 Pascal informed his friends about his manuscript Traité du 
triangle arithmétique only published in 1665. He applied his triangle 
for solving the problem of points which the Chevalier de Méré had 
proposed to him next year [in 1654]. Pascal’s correspondence with de 
Méré and Fermat showed that both he and Fermat, although by 
different methods, independently from each other solved this problem 
already formulated by Cardano in 1539 and Tartaglio in 1556. 
Historians of mathematics usually exaggerate this episode claiming 
that it constituted an exceptional event and considering that the theory 
of probability was born in 16547. Actually, this was a direct 
continuation of the work of their predecessors as is seen from Pascal’s 
words: 

Usage du triangle arithmétique pour déterminer les parties qu’on 
doit faire entre deux joueurs qui jouent en plusieurs parties. 

As we shall see now, the abovementioned correspondence only 
published in 1679 did not influence the development of the insurance 
institutions or the running of the joint-stock companies.  

Huygens in 1657, Leibniz in 1666, Frenicle in 1676, Wallis in 1685 
and Spinoza in 1687 had also been engaged in issues of combinatorial 
analysis. Many authors solved isolated problems calculating the 
chances of gamblers or describing previous achievements. Thus, 
Caramuel (Mathesis biceps, tt. 1 – 2, 1670) discussed the works of 
Ramon Lull, the Danish astronomer Longomontanus and Huygens. 
Saveur in 1679, Jakob Bernoulli in 1685 and Johann Bernoulli in 1690 
studied isolated issues. 

Is it possible to say that in those times, in the 17th century, a 
mathematical theory, or at least a method for solving the problems 
about chances was created? The most fervent advocates of the leading 



 

role of science [as compared with social and economic issues] are 
compelled to admit that the matter did not go beyond the solution of 
separate problems. Thus, Gouraud (1848, p. 13) says with respect to 
Huygens’ Ratiociniis in ludo aleae of 1657 which served as a basis for 
all the subsequent quests for more than 60 years: Plusieurs problèmes 
analogues à ceux du Chevalier de Méré résolus sans généralité, il est 
vrai. Todhunter (1865, p. 21) very scornfully regards Gouraud’s 
compilation filled with very pretentious considerations8 but lacking a 
single formula. He himself is inclined to consider Pascal and Fermat as 
the founders of the theory though he hesitates about who of them is to 
take precedence and he also has to admit that for half a century after 
1654 the theory of probability advanced but little. Concerning the 
significance of Pascal’s work Grave (1924, p. 31) says: 

For all the witticism of this solution, it suffers from the shortcoming 
that it is not seen how to solve other, more complicated problems 
about the sharing of stakes in an interrupted game. 

Huygens and other writers used the formulas of the usual and 
weighted arithmetic mean of two numbers. The concept of expectation 
was thus established by the mid-17th century although for a long time 
it was not designated by any term. In the 18th century Jakob Bernoulli 
introduced the term gambler’s fate quite corresponding to reality and 
to the essence of the matter9. But in the 19th century the bourgeois 
hypocrisy replaced it by espérance mathématique (Laplace 1812) or 
mathematische Hoffnung (with a shade of hope), or mathematical 
expectation. This is seen in the explanation provided by the Enc. Sci. 
math. (t. 1/4, p. 39): 

Pour évaluer d’une façon objective l’attente d’un gain (ou d’une 
perte), attaché à la réalisation d’un événement incertain, on a 
introduit la notion de l’espérance mathématique. 

Thus, the psychology of the game was masked by an allegedly 
objective mathematical calculation. At the same time, the new term 
suggested to the masses that this was a scientific expectation having 
nothing to do with fatalities, luck, chance etc [exactly so]. 

In the 17th century, the calculation of chances began to take shape in 
astronomy, in the works of Kepler and Galileo10. Such attempts were 
not however repeated until [Daniel] Bernoulli and Laplace. So what 
had compelled mathematicians of the 17th century, not gamblers at all, 
to consider issues as though connected with dicing? A definition 
included into our modern courses provides an answer: 

An enterprise where a change in the capitals of its participants 
without any change of the total capital, is possible, is called a game11. 
And such games had indeed been developed then. 

4. Joint-stock Companies, Banks and Exchanges  
in the 16th and 17th Centuries 

The outcome of the heroic era of great geographical discoveries; the 
class shifts in the 16th and the beginning of the 17th century; the 
colonial policy pursued by the European countries; the flourishing of 
commercial operations together with the liberation of most states from 
the tyranny of the Romish church, were caused by, and at the same 
time gave a great impulse to European capitalism. Medieval guilds 
made way for the companies of the 16th century competing one with 



 

another until the 17th century when united joint-stock societies were 
established in each country by merging. However, they did not yet 
need mathematical theories. As Mephistopheles says: Krieg, Handel 
und Piraterie, − dreieinig sind sie, nicht zu trennen. Kulisher (1918, p. 
390) stresses that  

A vast majority of the companies established in the 17th and 18th 
centuries had been existing precariously although many of them 
practised piracy.  
    Banks and exchanges provided a similar picture of activities 
founded not on scientific research but on methods sufficiently far from 
science. The work of medieval Italian money-changers was 
characterized by an oath (the city of Lucca, 1111): 

To abstain in the future from deception, theft and forgery (nec 
furtum faciant nec treccamentum aut falsitatem).  

The oath was engraved on a marble stone in the porch of the 
cathedral, but it seems that such oaths were easily forgotten … The 
money-changer sat at a table (banco) covered by a green cloth, hence 
the designation of the institution, and, later, of the person, bancherius.  

Genuine banks of the modern type accepting moneys for keeping 
and change spread over Europe in the beginning of the 17th century, 
and exchanges developed at the same time. The leather bag for 
keeping money, bursa, became a generic nickname for the Bruges 
merchants, van der Burse. This noble clan possessed a large house 
overlooking a square and soon gave the occasion for calling the 
merchants’ meeting before the house Bursa.  

The new institution, the exchange, appeared in Antwerp, Lyons, 
Amsterdam, Venice, Hamburg and London. Speculation went on not 
only in shares, but in all kinds of commodities as well. In 1619, an 
Italian author, Skaccia [transliteration uncertain] wrote that By means 
of short letters the bankers transform fictitious money of account into 
real gold. However, at the end of the century, in 1688, the Portugal 
Jew De La Vega warned: Profit at the exchange is morning dew, a 
soap bubble, which disappears on the spot. And the London street, 
Change Alley, where the exchange was situated, had been candidly 
called robbers’ den. And so, neither the joint-stock societies, nor the 
banks, nor the exchanges stood in need of probability. Their demands 
on the theory only appeared in the 19th century when methods of 
scientific gain at least founded on scientific grounds superseded 
downright robbery. 

In the 17th century, insurance societies developed slowly, beginning 
with marine insurance. In England, fire insurance then originated. The 
situation somewhat improved in the 18th century (Copenhagen, 
Stockholm, Berlin, Paris) although only in its second half. Both 
Catholic and Protestant authors then adhered to the same opinion about 
lightning bolts and storms: God sends all these phenomena as 
punishment for the sins of mankind … Because of similar religious 
prejudices life insurance developed at the same slow rate.  

The first societies originated in England; there, in the 18th century, 
the bourgeoisie freed itself from many beliefs and turned to capitalism 
in a considerably greater measure than on the Continent. Thus, the 
Amicable Society (1706), the Royal Exchange and London Assurance 



 

(1721) had appeared. France ventured to follow only in 1787, but the 
society there established was brought to an end in 1793, and only in 
1819 a government decree allowed to organize the Compagnie 
d’assurances générales sur la vie. In Russia, a Society concerning 
Cases of Death was established during the reign of the Empress 
Ekaterina II. 

Masked life insurance based on calculations of the gamblers’ 
chances appeared in the 17th century. A Neapolitan banker Lorenzo 
Tonti established a society whose members deposited a certain sum of 
moneys into a fund with the interest being paid out to those still living. 
After the death of its last member, the fund had to become state 
property. The first tontines appeared in Italian and German cities; in 
1653 Tonti proposed a project of a tontine to Cardinal Mazarin, but the 
[French] parliament did not approve it. Tontines were however 
introduced in France and England by the end of the 18th century. A 
modified tontine named after Lafarge existed in Paris from 1759 to 
1889. 

The craving for games of chance, or, more precisely, for quick 
winnings, so widely spread among mankind, was made use of when 
state lotteries came into being. The first such lottery was set up in 
Genoi in the beginning of the 17th century, and in the 18th century 
lotteries spread over France, Germany and Austria. Mathematical 
calculations concerning the Genoise lottery were simple although too 
difficult for laymen. There are 90 numbers, and 5 of them win at each 
series of drawings. The probability that a number wins was p = 5/90; 
for a bet on two numbers the probability was (5/90)·(4/89). For betting 
on 3, 4 or 5 numbers the respective probabilities were much lower in 
accordance with the formula12 
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For stake M and betting on 1 number, the gambler’s fate 

[expectation] is − M/6 [?] and a similar conclusion holds for all the 
other cases: his fate is indeed negative and the lottery is not fair. In a 
game of roulette the banker’s expectation is always positive: the 
gamblers only get 36/37 of the fair payout. 

6. Statistics 
Let us now pass on to the new branch which prompted the 

development of most important mathematical methods, to statistics13. 
Already in the 11th century we find first information about the 
movement of property, commodities and population in various 
countries of Western Europe. In 1086 William the Conqueror brought 
together the data concerning England in the celebrated Domesday 
Book. In Russia, cadastral books were being compiled from 1266. 
After the Reformation, the churches began to register births and 
marriages, and in England such records were being published from 
1592. And, again in England, from 1603 the movement of the 
population had been continuously recorded. At the end of the 17th 
century Colbert [in France] originated statistics of commerce. In 
England, at the same time, official price-lists were being published. 



 

Capitalism then developing in Europe stood in need of combining 
isolated economic data and of creating methods for their application. 
Financial businessmen whose speculations put in danger the lives of 
isolated people as well as the existence of institutions also attempted to 
discover grounds for some predictions and to ensure their operations. 
The two first bulwarks of the bourgeoisie of the 17th century, Holland 
and England, made the first experiments in this direction. 

In 1662, John Graunt, an owner of a haberdashery, issued a book, in 
which he treated the pertinent statistical data and offered a first attempt 
at calculating probable mortality at different ages. He already deduced 
the sex ratio at birth, 1.06814, based on 32 years of observation. His 
investigations resulted in his election to the [just established] Royal 
Society. 

In Holland, two eminent representatives of the bourgeoisie, the 
Amsterdam Burgomaster Johann Hudde, and the Grand Pensionary 
Johann de Witt, studied life annuities. The latter’s booklet appeared in 
1671, shortly before his tragic death. At the same time, a versatile 
Englishman who engaged in medicine, mathematics, land surveying, 
music and shipbuilding, as well as being a practical worker in 
economics; who made a fortune and was knighted, went further on in 
justifying the new branch of mathematics. He was William Petty, the 
author of several writings appearing in 1662 − 1692 and especially, in 
1690, of Political Arithmetic which made him famous. In his Preface 
Petty says: 

I have taken the course […] to express my self in Terms of Number, 
Weight, or Measure; to use only Arguments of Sense, and to consider 
only such causes as have visible Foundations in Nature leaving those 
that depend upon the mutable Minds, Opinions, Appetites, and 
Passions of particular Men, to the Consideration of others […]. 

Graunt and Petty are the founders of scientific statistics. The third 
person who developed their methods was Edmund Halley, the 
celebrated astronomer, the Southern Tycho, as his contemporaries 
called him. Halley studied the bills of mortality for London [?] and 
Breslau and in 1694 compiled his table of mortality. For a long time 
his method served as a basis for calculations concerning life 
insurance15. After Halley the following statisticians published 
mortality tables […]. 

In France, Deparcieux (1746) treated the data pertaining to three 
tontines (of 1689, 1696, 1734) by another method.  

In the 18th century the application of statistical tables developed on 
the basis of mortality statistics met with sharp objections as soon as the 
same method was applied to cover other aspects of the life of states. 
The Dane Anchersen (1741) published a book which originated 
statecraft (Staatswissenschaft, University Statistics)16. Religious 
moralists [?] attacked his followers calling them slaves of tables and 
representatives of the humble statistics. Only in the 19th century did 
statistical tables earn a sound position. In 1853, the first International 
Statistical Congress took place in Brussels. 

7. Mathematical Research in the 18th Century 
My aim does not include a study of separate authors or their 

investigations. I offered [am offering] an essay analysing the 



 

appropriate events and expounding the social and economic motives 
causing the development of mathematical methods and models, and I 
shall restrict my attention to a brief exposition here also.  

A jolly and witty nobleman of Louis XIV, Pierre Rémond de 
Montmort, a student of Malebranche and a correspondent of Leibniz, 
engaged in a general study of games of chance and the chances of 
winnings under the latter’s influence. He (1708) dwelt on a number of 
games applying combinatorial analysis and infinite series, as for 
example 

 
1/6 + 2/62 + 3/63 + …  
 

and offered a historical essay depuis l’origine jusqu’à son temps, that 
is, certainly from the time of Pascal. 

Then, after the revocation of the Edict of Nantes, Abraham De 
Moivre, a Frenchman and a Huguenot, at the age of 18 [some three 
years later] fled from France to England. Being 40 years old and 
engaged as tutor by the family of the Duke of Devonshire, he became 
interested in the Principia whose copy Newton had presented to the 
Duke. When attempting to read it, De Moivre was surprised to find out 
that his knowledge was insufficient. A persistent man, he began 
[resumed] studying mathematics and attained great success. In 1712 he 
published his first work [in probability], De mensura sortis […]. 

Following Halley, De Moivre offered the first formulation of the so-
called law of mortality stating that the number of those living 
decreased by a straight line17. […] Subsequent studies (Gompertz in 
1825 and Makeham in 1860) based on more detailed statistical 
materials led to the introduction of a curve whose middle part 
approached the De Moivre straight line. […] Later a large number of 
authors proposed other laws, − actually, only generalizations of a 
purely empirical nature.  

In 1730 Stirling offered a formula for calculating the product of 
natural numbers. […] De Moivre deduced the same formula even 
earlier […] and in 173818 applied it for proving the Bernoulli theorem. 
[…] 

Montmort’s book of 1708 caused a lively correspondence and a 
number of other writings. In 1709, Niklaus Bernoulli, following his 
late uncle, Jakob, attempted to apply the theory of chances to legal 
issues. In 1713, appeared a second edition of Montmort’s book. It 
contained his correspondence with Johann and Niklaus Bernoulli.  

The same year (1713) there appeared Jakob Bernoulli’s posthumous 
Ars Conjectandi. There, he (Chapter 2 of pt. 4) says19: 

Regarding that which is certainly known and beyond doubt, we say 
that we know or understand [it]; concerning all the rest, we only 
conjecture or opine. To make conjectures about something is the same 
as to measure its probability. Therefore, the art of conjecturing or 
stochastics is defined as the art of measuring the probability of things 
as exactly as possible, to be able always to choose what will be found 
the best, the more satisfactory, serene and reasonable for our 
judgements and actions. This alone supports all the wisdom of the 
philosopher and the prudence of the politician. 



 

[…] In Chapter 1 Bernoulli introduces certainty and its part, 
probability as well as the necessary and the contingent accompanied 
by an apt remark: Contingency does not always exclude necessity up to 
secondary causes. […] 

Bernoulli calculates probabilities [chances] by simple algebraic 
methods which is not the important part of his work [?]. But then, in 
Chapter 4 of pt 4 he questions in its title: What ought to be thought 
about something established by experience? And further (pp. 29 – 30): 

Even the most stupid person, all by himself and without any 
preliminary instruction, being guided by some natural instinct (which 
is extremely miraculous) feels sure that the more such observations 
are taken into account, the less is the danger of straying from the goal. 
[…] It remains to investigate something that no one had perhaps until 
now run across even in his thoughts. It certainly remains to inquire 
whether, when the number of observations thus increases, the 
probability of attaining the real ratio between the number of cases in 
which some event can occur or not, continually augments so that it 
finally exceeds any given degree of certitude. Or [to the contrary] the 
problem has, so to say, an asymptote, i. e., that there exists such a 
degree of certainty which can never be exceeded no matter how the 
observations be multiplied. 

And on p. 31:  
This, then, is the problem that I decided to make here public after 

having known its solution for twenty years20.  
[…] The author’s proof by means of the binomial, series and 

logarithms is now abandoned21. […] His philosophical views are 
expressed in the last words of his book: 

If observations of all events be continued for the entire infinity (with 
probability finally turning into complete certitude), it will be noticed 
that everything in the world is governed by precise ratios and a 
constant law of changes, so that even in things to the highest degree 
casual and fortuitous we would be compelled to admit as though some 
necessity and, I may say, fate. I do not know whether Plato himself had 
this in mind in his doctrine on the restoration of all things according 
to which after an innumerable number of centuries everything will 
revert to its previous state22.  

The halo surrounding Jakob Bernoulli’s book (1713) in the 20th 
century and the enthusiastic opinions expressed about it in the 19th 
century23 compel the historian to regard it especially attentively. In 
itself, the principle of mass observations was in the possession of all 
interested scientists of his time. Already Cardano formulated the so-
called principle of large numbers in the mid-16th century and the 
development of statistical observations and insurance in Holland and 
England was based on large numbers.  

Thus, only the mathematical shell of the principle constituted 
Bernoulli’s innovation. Picked up, improved and modified by 
subsequent workers in this field, it was completed in the mid-19th 
century. As to applications, Basel and entire Switzerland were in those 
times remote from the advanced economy of the Northern countries 
and France. […] 



 

The achievements of the 18th century apparently include the 
development of insurance, the creation of the elements of statistics and 
the publication of a large number of solved or formulated problems, 
but an integral theory of probability was lacking. If the 17th century 
was the era of initial accumulation, the 18th century was the period of 
secondary accumulation. Only after the social revolution of the end of 
the 18th, and the beginning of the 19th century, the bourgeoisie, having 
come to power, gave the mathematicians the opportunity to place the 
new calculus at its service. I shall consider the history of that period in 
a further work. 

8. The History of the Theory of Probability 
Apart from the two abovementioned books of Gouraud (1848) and 

Todhunter (1865), absolutely different with respect to their contents 
and manner of exposition, and similar only in that they lack any 
indication about the social and economic issues which originated the 
new calculus, there are no more books on the history of probability 
before the 19th century. 

Cantor, in his fundamental work, included pertinent isolated 
paragraphs (1900 – 1908, volumes 2, 3 and 4). Cajori (1893/1919, pp. 
377 – 383) devoted six pages to the period from Laplace to 1912. Still 
less (two pages) are in Smith (1958, vol. 2, pp. 528 − 530) who covers 
the period from the 15th to the 20th century. And the Enc. Math. Sci., 
also mentioned above, does not have, in its pertinent chapter, even a 
single subsection on the history of the calculus of probability. Tropfke 
(1924, pp. 63 – 74) offers similar fragmentary information. Helen 
Walker (1929) provides an important description of the 19th and 20th 
centuries but she restricts her attention to the earlier period by offering 
only brief indications (pp. 4 – 13) in accord with Todhunter. Finally, 
Czuber (1899) almost exclusively treats the 19th century with only a 
few lines about the mathematical works in probability appearing 
before Laplace.  

Given this situation, it is not surprising that various absurdities can 
be found in some textbooks. […] I shall have to return to the other 
mistakes of Khotimsky et al in the second part of my work. […] A 
detailed bibliography will be appended at the end of my investigation 
which is to appear in one of the next issues of this source. 
 

Notes 
1. The date of his birth is possibly 1225 or 1226. O. S. 
2. In many instances the author only mentions centuries rather than shorter 

intervals. O. S. 
3. At best, chances had been crudely estimated. O. S.  
4. David (1962, p. 34n) mentions another possible explanation, and Kendall 

(1956/1970, p. 21n), in spite of d’Imola (see § 3), does not agree with deriving 
difficult from d’asar. 

5. This passage describes a much later period and is therefore irrelevant. O. S. 
6. Pity the poor companies! O. S. 
7. Pascal and Fermat directed the attention of mathematicians to a new field and 

actually introduced the expectation (of a random variable). O. S. 
8. Lacking formulas seems to be correct, but very pretentious … is an invention. 

Todhunter many times mentioned Gouraud, but not on p. 21. O. S. 
9. Huygens mentioned the valeur de ma chance whereas Jakob Bernoulli 

(1713/1975, p. 110) translated this expression into Latin as expectation mea dicenda 
est valere. Below, the author discusses the introduction of the term expectation in a 



 

most vulgar manner. Laplace (1812/1886, p. 189) added the adjective mathematical 
to distinguish it from the then topical moral expectation. His innovation took root in 
the French and Russian literature, but it is high time to get rid of it. O. S. 

10. Galileo and Kepler had to treat direct and indirect measurements rather than 
calculate chances. See Sheynin (1993). O. S. 

11. A passage concerning games of chance would have been better, but still 
irrelevant. Dicing and games of chance in general were and still are useful in the 
methodical sense. O. S. 

12. The formula below (as well as the solution of a particular case just above) is 
wrong. See, for example, Maistrov (1967/1974, pp. 101 – 103). O. S. 

13. I do not touch on the statistical work carried out in the ancient world. V. M. 
14. According to Graunt, the sex ratio at birth was 14:13 (= 1.077). And the 

author did not adequately describe Graunt’s achievements. O. S. 
15. In 1699 Stansfeld established in London a Society of Assurance for Widows 

and Orphans. V. M. 
16. In 1727, Kirilov prepared an atlas of tables describing Russia, but it was only 

published in 1831. O. S. 
17. De Moivre introduced the uniform distribution as the law of mortality for ages 

beginning with 12 years. O. S. 
18. The correct date is 1733 rather than 1738. Then, De Moivre derived the 

Stirling formula not even earlier than, but at the same time as Stirling himself. O. S. 
19. I quote from my translation of that part 4 (Bernoulli 2005). In 2006, Edith 

Dudly Sylla translated the entire Ars Conjectandi, but her work is beneath criticism 
(Sheynin 2006). O. S. 

20. Some authors translate the last sentence as … after pondering about it for 
twenty years. O. S. 

21. No, not abandoned but essentially improved, mostly by applying the Stirling 
formula still unknown to Bernoulli. O. S. 

22. Bernoulli expressed his no less important philosophical views in chapter 4 of 
pt 4, see above. O. S. 

23. Thus, Gouraud (1848): Un des monuments les plus importants de l’histoire 
des mathématiques. Todhunter and Moritz Cantor were more restrained. V. M.  
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1. Introduction 

In most cases it is very easy to ascertain the anniversary of some 
man of science by issuing from the date of his birth or death, but it is 
difficult indeed to establish an anniversary of a science. It is usually 
impossible to trace precisely enough its beginnings often shrouded by 
the mist of bygone centuries. Happily, this can not be said about 
demography the date of whose birth can be stated quite exactly: 
January 1662. It was then that the Englishman John Graunt published a 
book which should unconditionally be considered as the first scientific 
investigation in population statistics. We therefore have all the grounds 
to think that January 1962 was a prominent date, the tercentenary of 
demography as a science. 

2. Biographical Information about Graunt 
John Graunt was born 24 April 1620 in London into the family of a 

haberdasher. His father Henry was a Hampshire man. After moving to 
London, he started a shop called Seven Stars in Birchin Lane. He had 
eight children, and there are reasons to suppose that John was the 
eldest: he was born when his father was only [?] 28 years old. 

John did not receive any special education. We only know that in 
the mornings, before shop-time, he studied Latin and French. And it is 
also known that his father apprenticed him to a haberdasher and that 
he, during all the time of his commercial activities, had been engaged 
in selling haberdashery. It might be thought that after the death of his 
father he took over his business. As a merchant, Graunt became rather 
famous in the business circles of London. He was reputed to be honest 
and was elected arbitrator between parties to various disputes. 
Graunt’s contemporaries highly praised his intellect, unusual wit and 
ability to keep up an interesting conversation. His business went on so 
successfully that he became able to buy expensive paintings and his 
superb picture-gallery was among the best ones. 

Graunt apparently enjoyed a very interesting circle of cultured 
friends. One of these was the then celebrated miniaturist Samuel 
Cooper; the others were John Hales, William Petty and many other 
prominent citizens of London. Graunt’s friendship with Petty should 
be especially noted. He apparently became already acquainted with the 
latter in his young years; they probably met at the house of one of their 
countrymen (both were of Hampshire stock). During the first period of 
their friendship, the rich and influential Graunt in every possible way 
helped Petty who was three years younger and did not yet have means 
or sufficient social connections. In any case, Graunt, then aged 30, is 
known to have actively assisted Petty, aged 27, in becoming professor 
of music at Gresham College1. 

In addition to commerce, Graunt found much time for social work. 
He was captain, then major of the Trained Band [of militia] and for 



 

two years member of the London municipal council. In 1666 he was 
even appointed commissioner for the water-supply of London and 
invited to head New River Co. managing this supply. This fact gave 
some authors occasion for accusing Graunt of turning off the cocks 
during the night before the Fire of London of 2 September 1666. 
However, the historian Maitland refuted this allegation by proving that 
Graunt had only become commissioner on 25 September 1666, 23 
days after the Fire. 

In those years, special bills of mortality had been published in 
London. They even date back to the 16th century, but they only began 
to appear regularly in the early 17th century. Each Tuesday, the 
relevant data were extracted from the separate parish registers; on the 
next day the weekly summaries appeared and on Thursdays these were 
sent out to subscribers. A yearly bill had been published on the 
Thursday before each Christmas.  

It seems that the number of the subscribers was not small, otherwise 
the bills would not have been published. Many inhabitants of London, 
mostly those from the wealthier, willingly glanced them over, being, 
however, interested in them for purely practical purposes. Rich people 
read the bills to find out whether mortality from plague had increased 
and attempted to leave London at the first indication of an epidemic. In 
addition, merchants and producers sought answers to questions such 
as, Should they buy up commodities; and, How high are the chances of 
selling their wares.  

In 1660, the stormy period of civil war, which lasted in England for 
almost 20 years, ended. A new period of English history began with 
the Restoration, with the enthroning of Charles II. It might be thought 
that exactly by that time John Graunt, the flourishing 40-years-old 
London merchant and public figure, originated a brilliant idea: Would 
it not be possible to consider the bills of mortality as an object of 
scientific research? Exactly in 1660 – 1661, when his business was in 
a fine state, he evidently began to have enough time at his disposal and 
to engage in treating the rich initial statistical material.  

Indeed, his main calculations concern the data up to 1658 which 
gives grounds for assuming that Graunt began writing his book even in 
1659 and gave it the same year to the publisher. His Epistle 
Dedicatory is dated 25 January 1662, just before the Observations 
appeared, and the book was apparently put out a few days later. 
Indeed, already on 5 February 50 of its copies were submitted on the 
author’s behalf to the Philosophical Society at Gresham College then 
being incorporated as the Royal Society. And, in another few days, 
Charles II himself asked the Royal Society to admit Graunt to their 
body, to the academy of sciences of England. 

The Society very attentively regarded the Royal proposal. Only a 
week had to pass before, on 12 February, a special commission 
comprising six men including Petty was set up for appraising the 
scientific significance of Graunt’s contribution. We would think that 
Petty thoroughly explained all the importance of the Observations to 
the other members. The report of the committee did not survive, but in 
a fortnight, on 26 February 1662, as its result, Graunt was elected 
Fellow of the Royal Society. His merits were thus all at once 



 

recognized by his contemporaries and the year 1662 became the 
beginning of his fame. 

During all that year Graunt did not make any reports and apparently 
neither had he been engaged in developing his writing. But it is known 
that he, somewhat suddenly, became occupied with the efficiency of 
rearing carp and salmon in ponds. On 19 August 1663 Graunt reported 
on this issue at the Royal Society. He discussed the number of carps 
and their distribution by size and thus applied statistical methods to 
pisciculture2. It seems however that Graunt nevertheless actively 
participated in the work of the Society because on 30 November 1664 
he was elected to its council and remained there until 11 April 1666. 

During those years Graunt’s fame rose and his book was reissued 
several times (in 1664 and twice in 1665); during 1662 – 1665 
Graunt’s merits were being widely recognized and he remained on the 
summit of his celebrity and material well-being. However, already the 
next year his circumstances sharply changed. In September 1666 the 
Fire of London destroyed all his property; he became insolvent and 
found himself in dire poverty. His friend Petty, then getting on 
successfully, tried to help Graunt by appointing him his London agent. 
Petty lived then in Ireland and he even insisted that Graunt moved 
there, but the latter never left London. In his youth, Graunt assisted 
Petty, but in their old age these roles were switched. Petty’s help did 
not, however, save Graunt. And it is even possible that he was refusing 
it. Graunt’s circumstances also worsened because of his renouncing 
the Church of England and becoming a Roman Catholic3. 

From 1666 Graunt ceased to participate in the activities of the Royal 
Society and later he apparently withdrew from every occupation. On 
18 April 1674 he died of jaundice in his own house4 in London being 
six days short of 54. He was buried on 22 April in a church in Fleet 
Street. Petty was present at the funeral and contemporaries testified 
that he had keenly felt the death of his friend. 

Except for the Observations Graunt did not leave any published 
writings although it is known that his scientific activity was not 
restricted to that contribution. During his last years he wrote 
Observations on the Advance of Excise and a work devoted to 
religious issues. Both these manuscripts remain unpublished5. It should 
be thought that they have no relation to demography, and that, even if 
appearing in print, they will not increase Graunt’s scientific merits 
which are high in this very branch of knowledge. 

3. Graunt’s Work 
Graunt’s book (1662) was the first scientific investigation of 

demographic issues in the history of mankind. Already its title is 
interesting in that it stresses the need to study not only biological and 
geographical factors of mortality, but, for that matter, its social and 
economic causes. It is essential to note that a theological interpretation 
of facts is barely present in the Observations, so that on the whole it is 
of a secular, and we might even say [?], of a sociological nature. 

Graunt was the first to guess that the material of population statistics 
can be an object of scientific analysis and the basis for important 
deductions. And he did not at all consider such a study as a game with 



 

figures, he understood that statistical analysis can really benefit the 
people. In his Preface he wrote: 

Finding some truths, and not commonly-believed opinions, to arise 
from my Meditations upon those neglected Papers [the bills of 
mortality], I proceeded further to consider what benefit the knowledge 
of the same would bring to the world […]. 

Graunt admits that he is not a professional scientist. We already 
know that he discovered demography while being engaged in 
commerce, but this fact does not in the least detract from his merits. A 
professional would have been unable even to arrive at his discovery 
because no such science had existed before him. And we should not be 
surprised that a merchant and a social figure rather than, for example, a 
biologist or a physician originated population statistics; a successful 
businessman was more likely to have enough time at his disposal for 
making such a discovery. 

It is also understandable that demography was indeed born in 
England. By those times, England was already the most developed 
industrial country pushing past Holland, France and Spain. It was in 
that country which liberated itself from under the watch of the 
Catholic Church and had comparatively developed printing facilities, 
that it became possible to publish weekly bills which attracted 
Graunt’s attention. And we can not fail to note the influence of the 
epidemics of plague which devastated the densely populated London 
with an especial force. A considerable part of the city population 
perished as a result of each epidemic, and this gloomy fact was one of 
the causes explaining the publication of the bills of mortality in 
London. The combination of all these circumstances had indeed led to 
the origin of demography in England in the mid-17th century. 

It is important to note that Graunt did not restrict his efforts to a 
simple comparison of various numerical data. His main merit is that 
he, as though rising above the isolated facts, understood that some 
regularity, a conformity with some laws, characterizes their totality 
taken as a whole. Graunt did not directly mention the action of the 
[still unknown] law of large numbers, but he almost felt it6 when 
formulating his demographic conclusions. Here they are. 

1) The numbers of men and women are roughly the same. For us, 
this is a platitude, but in those times there existed the most wrong 
impressions on that point. Physicians, for example, maintained that 
among their patients there were twice as many women as men so that 
the opinion that in the general population women considerably 
outnumbered men was widely spread. And polygamy existing in 
Muslim nations gave additional grounds for believing that the number 
of women largely exceeded the number of men. Graunt, after counting 
the number of those who died during 1628 − 1661, concluded that the 
Christian religion, forbidding polygamy, better conformed to the laws 
of nature than Islam. 

2) The sex ratio at birth is 14 boys:13 girls which means an excess 
of the male births of 1/13 = 7.7%. Graunt understood that, since he 
dealt with a large number of observations, such an excess could not 
have been the result of the action of some random factors. He correctly 
interpreted this excess as a definite regularity. Nowadays it is 



 

expressed by a somewhat lesser number, but the discrepancy should be 
explained by the fact that in Graunt’s time boys had been baptized 
more often than girls7.  

3) Mortality in London is higher than the birth rate, but the number 
of its inhabitants is increasing, which is only possible because of a 
strong influx of population from the countryside. Incidentally, this fact 
gave grounds for him to conclude that the rural areas were 
disproportionately represented in Parliament.  

4) While studying the influence of the plague epidemics, Graunt 
ascertained that in London the ensuing loss of life was being made up 
in two years. 

5) He (p. 320) indicated that  
London […] is perhaps a head too big for the Body, and possibly 

too strong: […] this head grows three times as fast as the Body unto 
which it belongs.  

6) Mortality in towns is higher than in the countryside. 
It is important to note that Graunt (p. 397) understood in a wide 

sense the significance of population statistics which he originated. He 
thought that the knowledge of the population and of its distribution 
was necessary for governing the country and directing commerce and 
industry in accord with the requirements of the population: 

I conclude, That a clear knowledge of all these particulars, and 
many more, whereat I have shot but at rovers, is necessary in order to 
good, certain and easie Government, and even to balance Parties and 
Factions both in Church and State.  

In the Observations, we also see attempts at a social and economic 
analysis of statistical material. Thus, he (p. 396) indicated that 

It would appear, how small a part of the People work upon 
necessary Labours and callings, viz., how many Women and Children 
do just nothing, only learning to spend what others get8. 

He showed a remarkable gift for statistical investigations; he 
skilfully dealt with the initial data, critically analyzed them, 
determined the boundaries for the possibility of comparing them, etc. 

Graunt was the first to construct a mortality table [a life table] which 
is his especially great merit. References to the Roman praetorian 
prefect Ulpianus, who is considered as the author of the first such 
table, are unconvincing. We are not sure what exactly do the data of 
his table represent: the mean duration of life for men of various ages, 
or the consecutive remainders of the debt (assumed to equal unity) yet 
to be paid by the annuitants, see Trennery (1926, p. 150) as quoted by 
Dublin et al (1949, p. 31). And neither the origin of Ulpianus’ figures 
nor their justification is known. Graunt, on the other hand, provided 
the two main columns of the mortality table, dx and lx, and explained 
his proposed methods of calculation. 

When compiling this table, Graunt was in a very difficult position. 
His data were the lists of the died only distributed by the causes of 
death without any information about their ages. In addition, the 
registration of those causes was extremely imperfect: they included, 
for example, headache, chill, teeth, fright and misfortune and had been 
determined by hardly competent persons. 



 

These difficulties did not, however, confuse Graunt, and he made 
use of the indications about the causes of death for roughly 
ascertaining the age structure at death. He based himself on the totals 
of death for 1629 – 1636 and 1647 – 1658. Although his main table 
has data for 1659 and 1660 as well, he did not include them in his 
analysis and restricted his calculations to the 20 years during which the 
total number of deaths, the basis for his further work, was 229,250. 

It is extremely interesting that Graunt had in essence grouped all the 
81 causes of death. He isolated those who died of children’s diseases 
(71,124); epidemics; chronic diseases; and accidents which enabled 
him to approach the issue of the age structure at death.  

Graunt thought that all the children’s diseases happened at ages of 
up to 4 or 5 years, but he understood that children had died not only of 
these specific diseases. He therefore set up a new group of causes of 
death, diseases affecting both children and adults (smallpox, measles 
and intestinal worms), and having been responsible for 12,210 deaths. 
Graunt then assumed that a half of this number were children up to 6 
years of age but excluded 16 thousand deaths from plague considering 
the plague epidemics as a perturbative factor. As a result, he showed 
that those who died before reaching 6 years of age constituted 36% of 
the total9: 

 
71,124 12,210 / 2

0.36.
229,250 16,384

+
=

−
  

 
Another indication of the age at death was an entry died of old age. 

The pertinent number was 15,757 or 7% of the total, 229,250. And he 
(p. 352) wrote: 

Only the question is, What number of years the Searchers call Aged, 
which I conceive must be the same that David10 calls so, viz. 70. […] It 
follows from hence, That if in any other Country more than seven of 
the 100 live beyond 70, such Country is to be esteemed more healthful 
than this of our city. 

Graunt, however, refused to consider only 70 years as aged; he 
issued from a far lesser age, 56, which he therefore assumed as the 
beginning of old age. At the same time, he decreased the portion of 
those who died of old age from 7 to 6% but did not justify this 
decision. 

He had no other possibilities for connecting the causes of death with 
age, but he formulated for himself a problem of great importance: To 
determine the order of extinction of a generation; that is, to calculate 
the column lx. At first, he needed the column dx, and he acted thus (p. 
386): 

Whereas we have found, that of 100 quick Conceptions about 36 of 
them die before they be six years old, and that perhaps but one 
surviveth 76; having seven decades between six and 76, we sought six 
mean proportional numbers between 64, the remainder, living at six 
years, and the one, which survives 76, and find, that the numbers 
following are practically near enough to the truth; for men do not die 
in exact proportions, nor in Fractions. 

He then provided these numbers:  



 

Of an hundred there die within the first six years […] 36; the next 
ten years, or Decad, […] 24 [and then 15, 9, 6, 4, 3, 2, and 1]. 

On these grounds he (Ibidem) compiled a table describing the order 
of the extinction of a generation: 

From whence it follows, that of the said 100 conceived, there 
remain alive at six years end […] 64. At sixteen years end […] 40. 
[The figures 25, 16, 10, 6, 3, 1 and 0 at 86 follow.] 

Various assumptions were made about the kind of mean 
proportional numbers on which Graunt had underpinned his column lx 
for ages beginning with 6 years. The British statistician and 
demographer Greenwood (1928) thought that Graunt had applied a 
geometric progression with ratio 0.62 and first term 64. The Soviet 
statistician and demographer Ptoukha (1938) decided that Graunt’s 
progression had ratio 0.63 whereas Willcox (1939, p. xii) suggested 
that its value was 5/8. In accord with these hypotheses we obtain the 
following series of numbers for survivors of various ages [not shown 
in translation]. 

It is most likely that Graunt, when determining these numbers, 
assumed that during each next decade the relative number of those 
dying was the same as during the first six years of life. He (see above) 
established that 36% die during the first six years of life, and 64% 
survive. Assuming that the next decade the same portion of the 
survivors will die, he obtained 40.96 (= 64 − 0.36·64), or, after 
rounding off, 40.  

For the next 10 years he got, in the same way, 25.6 (= 40 − 0.36·40), 
or, approximately, 25, then 16. For the two decades after that Graunt’s 
numbers are obtained with the [same] coefficient of survival, 0.64. 
Only for the ages exceeding 56 he abandons this proportion. 
Supposing that the curve of survival begins to decrease sharply, he 
assumes for 66 years 3 rather than 4, which should have been taken 
had the proportion persisted. That is, he supposes that half of the 
survivors will die during the decade 56 – 66. For the next decade he 
assumes an even sharper decrease of the curve, by factor 3 rather than 
by 2, so that only one lives to age 76. 

It is natural that Graunt’s numbers badly reflected reality. Whereas 
he rather closely approached it for children’s mortality11, he was 
absolutely wrong in all the other cases. He made a serious error in 
assuming a proportional decrease in the number of survivors. It was of 
course a great mistake to believe that within the interval from 6 to 56 
years the coefficient of mortality persisted for any age. The change of 
this coefficient with age can be roughly shown in the following way. 
[The author provides two graphs of the coefficients of mortality 
against age; the first one, according to Graunt and the second, basing 
himself on Russel (1948, p. 464) and Greenwood (1936, pp. 676 – 
677). The graphs sharply differ; the broken line of the second one goes 
downward until ca. age 10, then rises steeply.]  

Graunt greatly exaggerated the level of mortality for the ages from 6 
to 56 years12; consequently, in accord with his mortality table, the 
mean duration of life was only equal to 18.2 years. We can only regret 
that he did not calculate it himself; otherwise, he would have likely 
seen that the principle of proportionality, which he assumed as his 



 

basis, led to figures far from reality13. However, irrespective of his 
numerical results, Graunt’s main merit is that he was the first to put 
forward the idea of a curve [?] of survivorship and virtually calculated 
it. The business of his followers was to correct his calculations, but, 
anyway, he pioneered such studies and no one can deny it. 

Graunt did not restrict his work by determining the numbers of 
survivors but applied them for various calculations. He considered 
them as a reflection of the age structure of the population and 
appropriately computed the number of fighting men. Having 
previously determined that the male population of London numbered 
199 thousand, and believing that those from 16 to 56 constitute 34% of 
the total population (he subtracted 6% of those who survived 56 from 
the 40% surviving 16), he calculated 34% of 199 thousand which 
equalled 70 [67,7] thousand . This was only 18% of the total 
population, a manifestly underestimated portion. His mistake directly 
resulted from his erroneous idea that it was possible to apply a 
mortality table for describing the age structure of the population. 

Graunt’s estimates of the population of London were probably not 
quite precise, but in any case they destroyed the then prevalent and 
absolutely wrong notion that the inhabitants numbered 2 mln. Only by 
the mid-19th century, or almost two hundred years later, did the 
London population reach this figure. 

In concluding, we again emphasize that it was he rather than 
someone else who laid the foundation of population statistics. Almost 
everyone who studied his contribution agrees with this. Thus, the 
American demographer Dublin writes14: 

Graunt was one of those remarkable men who stepped out of the 
sphere of their everyday duties to enrich the world by surprisingly new 
ideas and directions of study. 

Willcox (1939, p. xiii) as though continues: 
Graunt paved the way both for the subsequent discoveries of the 

uniformity of many social and volitional phenomena (for example, 
marriages, suicides and crime) and for the study of this uniformity, its 
nature and boundaries. Thus, he, more than any more man, was the 
founder of statistics. 

4. Graunt and Petty 
These names usually stand side by side. Both are deservedly called 

the founders of political arithmetic although not everyone shares this 
opinion. Some thought that Graunt, a London merchant lacking 
education, was unable to write such a remarkable book. And soon after 
his death a rumour went around that it was not Graunt at all who wrote 
the Observations but Petty, and that Petty had agreed, out of friendly 
feelings, that it be attributed to Graunt15.  

The rumour turned out to be persistent and gradually gained many 
supporters. The celebrated astronomer and political arithmetician 
Halley; the famous historian Macaulay; and many other authorities 
upheld the idea of Petty’s authorship. This fact had compelled Hull to 
study the issue and later Greenwood and Willcox also considered it. 
All three agree in that the author of the Observations was Graunt and 
not Petty. We do not intend to dwell on this problem, but still desire to 
formulate several appropriate points. 



 

No one denies that Petty was an exceptionally gifted person, not 
only an economist, a statistician and demographer, but also a 
physician, an anatomist, a musician, poet, political figure, 
businessman, inventor, teacher and mathematician. Given such a 
versatile talent, it could have been thought that he had also written the 
Observations. We are nevertheless convinced that such an assumption 
is groundless. Petty’s descendants, entitled Lords Landsdownes, most 
vigorously come out in favour of his authorship. One of them writes, 
for example, that Graunt was  

Possessed of all the virtues, a man of marked integrity, a good 
friend, an excellent haberdasher, but […] I can not believe that he 
wrote the […] Observations.  

Petty’s contemporaries who were charmed by his rare talent and 
spread the rumour of his authorship considered Graunt as a dwarf 
mounted on an elephant. Hull, however, justifiably indicates that 
Petty’s friend Southwell, the author of this comparison, was not a very 
good judge of scientific work and was strongly impressed by Petty’s 
ability to solve easily linear equations in two variables16.  

In turn, the advocates of Graunt’s authorship put forward, in 
particular, the argument that it was not Petty’s ambitious nature to give 
away a part of his fame to anyone, even to a friend. And we ought to 
add that it was not in Graunt’s nature either to appropriate anyone 
else’s fame. All authors agree that he was morally impeccable. That 
any career considerations were alien to him is clearly testified by his 
breaking away from the predominant religion and joining Socinianism, 
a doctrine upholding free will, liberty of conscience, spread of 
education, etc. Could such a man strike a vulgar bargain with his 
conscience and appropriate his friend’s fame? We believe that he 
could not. 

In addition, I point out that in 1660 – 1661, when the Observations 
were being written, Petty had been preoccupied with energetic social 
and political activities and had absolutely no time for calm scientific 
investigations. Graunt, however, was in a different situation. At that 
time, he was perfectly well provided for and had all the possibilities 
for studying the bills of mortality, which he received, during the long 
winter evenings.  

This certainly does not mean that Petty had not participated in 
writing the Observations at all. It is quite possible that he helped 
Graunt with respect to some issues; Willcox even thinks that Petty 
suggested the very idea of a mortality table to Graunt. Petty’s original 
mind certainly assisted Graunt in outlining some directions of his 
research, but, in spite of his help and participation, Graunt is still the 
author of the Observations.  

5. Conclusion 
Three centuries have passed since Graunt’s Observations had 

appeared and during that time the world has changed beyond 
recognition. Social, economic and mathematical sciences essentially 
progressed, and demography has consequently developed its scientific 
tools and greatly enlarged out knowledge of the regularities of social 
life. In Graunt’s time, the term statistics and demography were 
unknown. The first appeared in a book written by Achenwall 87 years 



 

later, in 1749 [who described the so-called statistics]17, and the 
second, after almost 200 years, in a contribution by Achille Guillard 
(1855).  

Süssmilch justifiably compares Graunt with Columbus. But, 
whereas the latter never suspected that he had discovered a new 
continent, Graunt distinctly understood that he treated materials which 
before him had only been applied for unimportant and minor purposes. 
Nevertheless, he did not perceive the greatness of the science that he 
discovered, and in this respect he resembles Columbus who thought 
that the land he opened up was a part of Asia. The entire mankind 
should remember that exactly 300 years ago, on the banks of the 
Thames, in foggy London, the clear thought of John Graunt laid the 
first brick of the majestic building of modern population statistics.  

 
Notes 

1. Benjamin (1978) doubted whether Graunt had indeed assisted Petty on this 
occasion. O. S.  

2. Hull (Graunt 1899, vol. 1, p. 432) quoted Graunt’s Note of 1663:  
There were […] taken out of this pond [some 870] carps of about nine inches in 

length, some more, some less […]. 
Both statements (about rearing carp and some statistical methods) are quite wrong. 
O. S. 

3. Graunt also became a Socinian (a Unitarian), see § 4, a very special branch of 
Christianity. O. S. 

4. Dire poverty and his own house? O. S. 
5. I am not sure whether these second Observations are still unpublished. O. S. 
6. It was quite impossible for Graunt almost to feel the law of large numbers. He 

believed in the stability of statistical ratios. O. S. 
7. Graunt had to issue from christenings rather than from unregistered births. And, 

anyway (Graunt 1899, Chapter 3, § 44), in 1650 − 1660 not half of the people of 
England were convinced of the need of Baptizing newborn babies. In §§ 45 – 47 
Graunt lists other reasons for people to abstain from that procedure. O. S. 

8. The author should have chosen the very next lines: how many are meer [mere] 
Voluptuaries … O. S. 

9. Hull (Graunt 1899, vol. 1, p. 349) referred to Graunt’s Table on p. 406 in which 
the number 16,384 had appeared. O. S. 

10. It seems that the proper reference should have been to Moses (Psalms 90:10). 
O. S.  

11. In the mid-19th century, according to Greenwood’s interpolations (1941 – 
1943/1970, p. 78) based on Farr’s data, the number of children dying before the age 
of six constituted 32% (Graunt, 36%), and he indicated that there were no good 
medical reason for holding that the conditions of child life in London had essentially 
changed during the two past centuries. Westergaard also agreed that Graunt had 
calculated the level of children mortality approximately correctly. B. U. 

12. John (1884, p. 163) of course wrongly stated that Graunt had offered a rather 
correct picture of the order of extinction. B. U. 

13. Huygens was the first to calculate the mean duration of life in accord with 
Graunt. Some modern authors (in particular, Dublin) justifiably consider his result as 
curiosity pure and simple. B. U. In 1669, in correspondence with his brother 
Lodewijk, Huygens considered the issue of mortality and, to say the least, was thus 
the first to apply probability beyond the field of games of chance (Sheynin 1977, pp. 
247 – 249). O. S. 

14. Both this and the next passage are translated back from Russian. O. S. 
15. I (Sheynin 1977, p. 220n) noted Petty’s phrase (1684, Address to Lord 

Brounker): I have also (like the Author of the Observations) Dedicated this 
Discourse to […] the Duke of Newcastle. In the same paper, I considered the work of 
Graunt and Petty and, on p. 219, quoted Petty’s statements showing him as a 
philosopher of science, congenial in some respects with Leibniz, his junior 
contemporary. O. S. 



 

16. The author based these last ten lines on Greenwood (1928, p. 86). O. S. 
17. The word statistics first appeared in an Italian book of 1539 (Kendall 1960). 

O. S. 
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[1] Application of This Research 

This research can be essentially applied in politics; first, for 
estimating the power of a state and the number of its inhabitants by 
issuing from the number of deaths in the registers of deaths which are 
usually compiled at the end of each year; second, for estimating the 
mean life of a person; and finally for fixing a fair price of life annuities 
which are very beneficial for the state as the late Grand Pensionary De 
Witt explained in a contribution on that subject. 

[2] On Indication and Its Estimation 
Since all these considerations are based on reasonable indications 

(apparence), it should be first of all explained what is an indication and 
how should it be estimated. I say, however, that indication is just the 
degree of probability. For example, a die which is used in games has 
six quite equal faces and the indication of each is the same. This means 
that there is no reason to say that it falls rather on 1, or 2, …, or 6. 
However, throw two dice at once, and add the number of points on 
both. There will be a stronger indication that the sum is 7 rather than 
12. Indeed, the former is thrice stronger than the latter since there is 
only one way to achieve 12 points, by throwing 6 and 6, but there are 
three equally possible ways to get 7 points, 6 and 1, 5 and 2, and 4 and 
31. 

[3] A Rule for Finding Mean Indications  
Which We Should Choose in Case of Uncertainty 

When many indications are given and a mean indication is looked 
for to choose something in cases of uncertainty, here is how we should 
proceed. Suppose for example that it is required to estimate the value 
of some inheritance, a house or some other property. The custom of 
the peasants in Braunschweig – Lüneburg sanctioned by usage is to 
compose three groups of valuers (3 Schürzen, as they are called). Each 
consists of a certain number of men which agree on some value and 
declare it on common behalf. For example, the first group says that the 
value of a property is 80 écus, the second, 92, and the third, 98. For 
establishing a mean value [the arithmetic mean] is chosen2. 

That procedure, although of peasant origin, is based on 
demonstrative reasoning. Each group has the same authority […] and 
only [the arithmetic mean] should be chosen. Therefrom we formulate 
this rule: Having many equally possible indications, choose [the 
arithmetic mean]. 

[4] The Usual Boundary of Human Life Is 80 Years  
When Neglecting a Small Number of Those Who Overstep It 



 

Concerning human life, I suppose, according to the Scripture and 
experience, that its usual maximal duration is 803 years. This means 
that people pass not more than 80 years but do not pass 81 years. Some 
people call this latter number the largest threshold since it is equal to 9 
times 9. The small number of those who overstep that age should be 
neglected. 

[5] We Disregard Particular Considerations  
But Apply Them in Special Cases 

We should bear in mind that there are two kinds of considerations 
which can be applied for estimating [the duration of] human life. One 
is less certain, more particular and depends on experience. The other is 
more general, more proper for calculating and mostly depends on 
reasoning. Concerning the first kind, some believe that men are livelier 
than women; that more children die from smallpox and other diseases 
than youngsters and it can also be thought that proportionally more die 
in large cities than in the countryside, that the same is true for different 
professions, and that there are countries where people ordinarily live 
up to 100 years or more.  

However, since these particular considerations are too discrepant, 
we disregard all of them apart from instances in which we need to 
apply our general considerations to some special case4. 

[6] A Fundamental Premise: 81 Newborn Babies Die Out 
Uniformly: For 81 Years, One of Them Dies Each Year 

And so, neglecting the robustness, sex, profession, nation and other 
circumstances which can be added here if needed, and considering in 
general that all people are equally lively and that all the years of 
human life are equally fatal for human nature, − here is how we should 
proceed. 

Consider 81 recently born babies and assume that all of them must 
die during the following 81 years since this is what we have presumed. 
And since we also have supposed that all the years of human life are 
equally fatal, they die out during that period in a uniform manner, that 
is, one of them dies each year. Finally, since we have premised that all 
of them were equally lively, it will be as though by drawing lots that 
one of them will be the first, the second, … to die since all of them 
have the same indication of dying.  

[7] A Rigorous Demonstration That the Mean Duration  
of Human Life Is 40 Years and That a Life Annuity  

Bought for a Recently Born Baby5  
Should Be Estimated As a Pension for 40 Years 

Now we will easily determine the mean duration of human life. For 
any of those babies in its particular case there are as much indications 
to say that it will die during its first, its second, its third year, as there 
are for any other year until the 81st. If it dies during its first year it will 
not reach any year; their number is zero. If it dies during its second 
year, it achieves one year etc since we disregard the fractions or parts 
of years. Finally, if it dies during its 81st year, its age or the number of 
its years is 80. And so, we have 81 possible ages or estimations 
equally indicative of human life, i. e., the years 0, 1, 2, …, 80.  

For calculating the mean estimation we should [choose the 
arithmetic mean] which is 40. We can therefore say that 40 years is the 



 

duration of mean human life. It follows that a life annuity for a 
recently born baby should be considered as a temporary pension for 40 
years after which it expires. We can thus estimate the present value of 
a pension, that is, estimate for how much can it be bought at present 
when allowing for the rebate which I had described elsewhere and do 
not repeat here.  

[8] The Rule for Finding the Mean and Presumed Life  
for a Person of a Certain Age To Remain Probably Living6  
and Therefore the Value of a Life Annuity Which He Buys 

The same way that we have determined the mean future or 
presumed life of a newborn baby we can also calculate it for another 
person of any age. For example, a one year old baby can live either 
zero years (if it dies before reaching the [end of the present] year of his 
life) or 1, 2, …, 79 years. There are therefore 80 equally reasonable 
estimators of its remaining life and [the arithmetic mean] is 39 + 1/2 or 
rather (neglecting the fraction) 39 years for an infant who reached one 
year. The same way a child who reached 10 years still has 0, or 1, or 2, 
…, or 70 years to live and [the arithmetic mean] is 35. 

[9] A Shorter Rule for Determining the Same 
It is rather tiresome to calculate the sums of all those numbers, so 

here is a very short rule providing the same result. It is required to find 
how long a child of 10 years will probably live; that is, to find the 
mean duration of his remaining life. In a few words, 10 years which it 
reached is subtracted from 80 thus obtaining the maximal remaining 
life. Take its half, 35, which will be the required number.  

Here is the proof of this rule by issuing from the preceding 
calculation. It was required to find the sum of all the numbers taken in 
their natural order from 1 to 70 and divide it by 71. But that sum is a 
half of the number which occurs when 70 is multiplied by 71 (and the 
sum of the numbers from 1 to 79 is half of 79 multiplied by 80 and the 
sum of the numbers from 1 to 12 is a half of 12 multiplied by 13 etc 
which is easy to check). And that sum, a half of 70 multiplied by 71 
should be divided by 71. Multiplication and division by the same 
number 71 destroy [cancel] each other so that only a half of 70, i. e. 
35, remains. 

We can therefore reasonably suppose that a child who reached 10 
years will live 35 years more and a life annuity bought for it should be 
estimated as a temporary pension for 35 years. For a young man of 20 
years it is 30 years and for men aged 30, 40, 50, 60 and 70 years, 25, 
20, 15, 10 and 5 years respectively. 

[Leibniz appended a table showing that the probably remaining 
years of life are 40(1/2)371/2 and 35(21/2)0 for ages 0(1)5 and 10(5)80 
years.]  

[10] Proportion of People Dying at Each Age.  
For Example, It Can Be Judged That There Will Die  

Almost 1/36 of Those Reaching 45 Years 
Let us turn to the number of people. We have established that 81 

recently born babies will die uniformly for the next 81 year or that one 
will die each year until all of them die out. It follows that out of those 
81 babies who did not reach one year, one dies during that year. Next 
year there will only be 80, each one year old, out of which one more 



 

dies, then only 79 are left, each two years old out of which one more 
dies etc.  

The same happens if we have many groups of 81 people , i. e., an 
arbitrary number of groups. Obviously each year there will die 1/81 
part of infants not yet reaching one year of age, 1/80 of those who 
reached one year, 1/79 of those who reached two years etc, 1/71 of 10 
years old children, 1/61 of people 20 years old and, generally, when 
subtracting the age, for example, 30, from 81, the difference will be 
51, so that 1/51 of those aged 30 will die and finally those aged 80 will 
all die during a year as stipulated by our hypothesis.  

[Leibniz appended a table showing that from those aged 0, 1, 2, 5, 
10, 15, …, 75, 80 years, one out of 81, one out of 80, 1/79, 1/76, 1/71, 
1/66, …, 1/6, 1/1 will die during a year.] 

Therefore, if you know the number of people of some age, for 
example, of those 50 years old, divide it by the denominator of the 
corresponding part, by 31. This means that out of 10,000 men aged 50 
next year there will die 322. And the larger the number, the less 
notable will be the error other things being equal. 

[11] Supposition: Taken in a Multitude,  
the General Number of People,  
and Even of People of Each Age  

Remains Almost the Same As in the Previous Year 
We can introduce one more assumption, namely, that human 

fecundity is always the same and equals mortality so that the number 
of people remains almost the same and even that this year there will be 
the same number of children aged 1 year, 2 years, 10 years, of people 
aged 20, 30 etc years as there were a year ago. We therefore see that 
the multitude of people only changes notably due to some particular 
and extraordinary accidents but that at least from year to year the 
difference is not really sensible. 

I recognize that, according to the natural conditions, people will 
always rapidly multiply for compensating a large number of countries 
not yet sufficiently cultivated7, but people ruin themselves in so many 
ways by their disorder apart from visitations of widespread diseases so 
that their number does not much increase. 

[12] Reasonable Proportions of the Number of Living  
of Each Age. For Example, Out of 3321 People  

about 2 Are 20 Years Old for 1 of 50 Years 
Here is this proportion. There is 1 person of 80 years, 2 of 79 years, 

3 of 78, …, 32 of 50 years, 41 of 40, 51 of 30, 61 of 20, 66 of 15, 71 of 
10, 76 of 5, 79 of 2, 80 babies 1 year old, and 81 recently born who did 
not yet reach 1 year.  

The number of people in general and of each age in particular can 
only subsist if there exists this proportion coupled with the proposition 
established above about ages at death. This year therefore one of each 
age will die so that from the 2 living at age 79 one will reach 80. […] 
From the 3 aged 78 two will reach 79 […]. However, 81 babies will be 
born for replacing those 81 who die […] and thus the same number of 
people of each age subsists forever. 

[13] It Follows That Almost the Same Number of People Die 



 

in Each Age. For Example, This Year Die 100 People Aged 20 
And the Same Number of People Aged 50 Will Die  

Excepting Some Particular Cases  
Such As Those Concerning Little Children 

Therefore, if a 100 of ten-year-old children die, 100 people of 20 
years, 100 of 30 years, and in general the same number of each age 
will also die. This should not be surprising because although old men 
are naturally more inclined to die their number is proportionally 
smaller since many young men die on the way to old age. And an 
unequal number of deaths of young and therefore vigorous people and 
old men can only occur when young and old are equally numerous.  

However, the number of young men is larger as much as their 
liveliness is so that one compensates the other and there are as many 
deaths among the few old men and among the multitude of the young. 
All this also conforms to the supposition made above that, as 
explained, all the years of life are equally fatal for human nature. We 
may certainly make many exceptions since usually there die much 
more little and therefore weak children than people of other ages.  

Apart from such particulars, we should nevertheless consider that 
ordinarily there are more than 81 baptisms for each 3321 [= 81·41] 
people, or more than one for 41 people but the surplus of baptisms and 
deaths can be disregarded: if more are born than I have proposed, then 
also more than I proposed will be mowed down, and it is not necessary 
to consider them. 

[14] Each Year Dies about a Fortieth Part of People.  
About As Many Should Be Born and Perhaps a Little More  

To Maintain the Number of People 
We can conclude from the above that each year there dies about 

1/40 of those living since for one man alive at 80 years there are two 
of 79, three of 78, …, 79 of 2 years old, 80 of one year and 81 recently 
born babies. Their sum, 1 + 2 + 3 + … + 79 + 80 + 81 = 3321. One 
person of each age dies so that 81 die or 81 out of 3321 […] or one out 
of 41. In other words, about a fortieth part of people dies each year. 
Although derived a priori and only by reasoning, it quite conforms to 
experience.  

Indeed, as was remarked, in large cities and in somewhat unhealthy 
places there dies a thirtieth part, but in some places with best air only a 
fiftieth part. We may assume a reasonable mean, i. e., 1/408. And that 
number is the same as the mean duration of human life, as 40 years 
according to our demonstration.  

We can also remark concerning the proportion of men of each age 
as established above that the number of young men aged 20 years is 
almost twice larger than those of 50 and it is easy to compare similarly 
the other indicated numbers.  

[15] Nine, Or Ten Times More Children  
Can Naturally Be Born Than Born At Present9 

When supposing also that there are as many women as men, we may 
estimate how many women are there of 15 – 44 years of age, of 
childbearing age. They amount to 705 out of 3321 women, a 
proportion not very different from 3:10 as was established by the 
London register of deaths. We see now that barely 1/10 or 1/9 of those 



 

women become pregnant each year since these 870 women barely 
have 80, 90 or 100 children yearly. Polygamy is not a proper solution 
for multiplication apart from countries in which the number of women 
greatly exceeds the number of men. Such countries, however, possibly 
do not exist in Europe. 

 
Notes 

1. There are 6 possible ways rather than 3; for example, not only 6 and 1, but 1 
and 6 as well. 

2. Leibniz once more referred to this practice in his book (1765/1961, p. 515). 
3. See Psalm 90:10: Our days may come to seventy years or eighty if our strength 

endures. Note also that Leibniz, perhaps being carried away by deductive reasoning, 
had disregarded both Graunt’s classical contribution and De Witt’s suppositions and 
conclusions although he referred to the latter in § 1. In § 15 Leibniz mentioned the 
London register of deaths but not definitely enough.  

4. It is too difficult thus to separate considerations, and for example, contrary to 
Leibniz (see his fundamental premise in § 6 and other cases), infant mortality should 
have been considered as one of the former.  

5. Hardly anyone had ever bought life annuities for recently born babies! 
6. Leibniz had not introduced probable life as Huygens did in his correspondence 

of 1669. 
7. This statement is doubtful, cf. Laplace’s pertinent pronouncement in [xv]. 
8. That mean was hardly reasonable. Leibniz should have said that, lacking 

information, he assumed a fortieth. 
9. This conclusion is only valid if Naturellement in the original French title is 

understood as being theoretical. Practically speaking, Leibniz’ conclusion is useless. 
The number 870 which appears at the end of this section is a mystery. Then, 790 
corresponds to § 12, but 705:3321 = 0.21 (and 870:3321 = 0.26) which is not near 
enough to 3:10. 
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J. P. Süssmilch 
 

The Divine Order of the Changes of the Human Species  

As Demonstrated by Births, Deaths and Propagation, 
Introduction 

 
Die Göttliche Ordnung in den Veränderungen  

des menschlichen Geschlechts aus der Geburt, dem Tode, 
 und der Fortpflanzung erwiesen, Vorrede1  

 

 Benevolent and impartial reader, 
This spring it will exactly be 20 years since I had for the first time 

ventured to give the printer my considerations about the order of the 
divine wisdom and goodness clearly shown in births, propagation and 
deaths of people. I was brought to this work by tracking with greatest 
pleasure and admiration the Divine Providence and by perfecting the 
rules formulated, repeated and confirmed by Graunt, Petty, King, 
Arbuthnot, Derham, Nieuwentyt and others. 

I dared to go further than my predecessors by availing myself with 
the registers of the Royal Prussian provinces. I even had to get 
involved in various political considerations by applying the rules of the 
wisest divine order to human behaviour. All this frightened me 
especially since it was impossible to abide unerringly in such a 
scarcely inhabited country.  

However, the public shamed the mistrust in my conclusions 
expressed in scientific journals and I was also welcomed from beyond 
Germany, from Holland, England, Switzerland, Denmark and Sweden. 
This reassured me to collect gradually new testimonies and registers 
concerning the formulated rules. And in a few years after that the 
Royal Academy of Sciences [in Berlin] honourably admitted me to its 
membership without my applying for it2. Its late President Maupertuis 
encouraged me to choose my deliberations as a subject of academic 
memoirs and thus gradually to perfect, and make them certain.  

That was a good advice. I followed it and very often read out 
lectures about those matters at the Academy. Then, I have obtained the 
works of Kerseboom, the materials of the incessantly diligent Struyck, 
the comments of Short as well as the fine work of Deparcieux and 
finally the brief exposition of all those considerations compiled by the 
skilful Wargentin in Sweden, read out by him at the Swedish Academy 
and enriched by his own elegant demonstrations.  

    This ever more made me capable of filling in the gaps in my 
work, of correcting mistakes and perfecting the main rules by raising 
the probability of my assumptions as high as it was possible in such 
matters. And after that I ventured to obtain with great effort not only 
all our possible provincial registers but even to ask the superintendant 
[high-ranking clergyman] and preachers of our land for assistance and 
most of them met my request. Thus I became able to extend essentially 
the first edition of my book. It was sold out and, moreover, many 
foreign scientists had requested me to put out a new edition. And so I 



 

resolved to comply but had no time for completely remaking my work 
although understanding that that ought to be done.  

My professional duties had left me too little time whereas much 
should have been recasted. Finally I decided to busy myself with this 
work in those often mournful hours of this war3 and thus to fill up the 
short periods of my idle time. I began working but had soon 
encountered difficulties since coherence of ideas was essentially 
required. Meanwhile I continued my work but often had to abandon it 
for weeks on end and I praise the divine goodness since in spite of 
these hindrances after three years of protracted work I was finally able 
to give its first part to the printer and thus to satisfy the desire of so 
many patrons of my work.  

 And indeed because of these circumstances I may hopefully require 
and permit myself to request a just verdict from the friends of these 
considerations. I understand that this second edition still can not be 
free from error since this kind of work does not tolerate faultlessness. 
Much effort and many new materials are still needed. Although I 
provided more than was contained in either my first edition or 
accomplished by anyone else, many section are still incomplete. The 
portion discussing the order of propagation of both sexes seems to be 
almost adequately based on registers, but many oriental materials are 
nevertheless lacking the more so with regard to their agreement with 
western documents which I have no sufficient reason for doubting. 

The splendid order of the ages at death still especially demands 
important additional studies. We have almost enough registers from 
cities, but too little from small towns and still less from the 
countryside. I was only able to collect a small number of registers 
from rural parishes. Preachers working there can usefully contribute to 
this task and I am asking those who enjoy this work to collect 
materials and benevolently send them to me or after my death to 
scientific monthlies. Since I will undoubtedly make avoidable 
mistakes I request my readers to treat them without leniency but rather 
indicate them graciously. I will correct them some time or other. 

My highly esteemed friend and colleague, Professor Euler, the 
worthiest Director of the mathematical class of the [Berlin] Royal 
Academy of Sciences, had most generously assisted me with 
calculations of the doubling of population4 and in addition had most 
graciously undertaken the proof-reading. His manifested satisfaction 
and friendly but impartial verdict somewhat calmed me; meanwhile, 
however, I am asking my readers to inform me about noticed mistakes. 
If something is doubtful, I will really try to explain it.  

A few years ago I objected to Justi5 about the application of the laws 
of mortality and this will hopefully indicate that I am merely 
attempting to establish verity. Perhaps some readers, as it had already 
occurred, after glancing at this revision will however even stronger 
decide that I have been too much engaged in political considerations.  

But can I really be accused of sinning since I do not suppress the 
truths which are necessarily connected with considerations about the 
order in the divine wisdom? Is it unbecoming for a theologian who I 
am that I attempted to derive the true politics and cleverness in the art 
of governing from the first basic law and command of the Creator, 



 

Be fruitful and increase in number, fill the earth and subdue it 
[Genesis 1:28], and indicated that no Regent can happily reign without 
always having the divine law before his eyes and reasonably following 
it? Can it be misinterpreted that in morality I have discovered new 
grounds for the real wisdom of Regents? And I have attempted to 
show that they should never abandon morality and good customs so 
that the population will not decrease since otherwise the divine 
commandment will be contradicted and at the same time the security, 
power, and happiness of the state and its subjects will weaken and its 
richness will diminish6. 
    That I have attempted to save the Christian religion from the new 
and dangerous charges of Montesquieu7 who enjoys a high status 
because of his erudition and wit and to reveal their groundlessness? 
Should not a theologian know what is going on around him in the 
world? Should I have neglected all this, and, as some quick-tempered, 
unjust and uninvited judges have decided, should not have I ventured 
in many respects too far? I ought to tell such malicious, envious and 
arrogant minds to their faces that I will listen to their verdict with all 
contempt it deserves and that I will be very glad if they leave my book 
unread. 

I am sure that the robustness of the foundation which underlies that 
order of nature encouraged me about twenty years ago to begin this 
work, the necessary rescue and explanation of the all-important and 
all-consoling doctrine of divine government of the world. I have 
always kept this goal before my eyes and it especially relieved all my 
efforts. I therefore desire that God blesses these deliberations with 
some advantage for His glory and the wellbeing of the human society. 
The infinitely wise and good Creator, award me this favour! 

Cölln8 on the Spree, 30 March 1761 
 

Notes 
1. Translated from the edition of 1775 which was a reprint of the second edition 

of 1765, see Bibliography. 
2. Süssmilch was elected mostly owing to his work in linguistics as a member of 

the Academy’s class of philology.  
3. He became a chaplain, thus his professional duties. Just below, Süssmilch 

mentioned the First (Prussian − Austrian) Silesian war. 
4. Indeed, Euler actively participated in preparing the second edition of the Divine 

Order and was coauthor of at least one of its chapters (On the rate of increase and 
doubling of population). One of the authors’ conclusion, viz., that population 
increases, roughly, in a geometric progression, was picked up by Malthus and is still 
adopted (with reservations).  

5. This learned man had especially declared in Göttingische [gelehrte] Anzeigen 
that mortality in large and densely populated cities is weaker than among 
countrymen, that barely 1/60 dies [yearly]. He based this conclusion on the 
population of Vienna mostly consisting of servants, coachmen, lackeys, 
maidservants, travelling journeymen and the like going to and fro and therefore 
[allegedly] not to be considered permanent inhabitants. Moreover, they are engaged 
at ages in which the vital capacity is greatest and mortality least. 

He desired to confirm that by the multitude of the inhabitants of Vienna which is 
much larger than it should have been according to the rules of mortality adopted by 
me and others. I attempted to prove the groundlessness of this application in a 
message printed in 1756 and sent to Justi. He did not, however, answer either in 
writing or in a printed form, or, later, when I had the honour to meet him personally. 
I understood this complete silence as an agreement with my arguments and my 



 

interpretation is the reason why I had not asked him about it. And neither did I 
therefore wish to mention this petty dispute in the new edition of my book since I 
thought that it was over.  

However, when the printing of this first part was all but completed, I came across 
his excellent work on national economy published a year ago [see Bibliography] and 
saw there that my interpretation was wrong. He wholly retained his initial opinion, 
even without any reservations or proof which I had, however, convincingly asked. I 
can not hope, therefore, that a repeated persuasion can be more effective and leave it 
at that and I only wish to impart some misgivings.  

If in a large city the total number of servants of both sex amounts to 50,000, they 
do not live family lives and many of them come and go so that the departed are 
always made up. As long as the families of the noble and the rich remain in the state 
of prosperity and luxury this number of servants should therefore be considered as a 
permanent crowd. And they, the servants, must yearly surrender their share to death 
whether they were born in the city or not.  

Some of them are in their best ages since still being able to serve and their death 
rate is certainly lower, but they still ought to give away their definite contribution. 
Owing to the disorderly way of life of menials in large cities it is usually heavier 
than otherwise. In a table appended to the message mentioned above, I indicated the 
calculated rate of mortality in cities and towns. It showed that in large cities one 
person out of 96 aged 20 − 29, one out of 57, 43, 30 and 20 aged 30 − 39, 40 − 49, 
50 − 59 and 60 − 69 must pay the debt to nature. 

And servants of either sex so little differ [in this respect] from the masters and 
their wives as though they live wherever they wish. Death makes no exception and 
demands a definite part as determined by the Creator. It seems quite clear to me that 
in large cities the servants must also resign themselves to the law of mortality. If 
only we do not state that the servant, exactly when death wishes to mow him down, 
leaves the city to be entered in a death register elsewhere, and, again, that the vacant 
job is taken up by a quite healthy and vigorous servant who will only remain there 
until feeling the fear of death. 

However, I stop here and only obligingly thank Justi for the benevolent and polite 
mention of my considerations about this issue. J. P. S. 

It can be safely thought that in their old age servants really attempt to return to 
their former home ground. However, as a whole, the opinion of Süssmilch seems 
likely. On the life and work of Justi see Bachhaus (2008).  

6. Multiplication of mankind was therefore a divine commandment and Süssmilch 
believed that Regents must foster marriages and take care of their subjects, 
condemned wars and excessive luxury, declared that the welfare of the poor was to 
the advantage of the state and in the self-interest of the rich. His pertinent appeals 
brought him into continual strife with municipal (Berlin) authorities and ministers of 
the state (Prussia). 

7. Montesquieu is known to have denied divine providence and believed that 
protestanism suites republics the best, catolicism, monarchies, and Islam, 
despotisms. In the eyes of Süssmilch and like-minded men he was a great heretic. 

8. The present Neukölln, a district of Berlin. 
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Introduction: The History of the Problem 
 

N. I. Idelson, Sposob Naimenshikh Kvadratov i 
Teoria Matematicheskoi Obrabotki Nabluideniy 

(MLSq and the Theory of  
Mathematical Treatment of Observations). Moscow, 1947, pp. 7 − 17 

 
1. Before the method of least squres (MLSq) was justified, 

observational data had been usually combined so as to obtain from 
them the best approximate value of the unknown in the following way. 
Suppose that the observations provided magnitudes li for the unknown 
sought, X, multiplied by given coefficients ai. In other words, the 
problem consisted in combining n necessarily approximate magnitudes 
of the form 

 
aix ≈ li.                                                                                     (1) 
 
According to the old method, it was required to change the signs in 

these equations1 so that the coefficients will be positive and then to 
assume that 

 
X = ∑li/∑ai.                                                                              (2) 
 

It was Cotes, 1682 – 1716 (1722) who substantiated this method. Each 
observed li is corrupted by an unavoidable random error εi; its 
influence on the sought value, X, will evidently be the less the larger is 
the positive coefficient ai. Cotes therefore considered ai as the mass or 
the weight of the corresponding observation providing the approximate 
value li/ai for the unknown. He marked off these separate values on a 
straight line beginning at a common origin and placed masses ai at the 
end points of the appropriate segments. By definition, the resulting 
value of the unknown was assumed to be the centre of gravity of all 
the masses ai. Multiplying each abscissa by ai and dividing the product 
by the sum of the masses, Cotes indeed obtained the expression (2)2. 

Laplace called this the usual method and contrasted it with the new 
MLSq. However, we shall even see the formula (2) considerably later, 
when expounding the Cauchy method. The main difficulty of applying 
the usual method was encountered when passing to systems of 
approximate equalities of the type of (1) with many unknowns. The 
Cotes reasoning was evidently unable to lead to intelligible rules for 
combining the observed magnitudes li when their number exceeded 
that of the unknowns.  

However, considerably long series of planetary observations had 
been already compiled in astronomy in the 18th century, and no one 
actually knew what to do with them when extracting from this vast 
material corrections for only six elements of the elliptical movements 
of each of the main planets. Similar problems had been encountered in 



 

geodesy after the great French expeditions to Lapland and Peru for 
measuring a degree of arcs of the meridian had returned home. 

2. In 1806 [in 1805] Legendre, 1752 – 1833 (1805, pp. 72 – 80) 
offered a simple and elegant solution of the problem. On a few pages 
which can serve as a specimen of completeness and clearness3 he 
provided practical workers with the method of combining observations 
preserved without any changes to this day. Legendre says that when 
having to extract from observations results as precise as possible, the 
matter is usually reduced to solving a system of linear equations whose 
number exceeds that of the unknowns. The observed values do not 
exactly satisfy these equations and non-removable errors remain in the 
free terms. Some arbitrariness in distributing the errors among separate 
unknowns is in such cases unavoidable. Legendre wrote4: […] 

He then shows how it is possible to obtain in each problem the same 
number of final equations as there are unknowns. Indeed, this 
possibility does away with the main shortcoming of the usual method. 
For systems with one unknown of the type of (1) Legendre’s solution 
constructed in accord with his principle 

 
∑(aiX − li)

2 = min 
 

immediately led to the value 
 

X = [al]/[aa] 
 

where, in general [in Gauss’ notation], [ab] = a1b1 + a2b2 + … + anbn. 
It was of course possible to derive the expression (3) in accord with 

Cotes, if, however, assuming that his masses were proportional to 2.ia  

If all the coefficients are unities, solutions (2) and (3) coincide 
providing one and the same value of the unknown equal to the mean of 
all the observed magnitudes li.  

3. A few years after the appearance of Legendre’s memoir, Gauss, 
1777 – 1855 (1809) developed its algebraic aspect to high perfection. 
Legendre’s final, or, as they are now usually called, normal equations, 
are symmetrical. The coefficients of the unknowns in the rows 
coincide with the corresponding coefficients in the columns; the 
determinant of the system is positive (we exclude, once and for all, 
those special cases in which it can vanish). 

The solution of such systems of linear equations by consecutively 
eliminating the unknowns is equivalent to transforming some quadratic 
function of the unknowns to its canonical form in which it only 
contains the squares but not the products of the unknowns. The 
essence of the Gauss algorithm (of the rule for performing the 
consecutive operations) indeed consists in such a transformation of a 
quadratic function corresponding to the Legendre system of normal 
equations and serving as an expression for the sum of the squares of 
the errors brought to its minimal value. While working out this 
algorithm Gauss introduced notation which is being applied to this day 
and became an integral part of any exposition of the MLSq, see […]. 

4. Gauss’ Theoria motus appeared in 1809. There, he offered 
methods for determining the six elements of the elliptical motion when 



 

three or more observations were available. For that matter, his methods 
were only insignificantly modified during the further development of 
the science and technique of calculations. 

An entire section of this book, Determination of an Orbit 
Corresponding as Precisely As Possible to an Arbitrary Large Number 
of Observations (§§ 172 – 189), concerned the very problem which, as 
mentioned above, was so important for astronomy and became 
especially hot after the discovery, at the beginning of the 19th century, 
of the first minor planets.  

There, Gauss offered a probability-theoretic justification of the 
MLSq. Its essence, when restricting the exposition to systems in one 
unknown of the type of (1), consisted in the following. The best 
approximate value of the unknown is indeed the value (3) obtained by 
the Legendre rule. Best because it possesses a higher probability than 
any other linear combination of the observed values. 

After introducing this new condition about the highest probability, 
and under some other assumptions, Gauss established, first of all, that 
the appearance in each observation of a random error whose value was 
obtained within an infinitely small interval [ε, ε + dε] is proportional to 
the product of the differential dε by the function 

 
f(ε) = (h/√π)exp(− h2ε2)                                                             (4) 
 

where h is a constant, also of a stochastic origin, which Gauss called 
the measure of precision of the given series of observations (assumed 
to be of equal precision). 

However, Gauss showed (and this was the most important part of 
his discovery) the following. Let u be the resulting random error of 
determining X in accord with the Legendre rule, i. e., of the value (3). 
The probability that the value of this error is contained within the 
interval [u, u + du] is equal to the product of du by the function of the 
same type as (4), − by 

 

f1(u) = (H/√π)exp(− H2u2), H = h [ ].aa                              (5a, b) 

 
The constant H is called the measure of precision of the resulting 

value X, and [aa], its weight. The measure of precision of the result 

thus increases by [ ]aa  as compared with that of the separate 

observations, and it is not difficult to show that this increase is the 
largest possible for any linear combination of given ai. On the other 
hand, the function f1(u) evidently reaches its maximal value at u = 0, 
that is, when X is assumed to be indeed equal to the Legendre value 
(3). In addition, this maximal value 
 

f1(0) = (H/√π) = h [ ]aa /√π                                                  (6) 

 
is proportional to H. It therefore occurs (if assuming Gauss’ additional 
conditions) that the MLSq leads to such a value of the unknown which 
at the same time possesses both maximal weight and maximal 
probability (the Gauss theorem; see its detailed proof in my main text). 



 

If all the coefficients ai are unities, the measure of precision of the 
most probable value, which is here the mean of the observed li, 
increases √n times as compared with that of each separate observation. 
This naturally attaches a new meaning to the rule of the arithmetic 
mean. 

In those days Gauss found the philosophical, or, as he wrote later, 
the metaphysical justification of the requirement of maximal 
probability of the result (which is of course absolutely hypothetic and 
prior [not based on experience]) in an axiom according to which 
exactly the arithmetic mean of equally precise observations made 
under the same conditions is always assumed as the most probable 
value of the unknown. True, we saw that it was introduced both in the 
old method due to Cotes and in the new Legendre method. But 
(Poincaré 1896/1912, p. 185),  

To say that this rule is admitted by all the world does not mean 
justifying it, because all the world perhaps does not sufficiently 
imagine what is a law of error. 

5. After explicating his stochastic solution, Gauss (1809, § 186) 
stated that the rule about the minimal value of the sum of the squares 
of the differences between the observed and the calculated values of 
the unknowns can also be derived from more simple considerations 
unconnected with the theory of probability. And here he in essence 
only somewhat developed and modified the known to us Legendre’s 
reasoning. And Gauss also included the following phrase: 

On the other hand, our principle, which we have made use of since 
the year 1795, has lately been described by Legendre in […] where 
several other properties of this principle were explained. They have 
been here omitted for the sake of brevity5. 

There is no doubt at all that Gauss had indeed knew the MLSq from 
the age of 18 (from 1795); documents and correspondence convince of 
that. Moreover, when receiving Legendre’s book, Gauss wrote to 
Olbers 30 July 1806 (W-8, p. 139): 

It seems to be my fate to compete with Legendre in almost all my 
theoretical work. So it is in the higher arithmetic, in the researches on 
transcendental functions connected with the rectification of the ellipse, 
in the fundamentals of geometry, and now here again. Thus, for 
example, the principle I have used since 1794, that the sum of squares 
must be minimized for the best representation of several magnitudes 
which can not be given exactly, is also used in Legendre’s work and is 
most thoroughly developed.  

At the same time, however, it can not be doubted that Gauss’ words 
[our principle] should have greatly pained Legendre. The latter had 
indeed frankly wrote Gauss about it6. The situation became somewhat 
complicated because already in 1803 Gauss publicly used the same 
phrase, also concerning Legendre, with respect to a very important 
theorem from the theory of numbers. All this could have aroused 
certain rumours in European academies and especially in Paris. Thus, 
Laplace, when sending in 1810 his just appeared memoirs on the 
theory of probability7 to Gauss (28 years his junior), wrote in a 
covering letter of 1811 (W-10, p. 380): 



 

In his work on elliptical movement M. Gauss says that he was 
conversant with it [with the MLSq] before M. Le Gendre has 
published it, I would greatly like to know whether before this 
publication anything was printed in Germany concerning this method 
and I request M. Gauss to have the kindness to inform me about it. 

In the concluding part of his detailed answer, which is very valuable 
for us, Gauss referred to several astronomers and informed Laplace 
that he had applied this method from 1795; that among his papers was 
a note of 1798 where he had written about its approach to the theory of 
probability; that he had applied it especially often from the year 1802 
and since then used it, as might be said, every day in my [in his] 
astronomical calculations on the new planets. […] Gauss thus ended 
his letter:  

I had no idea that Mr. Legendre would have been capable of 
attaching so much value to an idea so simple that, rather than being 
astonished that it had not been thought of a hundred years ago, he 
should feel annoyed at my saying that I have used it before he did8. 

6. The first edition of Laplace’s, 1749 – 1827, Théorie analytique 
des probabilités appeared in 18129. This immense volume is as though 
a synthesis of all his work on the theory of probability. The immediate 
cause for compiling this treatise was however his fundamental 
discovery which he only made about 1808 – 1809 [published in 1809]. 
It is interesting to hear what the French mathematician Bienaymé 
(1853, pp. 311 – 312) said about this: 

Aussi Laplace avait-il senti sur-le-champ l’importance de sa 
découverte. A peine l’eut-il faite, qu’il l’apporte devant cette 
compagnie, et qu’il annonce qu’il va publier un Traité des 
probabilités. De 1770 à 1809, pendant près de quarante ans, Laplace 
avait donné des Mémoires nombreux sur les probabilités; mais, 
quelque intérêt qu’il y eût dans ces Mémoires, il n’avait pas voulu les 
rédiger en théorie générale. Aussitôt qu’il a reconnu la propriété des 
fonctions de probabilités, il voit clairement que c’est un principe qui 
régit presque toutes les applications, et il compose sa théorie.  

[Laplace had indeed discerned at once the importance of his 
discovery, immediately announced it [to the Paris Academy of 
Sciences] and stated that he will publish a treatise on probabilities10. 
From 1770 to 1809, during almost 40 years, Laplace had been 
presenting numerous memoirs on probability, but whatever was their 
importance, he did not wish to combine them into a general theory. 
But as soon as he established the properties of the functions of 
probabilities, he clearly saw that it was the principle governing almost 
all applications and compiled its theory.] 

I explicate the essence of Laplace’s discovery in the main text. With 
respect to the best combination of approximate equalities of the type of 
(1) his result consisted in the following. Assume that the best 
approximate value of the unknown x0 is a linear function of the 
observed value li so that 

 
x0 = α1l1 + α2l2 + … + αnln                                                  (7) 
 

where α1, α2, …, αn are the yet undefined constant coefficients.  



 

Without introducing any suppositions about the type of the function 
f(ε) which determined the probability of a random error of the separate 
observations, and only assuming that the number of the observations 
increases indefinitely, we may state (under some additional conditions 
imposed on the coefficients αi) that, The probability Pn that the random 
error of the expression (7) is confined between 0 and any arbitrary u 
tends to the limit 
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→∞ = − =∫                   (8; 9) 

 
where h is, as it was previously, the measure of precision of the given 
series of observations. This indeed is the Laplace limit theorem as 
applied to the theory of combining the equalities (1). See a detailed 
exposition in the main text. 

The integral in (8) increases with K. Namely, if, after assigning an 
arbitrary value u, we demand that the limiting probability P takes the 
largest possible value, it will be necessary to determine the coefficients 
αi by the condition K = max, see main text. 

Taking now into account that those coefficients are connected by the 
condition [aα] = 1, which is easily derived from the totality of the 
equations (1) and (7), and determining the relative maximal value of K 
in accord with well-known rules, we find, first of all, that 

 
αi = ai/[aa].                                                                       (10) 
 

Then, substituting these αi in (9), we get 
 

max [ ]K h aa= .                                                                (11) 

 
Comparing this with (5b), we see that the maximal value of 

Laplace’s K equals Gauss’ H which is, as I said above, the maximal 
possible. In addition, when substituting the expressions αi in (7), this 
general linear expression for X as a function of αi takes the Legendre’s 
form (3). 

Thus, deriving the absolute maximum of the limiting integral at any 
value of u, Laplace got a new stochastic justification of the MLSq; and 
we ought to emphasize as strongly as possible the difference between 
the fundamental notions assumed by Gauss and Laplace: Gauss 
thought about the maximal probability of some given value of X 
(which corresponded to the value u = 0) whereas Laplace required the 
maximal probability that X is confined between the boundaries  
[x0, x0 + u] with u remaining arbitrary.  

Especially important is the independence of Laplace’s result from 
the law of distribution of the separate observations. He thus opened up 
a new era in mathematical statistics, in the theory of combining 
observations etc. And he (1812/1886, p. 354) indeed stressed this fact: 

Mais, si l’on considère un grand nombre d’observations, ce qui a 
lieu le plus souvent dans les recherches astronomiques, ce choix 
devient indépendant de cette ici, et l’en a vu, dans ce qui précède, que 



 

l’Analyse conduit alors directement aux résultats de la méthode des 
moindres carrés des erreurs des observations. 

[However, when considering a large number of observations, which 
most often takes place in astronomical researches, that choice [of the 
normal equations] becomes independent from that law, and the 
previous shows that the analysis directly leads to the results of the 
MLSq of the observational errors.]11 

At the same time, the mysterious connection (Bienaymé 1853, p. 
313) between  

 
f2(u) = (K/√π)exp( − K2u2),                                               (12) 
 

see formula (8), and the Gauss function f1(u), see (5a), is surprising: 
we see that they simply coincide when the constants K and H are 
chosen appropriately. The causes of this fact really surprise us when 
taking into account the fundamental difference between the main 
suppositions made by Gauss and Laplace. They lie in the deep and 
exceptional properties of the Gauss – Laplace law. These properties 
correspond to the so-called Laplace – Chebyshev limit theorem [the 
central limit theorem] and they were only recently completely 
revealed, see main text. 

7. In one of his early memoirs Laplace (1774) turned his attention to 
an a priori possible form of expressing the probability of a random 
error. He assumed that it is equal to the product of dε by the function  

 
f3(u) = (k2/2)exp[− k2|ε − ε′|]                                               (13) 
 

where k2 was a constant and |ε − ε′|, the numerical value of the 
difference between the given value of ε and the median of these 
values. In accord with (13) the maximal probability is possessed 
exactly by the value of ε coinciding with the median. 

Since the first mention of functions of the type of exp (− h2ε2) only 
occurs in one of Laplace’s later memoirs (1781/1893, p. 383), 
suggestions were made at present to call the law expressed by the 
formula (13) the Laplace first law, and that, described by (4), his 
second law. In spite of some obvious difficulties encountered in its 
application (the median of a sum is not equal to the sum of the 
medians etc.), the first law recently again attracted attention (Fréchet 
1928; 1935). 

8. Beginning at least in 1819, as is seen from his correspondence, 
Gauss became dissatisfied both with his own justification resulting 
from the prior requirement of maximal probability and with Laplace’s 
substantiation assuming an unbounded increase in the number of 
observations. During the next decade he created an absolutely new 
method of combining observations. 

His large memoir (1823 – 1828) in which he expounded his second 
method consists of three parts12. Pt 1 (§§ 1 – 22) includes the general 
theory, the method of eliminating the unknowns, and the determination 
of their weights. The second part (§§ 23 – 40) deals with the 
transformation of the quadratic form corresponding to the normal 
system with the determination of the weight of linear functions of the 



 

unknowns and includes the celebrated formula for the mean square 
error of unit weight. The third part, a Supplement, contains the essence 
of the adjustment of geodetic measurements by applying the method of 
conditional observations including its substantiation (§§ 1 – 22). It 
concludes by offering two examples, a numerical adjustment of two 
nets of triangulation (§§ 23 – 24) and Gauss himself is known to have 
observed one of them. 

From the diverse conditions for combining observations with which 
we met above, Gauss leaves here only one: To combine them in such a 
way that the measure of precision of the results becomes maximal13. In 
this case all the difficulties connected either with his first method, or 
with the Laplace method fall away, but the practical result is the same 
in all three cases. Indeed, the proposition H = max (or, which is the 
same, the condition that the mean square error of the result is minimal) 
appears in the Gauss first method as a corollary of his other 
assumptions, and in the Laplace method it is the condition for 
combining observations. In all three cases the practical algorithm is 
therefore one and the same, the MLSq. 

I discuss reasons why Gauss (1823, § 6) chose this criterion for 
combining observations in the main text and quote his later, very 
important letter of 1839 to Bessel. And I expound the Gauss method 
and its development by Markov who brought it to the highest logical 
and mathematical perfection14. Here, I restrict my exposition by a 
remark. 

When determining the adjustment by the criterion H = max, we 
obtain the same values of the unknowns as provided by the Legendre 
principle, cf. (3), (7) and (10). But we can not prove that the condition 
of minimizing the sum of the squares of the errors directly follows 
therefrom. That criterion is of a stochastic nature whereas the 
condition is algebraic, and a transition from one to another does not 
exist. Therefore, we only establish, in each problem concerning 
adjustment, that the results are identical for both justifications of the 
solution. This is very clearly shown in Markov’s treatise (1924)15.  

9. In the 1850s, a number of reports one way or another concerning 
the MLSq was made at the Paris Academy of Sciences. In those times, 
Cauchy (1789 – 1857), see our main text, and Leverrier (1811 – 1877) 
put forward methods roughly equivalent to the MLSq but simpler and 
more flexible especially when treating systems of a very large number 
of equations16.  

The problem was mainly formulated with respect to the possible 
values of the coefficients in the expressions (7) and to the estimation 
of the approximation at each step of the elimination of the unknowns. 
In the Cauchy method, these coefficients always equalled ± 1, and for 
the case of one unknown this restriction returns us to the Cotes 
formula (2). Leverrier (1855) proposed other versions. The Bienaymé 
memoir (1853), to which we have already referred, was written as a 
criticism of these suggestions. He stood for a strict Laplacean point of 
view and made a number of very important indications, see our main 
text.  

10. The issue of the law of large numbers and the justification of the 
MLSq play a substantial role in the works of Chebyshev (1821 – 1894) 



 

and Markov (1856 – 1922)17. Without touching on Chebyshev’s 
fundamental work in probability, we shall only point out that he 
published a number of memoirs devoted to interpolation by the 
MLSq18. They contain a transition from the classical applications of 
the method to more general and wider problems of quadratic 
approximations, i. e., to the construction of a function of a certain class 
(for example, of a polynomial) providing the best approximation to a 
given set of values of the approximated function on a given finite or 
infinite domain. The quality of the approximation is here estimated by 
demanding that the sum of the squares of the remaining errors 
[discrepancies] be minimal19. 

    Above, I have sufficiently emphasized the significance of 
Markov’s work on the principles of the MLSq. Now I note that he 
attached comparatively little importance to the law of distribution of 
the errors20.  

11. Does such a law really exist? And if it does, is it the Laplace – 
Gauss law, which finds its robust foundation in the general conditions 
of the Laplace limiting law, as Poincaré (1896/1912, pp. 143 – 144)21 
was the first to indicate? Or, on the contrary, is this law, theoretically 
speaking, inadequately justified, as Jeffreys (1938), the leading British 
specialist in theoretical geophysics, is stating? Newcomb (1886), a 
most competent astronomer, claimed that the Laplace – Gauss law can 
not in principle represent the distribution of the errors in large series 
(of a thousand or several thousand) observations. 

If so, how should this law be corrected? In such a way that it 
remains as a first approximation and is only subjected to a perturbative 
influence of factors incompatible with the conditions of the Laplace 
limit theorem? Poisson (1824 – 1829) initiated this approach but only 
the Swedish astronomer Charlier (1906) completed such a 
construction22. Or, on the contrary, should the Laplace – Gauss law be 
abandoned so that we ought to return to the initial principles of the 
theory of probability and search for an expression of the law of 
distribution of random errors from the general patterns of 
mathematical statistics, as Jeffreys and his school are doing? Such are 
the problems of the modern theory of mathematical treatment of 
observations. In my main text, I provide a brief report on this subject. 

12. The methodology of expounding the MLSq is continuously 
changing. It had been extending and developing since Legendre by 
Gauss and Laplace and up to our days. Thus, the prominent French 
mathematician and astronomer Andoyer (1923) completely [!] 
developed it by the deep methods of the theory of quadratic forms and 
Kolmogorov (1946) showed that the entire exposition of the MLSq can 
be essentially simplified by applying linear vector algebra and making 
use of its main notions (for example, of orthogonality). 

This approach which we will briefly describe in the main text, 
allowed Kolmogorov to achieve great compactness and transparency 
in the derivation of all the main formulas of the Gauss algorithm. In 
addition, his contribution contains some new findings concerning the 
estimation of the reliability of the results provided by the MLSq when 
assuming that the random errors of observations obeyed the normal 
Laplace – Gauss law. I discuss these new results in my main text. 



 

 
Notes 

1. This is quite unnecessary. O. S.  
2. The author did not say anything about the previous methods of adjusting 

indirect observations. His description of the Cotes recommendation is due to Laplace 
(1812/1886, pp. 351 – 352). Concerning Cotes see my general comments on [xiii].  

3. Legendre did not distinguish between errors and residual free terms of the 
initial equations and he all but stated that his method provides shortest possible 
intervals for the extreme [residuals]. Actually, this is the definition of the minimax 
method! O. S. 

4. See translation in Hald (1998, p. 119). O. S. 
5. Translation here and in a few more cases below is due to Plackett (1972). O. S. 
6. This letter of 31 May 1809 (W-8, p. 138) was preserved in Gauss’ papers. It 

ends thus:  
You have treasures enough of your own, Sir, to have no need to envy anyone; and 

I am perfectly satisfied, besides, that I have reason to complain of the expression 
only and by no means of the intention.  

Twelve years later, when the second part of Legendre’s work (1820) on the 
cometary orbits appeared, a page was glued to it and there an anonymous author who 
hid himself under the letter N (Mr N***), sarcastically (and rather naively repeating 
Legendre’s words from his letter of 1809) spoke about Gauss and the incidents 
connected with Legendre’s priority. Gauss never publicly answered any of these 
attacks. Much later, 3 Dec. 1931 (W-8, p. 138), he wrote to Schumacher:  

This [a public statement by him or his friends] would amount to recognizing that 
my announcement in the Theoria motus that I had used this method many times since 
1794 is in need of justification, and with that I shall never agree. N. I. 

7. Laplace had published a relevant memoir (with a supplement) in 1810, and 
another one, in 1811. O. S. 

8. Gauss’ letter to Laplace of 30 Jan. 1812 (W-10, pp. 371 – 374). It is entirely 
concerned with the theory of probability, a fact caused by his receiving two of 
Laplace’s memoirs of 1810 [see Note 7]. Gauss begins by thanking Laplace for 
sending them; then he tells Laplace about a problem in probability with which he 
dealt about 12 years ago without finding its satisfactory solution and adds:  

Perhaps you will care to study it for a few moments: in this case I am sure that 
you will find a more complete solution.  

A Leningrad professor, Kuzmin (1928) solved it only in our time. The letter in its 
entirety is extremely interesting. The record of 1798 which he mentioned had indeed 
been preserved in his diary (W-10, p. 533). 17 June 1798 he wrote: Calculus 
probabilitatis contra La Place defensus. N. I. See Note 11 below. O. S. 

9. I can certainly only agree with Charlier (1906): 
 I know as a result of my own experience that the study of the Laplace theory of 

errors requires long reflection and much time. N. I. 
10. That Laplace began compiling his treatise was known well enough. Gauss [for 

example] mentions this in his letter to him of 30 Jan. 1812. N. I. 
11. In the same place Laplace, after expounding the essence of the Legendre rule, 

says:  
Mais on doit à M. Gauss la justice d’observer qu’il avait eu, plusieurs années 

avant cette publication la même idée dont il faisait un usage habituel, et qu’il avait 
communiquée à plusieurs astronomes. 

[However, concerning Gauss justice demands to say that he arrived at the same 
idea many years prior to that publication and that he usually applied it and 
communicated it to many astronomers.] 

Nevertheless, it was Delambre (1810, p. 393) who exonerated Gauss: 
Gauss y fait usage de la méthode des carrés dont la somme est un minimum. Il 

ajoute, qu’il est en possession de cette méthode depuis 14 ans; mais il reconnaît les 
droits de M. Legendre qui l’a publiée le premier dans son mémoire sur les comètes.  

12. Gauss’ own abstracts of these parts appeared in 1821, 1823 and 1826 
respectively. N. I. 

13. In § 6 of the Theor. Comb. Gauss compared observations with a game of 
chance in which one can only fear a loss. He had used the word jactura which 



 

Newcomb (1886) translated as evil and worth of erroneous results. N. I. The author 
did not say that Gauss abandoned here the idea of a single law of error. O. S.  

14. This is a legend (Sheynin 1989, pp. 345 – 346 and 348 – 350). On p. 345n I 
quoted Idelson (!) who had stated that Markov’s exposition of the MLSq was 
ponderous. O. S. 

15. Markov (1924, p. 386): The same approximate magnitudes can be determined 
from a rather simple system of equations. Here, he is in essence discussing the 
transition from the Gauss method to the normal equations, i. e. to the Legendre 
method. Also see his p. 459 in connection with solving a problem which I discuss in 
the main text. N. I. 

16. All the Cauchy memoirs concerning his method and the theory of probability 
can be found in his collected works (1900, pp. 36, 63, 87, 94, 114 and 125). 
Especially important is the application of characteristic functions (pp. 97 and 105), 
see our main text. Also there is his not quite convincing answer to Bienaymé’s 
criticisms. N. I. 

17. Chebyshev was not really interested in the latter subject (Sheynin 1994, § 5). 
With respect to Markov cf. Note 14. O. S. 

18. Chebyshev’s main memoirs are (1859; 1864; 1875). He introduced orthogonal 
polynomials by whose means his expansion (Chebyshev 1855) is achieved and 
considered them up to 1887, see Chebyshev (1887, especially § 5). I do not examine 
the Chebyshev method and only refer to some authors who explicated it and to its 
applications. N. I. 

19. Quadratic approximations constitute an important and vast section of modern 
analysis, see for example Goncharov (1934, Chapter 3). N. I. 

20. See Markov (1924, pp. 341 – 344). In addition to Chapter 7 of this treatise, 
extremely important is his memoir (1899). N. I. 

21. The reference should have been to Poincaré’s §§ 143 – 144. However, 
Laplace himself and Bessel (to name only them) have precedence over Poincaré, see 
however end of Note 13. A few lines below, the author refers to Newcomb, but even 
Bessel noted that the errors of Bradley’s observations did not quite obey the normal 
distribution (Sheynin 2000, pp. 79 – 80). O. S.  

22. Some of Charlier’s formulas complete with notation coincide with those of 
Poisson. However, the series called after Gram and Charlier definitely occurred in 
Chebyshev’s memoir (1887). N. I. 
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[1] Even a long time ago, geometers had been boasting to be able to 
discover in natural sciences all the truths accessible to the human 
mind. And it is certain that the marvellous alloy between geometry and 
physics1 achieved during the last 50 years compelled the public to 
recognize that what the geometers are saying about the advantage of 
geometry is not groundless. But what glory will cover their science if 
it will also be able to serve for regulating judgements and the 
behaviour of men in ordinary life!  

The eldest of the Bernoulli brothers [Jacob], both so well known in 
the scientific world, did not think it impossible to bring geometry to 
that point. He attempted to provide rules for judging probabilities of 
future events whose knowledge is concealed either in games [of 
chance] or other events in life in which only fortuity is involved. His 
contribution [1713] will be entitled Ars Conjectandi, The Art of 
Conjecturing. Premature death prevented him from completing it. 

Both Fontenelle (1706) and Saurin (1706) briefly analysed this 
book, and here is its structure as stated by them. Bernoulli separated it 
in four parts and in the first three he solved various problems in games 
of chance. Many new things will be found there about infinite series 
and combinations and arrangements as well as the solution of the five 
problems proposed to the geometers a long time ago by Huygens. In 
the fourth part Bernoulli applied the methods provided in the first three 
for solving various moral, political and civil problems2. 

We do not know at all of which games that author determined the 
solution or which political or moral matters did he wish to elucidate. 
No matter how astonishing was his plan we may believe that the 
learned author had perfectly accomplished it. Bernoulli much 
exceeded others by wishing to command respect and belonged to the 
small number of rare people able to invent, and I am convinced that he 
wished to carry out everything promised by the title of his book. 

[2] Nothing retards the progress of sciences and profoundly hinders 
the discovery of hidden truths as strongly as disbelief in our own 
capabilities. Many things seem impossible mostly because we do not 
apply all the resources of our mind. Many friends of mine had long 
ago induced me to find out whether algebra was able to determine the 
advantage of the banker in the game of pharaon. I would have never 
dared undertake that research since I knew that the number of the 
various possible arrangements of the 52 cards more than a hundred 
thousand million times exceeds the number of grains of sand which 
can be contained in our globe. And, considering that immense number, 
I thought it impossible to separate the arrangements favourable for the 
banker from those that are contrary or indifferent to him. I would have 
still remained thus prejudiced had not a few years ago the late 



 

Bernoulli’s success induced me to study the different chances in that 
game.  

I was luckier than I dared to hope because, in addition to the general 
solution sought, I found out the approaches for solving infinitely many 
similar and even much more difficult problems. I knew that it was 
possible to go much further in the world of games of chance which no 
one had still entered and flattered myself with hope of gathering there 
a rich harvest of equally curious and new truths. This knowledge 
suggested me the idea to get to the bottom of the matter and led me to 
desire for compensating somewhat the public for the possible loss of 
Bernoulli’s excellent work. Various reflections had confirmed my 
intention. 

[3] The feebleness of the human mind is especially revealed in 
games of chance and induces men to superstition. Nothing is as usual 
as seeing that gamblers attribute their failures to those who approached 
them or to other circumstances not less indifferent to the events in 
games. There are those who consider it necessary to play with 
[previously] winning packs of cards believing that some luck is 
attached to them. Others, on the contrary, choose only the losing cards 
since they think that, having lost many times, the cards will be less 
likely to lose again, as though the past can decide something for the 
future3. 

Then, again, there are those who prefer certain places and days; and 
we can also see gamblers who only agree to shuffle the cards when 
they are arranged in a certain way and are sure to lose if deviating 
from this restriction. Finally, most people seek their advantage where 
it is lacking or rather neglect it altogether. Almost the same might be 
said about the behaviour of people in all their everyday actions in 
which fortuity plays some part.  

The same prejudices are governing them, imagination masters their 
activities and blinds their fears and expectations. They often abandon a 
small and certain benefit recklessly pursuing a greater boon whose 
acquisition is all but impossible. Again, often because of excessive 
mistrust they give up considerable and well justified expectations to 
keep a benefit whose value is out of any proportion to the neglected. 
The general explanation of these prejudices and mistakes is that most 
people attribute the distribution of the good and the evil and in essence 
all the events of this world to a fatal power acting without order or 
rules. They believe it better to abandon themselves to that blind 
divinity called Fortune than to force it to become favourable by 
following the rules of prudence which they believe are only imagined.  

[4] I think it therefore useful not only for gamblers but for people in 
general to understand that chance has rules which can be known and 
that otherwise they are daily led to err with unpleasant consequences 
to be more reasonably ascribed to themselves rather than to destiny 
accused by them. To prove this, I may report infinitely many examples 
taken either from games [of chance] or other events of life depending 
on fortuity. 

It is clear that people are not at all sufficiently using their minds for 
obtaining what they even most ardently desire and do not at all exert 



 

enough efforts for depriving Fortune of what can be stolen from her by 
the rules of prudence.  

I think that this subject can excite the curiosity even of those who 
are least of all interested in abstract knowledge. People naturally like 
to see clearly what is done, even independently from any interest. 
They will undoubtedly play more readily when knowing at each 
moment the expectation of winning or the risk of loss to which they 
are exposed. They will more calmly meet the events in games, will 
better imagine the absurdity of the incessant complaints which most 
gamblers allow themselves about commonest occasions contrary to 
them.  

[5] By itself, an exact knowledge of chances in a game is not 
sufficient for winning, but at least it can help gamblers to choose the 
best next move in doubtful situations, and, what is very important, to 
understand how disadvantageous for them are the conditions of some 
games, daily introduced by stinginess and idleness. 

For my part, I believe that, had the gamblers known that, staking a 
louis of thirteen livres at pharaon for a card which passed three times, 
so that the pack will have no more than twelve cards left, is just the 
same as presenting the banker 1 livre 1 sou and 8 derniers. Only a few 
[diehards] will try their luck at such a disadvantage. Most often the 
behaviour of people determines their good or unlucky fortune, and 
wise men leave to chance as little as possible. 

We can not divine the future, but in games of chance and often in 
other circumstances of life we can always exactly find out how much 
more probable is the arrival of some thing in a certain way rather than 
in any other manner! And since these are the boundaries of our 
knowledge, we should at least attempt to reach them. 

Everyone knows that, for approaching the truth but lacking the 
evidence, we ought to look for the likelihood. However, we do not at 
all sufficiently know which likelihoods are higher or lower. For a 
correct judgement the mind ought to distinguish all those degrees; it 
often occurs that an uncertain thing is nevertheless certainly and even 
evidently likely, and more likely than all the rest ones. It seems that as 
yet the possibility of providing infallible rules for calculating the 
differences existing between various probabilities is not at all 
sufficiently understood. 

[6] I am here attempting to compile an essay on this new art by 
applying it to a new subject which until now remained quite obscure 
and does not seem to be capable of any precision. I believe that it is 
more proper than anything else to subject to analysis that marvellous 
art, the key to all exact sciences. It was neglected apparently only 
because the scope of its application was not at all sufficiently seen. 
Indeed, instead of applying algebra and analysis for discovering 
constant and immutable relations between numbers and figures as it 
was done until now, here they will find out the connections between 
probabilities of uncertain things which have nothing fixed and seem 
strongly opposed to the spirit of geometry and apparently remain in 
some way above its rules. It is this that led the illustrious de Fontenelle 
(1706) to a reasonable feeling: 



 

It is not so glorious for the spirit of geometry to rule in physics as to 
govern moral things, so casual, so complicated and changeable. The 
more does the subject oppose geometry and rebel, the more 
honourable it is to curb the new field. 

[7] I divided this Treatise in four parts. The first one includes a 
complete theory of combinations; in the second, I solve various 
problems about current card games. At first, I examine those 
depending on pure chance (pharaon, basett, lansquenet and treize 
[thirteen]) and determine the gamblers’ advantage or disadvantage in 
all their possible circumstances. Geometers will find here all the 
desirable and possible generality and the gamblers will discover 
novelties, very special and important for them.  

I restricted my attention to those four games not wishing the book to 
become too large and I have preferred them because they are more 
commonly played and seemed to me the most curious of all games. 
The rest of part 2 contains solutions of various problems about hombre 
[a version of omber], piquet, imperial, brelan etc. Owing to causes 
mentioned on pp. 157 – 161, I was unable to treat these games as 
comprehensively as the previously mentioned4. 

In the third part the reader will find the solution of all problems 
which are possible to propose about quinquenove, the game of three 
dice and hazard [craps is its simplified version]. The first two are the 
only dice game played in France and the last one is only known in 
England. Then I provide rules for playing as perfectly as possible in an 
ingeniously invented game as well as in two card games, le her5 and 
tontine. The person who taught me this [invented?] game was unable 
to name it, so, to make up for this deficiency I called it the game of 
hope. There also I solved some sufficiently easy problems about 
trictrac [a version of tricktrack]. One of them can be somewhat useful 
for gamblers. I conclude this third part by considering very general 
problems concerning dice and adduce tables which can be useful to 
gamblers. Three problems are also added as examples; they describe 
the games of the first raffle, of three raffles, and the game which the 
Baron de la Hontan described in the second volume of his Voyages 
[1740] and which, as he says, is generally played by the savages in 
Canada6. Its name, game of noyauk [stones of fruit] is unattractive. 

All these dice games considered in pt 3 are disadvantageous for the 
banker whereas such card games as pharaon, basset, lansquenet and 
treize are considerably profitable for him. It should be thought that the 
inventors of these games did not at all pretend to render them entirely 
fair; or, which seems more likely, that they did not at all sufficiently 
understand the essence of their inventions and were unable to 
distribute the chances well enough. Most conditions of those games 
are so damaging for the gamblers that we can justifiably state that, for 
them, to win fairly or to lose without being undoubtedly duped, is 
impossible.  

Although I had in mind the pleasure of geometers rather then the 
benefit of gamblers, and although in my opinion those who lose time 
by playing really deserve to loose money, I did not at all neglect to 
discover the gamblers’ advantage or disadvantage or to remark how to 
reform the games rendering them perfectly fair. 



 

    [8] In the fourth part, I solve the five problems proposed by 
Huygens and add many more, some of which seem curious and 
perhaps difficult enough, and I conclude by proposing, like Huygens 
did, four sufficiently singular problems7. However, I apparently ought 
to warn the geometers inquisitive to enquire about their solution that 
those problems are not less difficult than the most awkward problems 
of the integral calculus. Those who regard them as arithmetical will 
see that, perhaps demanding less knowledge of geometry, they require 
more knack and certainly much more exactitude and circumspection.  

Had I proposed to follow exactly Bernoulli’s project, I would have 
added a fifth part and made use there of the methods contained in the 
first four parts by applying them to political, economic and moral 
issues. What hindered me was the embarrassment of finding the 
hypotheses for applying them to trustworthy facts and leading and 
helping me in my researches.  

However, I am not at all entirely satisfied with the achieved and 
think that it will be better to return to this work later or to leave the 
glory to someone abler rather than saying something either generally 
known or inexact and not up to the readers’ expectations or the beauty 
of the subject. I restrict my account to briefly remarking about the 
relation existing between this matter and games and the views which 
should be adopted for elucidating it.  

[9] Strictly speaking, nothing depends on chance. When studying 
nature, we soon become convinced in that its Author acted in a general 
and uniform manner characterized by wisdom and infinite prescience. 
For attaching an idea in conformity to true philosophy to that word, 
fortuity, we should suppose that everything is regulated according to 
definite laws whose array most often remains unknown. Things 
depending on chance are those whose natural causes are hidden from 
us. According to this definition, we may say that human life is a game 
ruled by chance. 

We should discern more precisely that the analysis of the geometers, 
and mainly that applied here, is proper for partly dispersing the 
mystery apparently shrouding future things in civil life. To achieve 
this, it ought to be indicated that some games are only ruled by chance, 
others, partly by chance and partly by the gamblers’ skill, and that, just 
as well, there are things in life whose success entirely depends on 
chance and others in which a large part is played by the behaviour of 
men. 

In general, concerning everything decided by us, our deliberations 
should be reduced, just as in games, to comparing the number of cases 
for the occurrence and non-occurrence of a certain event. Or, in the 
language of geometers, to examining whether the expected multiplied 
by the degree of probability for getting it is at least equal to our stake, 
to the advance necessarily paid in labour, cash, credit, etc. 

It follows that the same rules of analysis which served us for 
determining the decisions of the gamblers and the manner in which 
they ought to play can also guide us in establishing the proper degree 
of our expectations in various enterprises, should teach how to behave 
for ensuring the greatest possible advantage. It is clear, for example, 
that the same method which served us for determining when to 



 

renounce the due counters in hombre while expecting a volle, − that 
same method can be applied, although with more difficulties, under 
which circumstances of life should we sacrifice a small benefit for 
obtaining a larger boon. 

[10] To continue this comparison, it should be remarked that the 
same causes that prevent us from solving all the possible problems 
about games do not allow us to solve those about civil life. They, these 
causes, are of two kinds; the first is the uncertainty about the decisions 
made by those whose actions ought to regulate the events in our 
enterprises. A shock experienced by a body decides its path and 
velocity since the laws of transferring movement are fixed and 
invariable, but the causes and various motives compelling people to 
act in one way rather than another can not assure us about the 
consequences. Often they do not understand their own interests; and 
even otherwise, people often do not pursue them. Caprice leads them 
much oftener than reason and it can always be only guessed what the 
free will of people decides.  

The second cause of our ignorance of future things results from the 
narrowness of the boundaries of our mind. All the knowledge that 
presupposes the existence of a very large number of ratios is beyond 
its power. And in many games and in most situations of life there are 
so many comparisons which we ought to make, that it is barely 
possible to exhaust them. To determine the value of a [throw of] a die 
for the two gamblers in trictrac; of the next move in piquet; to 
establish whether a knight or a bishop is more, and how much more 
advantageous in chess8, − such are the problems whose solution I think 
is impossible for us.  

The same, and for the same reason, holds for most problems in 
moral and politics. For example, to determine whether under such-and-
such circumstances I should consider more attentively a 
recommendation of a relative or a request from a number of friends; 
whether some kind of trade is advantageous or harmful for a nation; 
how successful should be a negotiation or a military enterprise, etc.  

[11] Insurance policies, which are so common among merchants, 
mostly in the Republics9, do not always enrich the insurers, and, since 
men’s prudence is not sufficient for surely penetrating the future, the 
ablest British politicians are suffering daily losses from those large 
bets made there about the events of war. With a sober mind, well 
knowing the facts and especially the secret mainsprings which set in 
motion and move the affairs we can discover likely enough the best 
decision in those bets. However, it is impossible to determine it by 
issuing from the exact ratio of two numbers. 

The assistance that the human mind can get from geometry is the 
virtue called prudence whose rules are uncertain. Against a small 
number of truths and trustworthy principles of politics and morals 
there are infinitely many obscurities impenetrable for the human mind. 

People, who familiarize themselves with the kind of logic applied in 
this treatise, acquire the habit of likely distinguishing the true; they 
only agree with the evident. They will be better prepared to discern the 
various degrees of probability accompanying diverse decisions 



 

possible in moral things or civil life and to avoid errors in judging 
them.  

[12] Let people think what they wish, but it is certain that that power 
and that sobriety of mind acquired when researching abstract truths 
extends to perceptible truths, and, so to say, to practice. Analysis is an 
instrument that serves everyone who knows the proper manner of 
using it. All truths are connected; we can spend some time attempting 
to apply that power [of the analysis] to our exact notions about 
numbers and figures, but it will be more successfully applied to less 
exact knowledge which can be the object of our mind. Those who had 
been better versed in metaphysics, physics and perhaps even medicine 
and morals were excellent geometers. Those, who can not be 
persuaded by reasoning, will be convinced in the utility of geometry 
by experience. 

For concluding the parallel between problems in games and 
questions which can be proposed about economics and political and 
moral matters, we ought to note that in both cases there exists a kind of 
problems which can be solved when following these two rules: 
Restrict the proposed question to a small number of assumptions 
established for trustworthy facts; and, neglect all the circumstances in 
which the free will of men, that perpetual hindrance to any knowledge, 
can play some part.  

We should suppose that in the fourth part of his book Bernoulli took 
into account these rules, and that, when keeping to both these 
restrictions, we can certainly treat many issues in politics and morals 
with all exactness of geometrical truths. 

[13] It is this that Halley (1694) had admiringly done. There, the 
learned Englishman determined the degrees of mortality of mankind. 
His note is full of curious matters and the reader would have been 
delighted by some appropriate extracts, but my Preface is perhaps 
already too long and I will only report what the author had treated very 
subtly. I bear in mind a method for determining the grounds for 
regulating annuities. 

Halley compiled a Table for ages 1(5)70 showing how 
advantageous was for Englishmen the decision of Roy Guillaume10 to 
pay 14% yearly, or almost 1/7 of the advanced sum, as a life annuity. 
According to the Table, a person aged 10 should only receive 1/13; 
aged 36, 1/11; and, finally, 10% was only due to people aged 43 – 44 
years [or more]. Halley generalized this idea and examined the 
grounds for regulating a life annuity on two or more lives of differing 
ages. His memoir exhausted this issue. 

There are several other similar aspects [of that problem] luckily 
enough although less exactly treated by Petty (1690), but much more 
of the same essence can be considered with the same success and 
benefit for the public11. 

[14] Now I feel myself obliged to mention two illustrious geometers 
to whom I owe my first views about the subject now treated. In 1654 
Pascal resolved the problem:  

Two gamblers play a fair game until a certain number of points [is 
won by one of them]; they are supposed to have differing numbers of 



 

points, and it is required to determine how they should share the 
stakes if wishing to quit without finishing the game. 

A solution of this problem can be seen in his very short posthumous 
book, Triangle arithmétique (1665). This great man who gave much 
thought to properties of numbers12 discovered many applications of 
that triangle to the problem of points and to combinations. The 
Chevalier de Méré proposed that problem as well as a few others about 
dice games to Pascal. They were sufficiently easy as, for example, to 
determine in how many throws we can get a certain raffle. That 
Chevalier, a clever man rather than a geometer, solved these dice 
problems, but neither he, nor Roberval13 was able to tackle the 
problem of points. 

Pascal proposed it to Fermat with whom he corresponded as a friend 
and geometer, with the man who as a geometer was not inferior to 
Descartes. Fermat solved that problem in a way different from 
Pascal’s; he went even further and ascertained that his method held for 
any number of gamblers. Pascal did not believe that and, in a letter 
included with some others on the same subject in the latter’s 
posthumous works (1679), attempted to convince Fermat that his 
method, adequate for two gamblers, was not proper for a larger 
number of them. That source does not have Fermat’s answer, but he 
was certainly right; his method is incontestable and extends to any 
number of gamblers. 

[15] A bit later Huygens, that famous geometer who enriched all 
parts of mathematics by so many excellent discoveries, had heard 
about these problems and undertook to solve them by an analytical 
method14 which as a rule allowed him to go further than all the rest of 
them. He included these problems in a small treatise at the end of van 
Schooten’s Exercitationes Geometricae. Although Huygens did not 
attempt to determine the best decisions for gamblers in any card or 
dice game and restricted his account to the easiest part of the subject, 
almost to Pascal’s problems, we see, as he wrote to Schooten, that he 
highly esteemed what he did in that small work: 

There is nothing more glorious in the art that we are applying in 
this Treatise, than to be able to provide rules for matters which depend 
on chance, seem to be studied by no one and which therefore eluded 
human reasoning. […] I am sure that those capable to judge matters 
will see in this work that its subject is more important than it seems to 
be, that it lays the foundation of a marvellous and very subtle theory 
and that Diophant’s researches which only aimed at abstract 
properties of numbers are simpler and less agreeable than those which 
can be proposed on this subject15. 

Huygens ended his treatise by inviting geometers to study the five 
problems which no one, as far as I know, had yet solved16. He supplied 
the answers to three of them though without any analysis or 
demonstration, and did not at all adduce the solution of the other two. 

[16] I have mainly composed this Treatise for geometers; since 
scientists are not usually gamblers, I thought myself duty bound to 
explain in detail the games considered here and attempted to describe 
each necessary circumstance. At first I supposed to elucidate in plain 
language the solution of some of the easiest problems, such as those 



 

included in pt. 4. Then, however, I was compelled to abandon this plan 
and therefore to avoid compiling an infinitely long book no one will be 
patient enough to follow.  

Algebra briefly expresses a large number of ideas and simplifies a 
cursory inspection of the relations between the considered things. I 
think that, not wishing to write a large book I should have by no means 
renounced that advantage. I have been only explaining my subject in 
this [other] manner at the end of each problem and in the corollaries 
and remarks adduced after their solution, so that everyone and even the 
gamblers will understand me. Authors only write for being read and I 
attempted to simplify the reading of this work since I prefer to satisfy 
easily the reader rather than to be esteemed by mediocre minds who 
only admire that which demands their great effort and seems to be 
beyond the boundaries of their intelligence. 

It can be established that I remained very far from the region which 
I believe difficult and mostly from such which ought to throw their 
light on many truths. But I also know that the benefit of a 
mathematical book consists less in the discovered truths than in the 
tendency it provides for the mind towards discovering similar 
novelties.  

This disposition is acquired much easier when finding out what the 
author had already discovered, when following his each step so that I 
believe that I should not at all be ashamed of describing everything in 
detail or even of explaining everything. It is sufficient to leave no 
difficulties remaining insurmountable after enough application. 
Finally, I do not intend to protect the reader from the labour of 
invention and thus I ensure him a pleasure of sorts. 

 
Notes 

1. See Youshkevich (1970). Novikov (2002) described the present situation and 
the essence of his paper is reflected in its title. 

2. Neither Montmort, nor the authors he mentioned above could have known what 
really later appeared in pt 4 of the Ars Conjectandi. 

3. Such thoughts opposed the existence of a fatal power acting without order or 
rule (see below). Cf. also Bertrand’s remark (1888, p. XXII): the roulette n’a ni 
conscience, ni mémoire. 

4. Those were not games of pure chance. Then, the choice of best decisions was 
sometimes too difficult and could have strongly depended on prejudice. 

5. Concerning the strategic game le her see Hald (1990, pp. 314 – 322). The 
modern theory of games studies such games by means of the minimax principle. 
However, already Nicolas Bernoulli indicated that gamblers ought to keep to mixed 
strategies. Montmort published his letter in the main text of his treatise. 
    A tontine (named after the Italian banker Laurens Tonti) was a group of 
annuitants. Acting as a single body, it distributed its total yearly interest between its 
still living members so that who lived long enough received large moneys. It was 
thought that tontines hampered the development of usual life insurance and in 
addition the members of a tontine necessarily hated each other. As a result, tontines 
had not been socially acceptable. I can not describe the game called tontine. 

6. Here is David’s (1962, p. 149) translation of Montmort’s quotation which he 
included in the first edition of his treatise. It is from p. 113 of vol. 2 of the book of 
Baron Hontan:  

It is played with eight nuts [not stones of fruit?] black on one side and white on 
the other. The nuts are thrown in the air. If the number of black is odd, he who has 
thrown the nuts wins the other gambler’s stake. If they are all black or all white he 
wins double stakes, and outside these two cases he loses his stake. 



 

Schoolcraft (1845, pp. 85 – 87) remarked that the principal game of hazard 
among the northern tribes [of Indians] was very complicated. See also Longfellow’s 
Hiawatha, chapter 16. 

7. See Todhunter (1865, pp. 105 – 106 and 110 – 111). Montmort himself solved 
the first problem; the third was le her, see Note 5, the fourth problem concerned a 
game only partly depending on chance. 

8. No general answer is here possible. 
9. In those times life insurance had been most of all developing in the Netherlands 

(the Republics). Below, Montmort apparently mentioned the war of the Spanish 
succession. For Englishmen, bets (gageurs) on the events in that war were certainly 
immoral.  

10. I have no information about Roy Guillaume. 
11. This means that Halley did not, after all, exhaust his issue (see above). 

    12. Properties of numbers as studied by Pascal and Diophant (see § 15 below) 
were quite different. Huygens obviously underestimated Diophant. 
    13. Gilles P. de Roberval, 1602 – 1675. 

14. Huygens (like Pascal and Fermat) introduced expectation (of a random 
variable). He studied games in which expectations varied from set to set, and this 
compelled him to apply difference equations. Probabilities, on the other hand, would 
have remained constant. 

15. Montmort had apparently translated this passage (into French) from the Latin 
of 1657 which somewhat differed from its later French text. 

16. See Hald (1990, § 6.3). Moreover, Montmort himself (see his § 1) noted that 
Jakob Bernoulli had solved those problems.  
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Chapter 1. Definition and Object of Statistics.  

Its Origin and Dissemination 
 

[1] Statistics is a science of social facts expressed in numerical 
terms. Its object is a profound knowledge of the society considered in 
its elements, its economics, situation and movements. Numbers are its 
language, not less essential for it than figures are for geometry or signs 
for algebra. Statistics incessantly deals with numbers which provide it 
the characteristic feature of precision and certitude of the exact 
sciences. 

Works which appear in its name without pursuing its object and 
lacking its language do not at all belong to it since they are beyond the 
conditions of its existence. Statistical contributions without numbers or 
with such that are not at all enumerating social facts do not merit their 
misappropriated name. The same holds for moral and intellectual 
statistics since it is futile to wish the submission of the mind or its 
passions to calculation or to computation of the movements of the soul 
and the events of human intelligence1. 

Statistics is a science of facts just like history, geography and 
natural sciences. Like astronomy and geodesy it is a science of 
numerical facts. It resembles history in that it also collects present and 
past facts. However, there is also an essential difference; not restricting 
itself to the alien events of people’s life, it strives to penetrate their 
civil and inward life, to reveal the mysterious elements of the society’s 
economy. Contrary to history which almost always concentrates the 
interest of its accounts on battles and conquests2, statistics mostly 
occupies itself with the blessings of peace. 
    Geography only connects with statistics by the works which it 
borrows and appropriates from the new science. The former describes 
countries, the latter analyzes societies. One recounts or discusses; the 
other calculates and studies. And it is not at all possible to be less 
similar.  

Among all the sciences, political economy is most closely connected 
with statistics. In guiding the administrative and political powers by 
the light of a high motive, both aim at improving social conditions. 
However, the first is a transcendent science which daringly soars the 
loftiest region of speculative systems, whereas the second is only a 
science of facts which enumerate by swift numbers the needs of the 
population, its daily progress and each particular successful for, or 
fatal to its destiny. Both are at a disadvantage of being unpopular 
although they devote all their efforts to the interests of the people. This 
is an irremediable misfortune since it is occasioned by the established 
scientific order and therefore obliged to use its language.  



 

Political economy proceeds by abstractions but statistics, like the 
exact sciences, only speaks by numerical signs. Nevertheless, among 
the branches of human knowledge there only is a very small umber of 
those which do not resort to the service of statistics, do not consider it 
as an auxiliary. History gets from it luminous numbers which indicate 
the reality of things or their delusiveness and borrows calculations to 
establish after 25 or 30 centuries Herodotus’ veracity, the exactness of 
Thucydides and the errors of Diodorus.  

Geography is indebted to statistics for its best materials, for those, 
which being formed by rigorously defined terms, avoid the versatility 
of human judgement and are not altered by the influence of time or 
place. Finally, it continuously demands from statistics numerical facts 
and calculations which serve as a basis for its theories and justify its 
deductions. 

Statistics is incessantly applied to all social transactions either 
directly by great actions or by barely noticeable deeds concerning 
details. In their private life, statistics studies people from their first 
hours and considers them as unities added at first to the general 
number of births. It returns to a man for perhaps half a century in the 
lists of censuses. At 20 years, he is entered in the military ranks but 
more likely among the married. He will be present in the classification 
of professions, so numerous and diverse. A place for him is assigned 
among those having political capacities up to the state’s distinguished 
men. And then he is entered in the column of deaths in which everyone 
is listed for the last time and human vanity is suppressed. However, 
how many times before that catastrophe did he reappear in the 
numbers? Before jurymen, in elections to the parliament, and in his 
vote which sometimes tilts the balance of justice or of the destiny of 
the state.  

Does he possess land? Manufactures? Disposes labour and riches on 
a large scale and becomes the foundation of numbers expressing 
agricultural or industrial production and everything else accompanying 
his fortune? But perhaps he is a poor proletarian. Statistics studies 
whether the price of foodstuffs he needs is in equilibrium with his 
earnings. It explains to him the advantage of accumulating money 
instead of squandering it. It throws light on the charity establishments 
which should assist people in distress.  

Statistics certainly can not act, but it is able to reveal and, happily, 
for our time this is almost the same. Long ago, the popular cry was, If 
only the king had known! Nowadays, the authorities know everything. 
Fifteen years ago in some orphanages the mortality of foundlings 
amounted to 25%. Statistics denounced that crime and now their 
mortality is more than twice lower. Without this science, the situation 
would have been ignored. Almost for a hundred years there existed 
orphanages where death had been carrying off a quarter3 of those 
wretched creatures entrusted to such disastrous charities.  

For the public life of people statistics is no less necessary than for 
their private life. It is by its works and investigations that the main 
interests of the state are elucidated, thoroughly studied and become 
known. Numbers provide the best arguments, they are the most 
decisive witnesses which daily appear at the Royal Council, at 



 

Parliament and the Academy. The lack of this means of governing 
characterizes ignorance and barbarism of an epoch, of a state or 
administration.  

In France, there was no statistics at all under Louis XIII or Louis 
XV, no statistics under the Directoire or during the Restoration. 
However, during the reigns of Louis XIV and Napoleon statistics had 
been cultivated, honoured and considered as an official, administrative 
and political science4. The revolution of 1830 rendered it the right to 
serve the state. The same phases of good and bad fortunes are found in 
the entire history of statistics covering 40 centuries. The Egyptians, the 
Greeks and the Romans applied it for assisting the development of 
their marvellous civilization. On the contrary, the Middle Ages 
destroyed its institutions.  

Long after the renaissance of sciences and arts some European 
people beginning with the Swedes recognized the possible advantage 
of its application. However, the progress was slight since statistics 
remained a science of learned men, purely speculative and lacking 
application to public affairs5, or, rather, it had been denied by the 
people who considered it a fiscal invention as well as by sovereigns 
who feared that it revealed the secrets of their cabinets. 

[2] The example of France, England and Prussia began to dissipate 
these vain fears and from then onwards its progress has been assured, 
at least in states where the affection for the public weal is not a 
deception. All good minds recognize that statistics is absolutely 
necessary for statesmen, publicists, economists and historians 

1) To establish in all their elements the population of a country, the 
source of its power, its richness and glory. 

2) To ameliorate the territory after having explored and made 
known its fertility, communications, means of defence, healthiness of 
its rural areas and towns.  

3) To regulate, according to assured sources, the exercise of civil 
and political rights acquired by all the sacrifices made by the 
generation soon to disappear. 

4) To fix and distribute the conscription which maintains the army 
and secures independence. 

5) To establish fair taxes for satisfying the needs of the state. 
6) To determine the quantity and value of agricultural and industrial 

production, which incessantly renews the public fortune. 
7) To appreciate the developments of commerce and study the 

conditions unfavourable for its prosperity. 
8) To extend or restrain the juridical repressive actions, the vigilant 

guardian of the social order. 
9) To trace the progress of public education. This should improve 

the people by enlightening them. 
10) To guide the administration through its innumerable measures 

which govern the charity and repressive establishments in the interests 
of the inferior classes6. 

Finally, to explain by new or more exact truths many other objects 
which daily appear and thus to influence public opinion and fill up 
parliamentary discussions and formulate problems whose solution is 
not possible without statistics. 



 

These numerous and powerful interests certainly do not only belong 
to our century. They always existed everywhere and at all times, and 
for satisfying their requirements all the civilized people from the 
earliest antiquity had been compelled to turn to statistical operations. 
Actually, the history of the first societies of our globe proves to us that 
such operations had been practised in both extremities of Asia and 
extended across the ocean to the New World. In spite of innumerable 
testimonies of that remote origin, statistics is stubbornly considered as 
a new science and even that it was born in Germany in the mid-18th 
century by the learned Göttingen professor Godefried [Gottfried] 
Achenwall who discovered it in 1748.  

This argument is justified by the name which he imposed on it and 
under which it is nowadays known in the entire Europe. It is a strange 
confusion to date the origin of sciences at the epoch during which they 
were named7. Political economy was also thus named by Quesnay and 
his disciples, but did it only exist for 60 or 80 years, as though many 
philosophers and statesmen of Greece and Rome had not been eminent 
economists? 

Technology existed even before the Deluge (Genesis 4:22) and the 
special name it received in our days does not at all allow us to 
appropriate this invention. A long time ago geology had been a mystic 
cosmogony enshrouded in symbols and obscured by darkness. During 
the 18th century those scientists who had been cultivating it were 
frightened by Galileo’s fate and cautiously called it the Theory of the 
Earth. Its present name boldly announces that it wishes, like 
Prometheus, to reveal the secret of the origin of things. In any case, its 
object did not change at all and it is the same science under a new 
name. 

[3] The same happened to statistics. It appeared during the first ages 
of the world and found a place in the most ancient book, the 
Pentateuch, under the expressive name, Numbers8. For three or four 
thousand years people performed useful operations in different regions 
of the globe but did not try to accompany them by a general name 
which would have indicated their common aim. Finally, in England, in 
1669 [in 1690], without knowing or at least without mentioning his 
memorable forerunners, [Petty] reproduced the name (dénomination) 
imposed by the Hebrews, or rather that which they borrowed from the 
Egyptians, as well as their other knowledge9.  

From then onwards Europe has adopted the name political 
arithmetic for explaining them [the useful operations] and began to 
cultivate it. However, we should admit that it was not a professorial 
science anymore, poorly suited for the authorities. The learned 
Bushing [Büsching] whose zeal turned him to statistics had asked 
Friedrich II for some numbers for his works but the King replied that 
he did not prevent him from publishing what he had procured, but will 
not give him anything at all. 

The revolution involved France in economic studies thus directing 
the minds to applied mathematics and popularizing statistics and 
allowing it to penetrate the corridors of power. Thus, the name 
statistics, only a century old and then forgotten was pulled out. The 
society had been reconstructed on other foundations, by other 



 

materials, and it became necessary to submit to calculation the effects 
of that daring experience as well as the newly obtained forms. 

Statistics rendered that service and, as though revived, became a 
political science associated with governing the state. However, after 
examining what was established before, and what is done now, it is 
impossible to fail to recognize that in its aims and methods of 
executing its duties it remained the same throughout the principal 
nations of the globe since the earliest antiquity10.  

Was not, indeed, the document compiled by the emperor Augustus, 
who died 1830 years ago, presented by the successor [Tiberius] to the 
Roman Senate and explicated by him in public lectures, − was it not 
general statistics, and, even concerning its registered goals, the most 
comprehensive ever undertaken? It showed  

The state of the Empire’s riches, the number of its citizens and allies 
bearing arms, its fleet, taxes and other items of the public revenue, 
ordinary expenses and recompenses of the people. Augustus had 
written all that by his own hand (Tacitus, Annal., Bk 2, 11, see 
Suétone, in Tib., 21). [The author quotes the last sentence of Tacitus in 
Latin: Quae cuncta suâ manu praescripserat Augustus.]  

No one ought to overlook that that was not a kingdom of modern 
Europe squeezed into narrow confines and only peopled by a few 
million inhabitants. The Roman Empire then had a territory of 412 mln 
hectares [4.12 mln km2], eight time more than France today. 
Concerning population, special researches allow us to increase it up to 
83 mln inhabitants, free men or slaves, which is almost equal to the 
population of the French Empire with its dependencies as counted in 
1810. 

It is surprising to find out that the ruler of the known world had been 
so determined and had talent enough for executing the statistics of his 
immense territory. But perhaps even more marvellous is that he 
understood with profound perspicacity its considerable usefulness for 
governing his empire. Among the long sequence of kings which had 
been ruling France for 1400 years only two out of 78, Louis XIV and 
Napoleon, had the same idea as Augustus whereas England had no 
such kings. 

[4] Almost at the same time [?], during the year 2042 BC, the prince 
who ruled at the other extremity of the ancient world, the Emperor of 
China, Yu, had accomplished the compilation of the statistics of his 
vast state. According to the first sacred book of that country, the 
Chowking, engraved in its entirety on public monuments for 
preventing alterations of its text, that sovereign separated the Chinese 
territory in provinces and, when executing statistics, determined the 
arrangement that provided the perfection of work, superiority of the 
end product and the rate of taxes (Gaubil). 

In our Europe, so interconnected by its civilization, there is one 
single state whose provinces can be properly ranged according to 
statistical data which makes known the pre-eminence of its products. 
This proves that our knowledge of the most essential things does not 
advance as rapidly as usually imagined. Only France positively knows 
the quantity and values of its ordinary agricultural products in separate 
provinces. This year it lets known the industrial products over a 



 

quarter of its territory but it is still far from achieving this latter 
enterprise exposed to many chances. 

Another Asiatic people who are all but placed among our forefathers 
very successively cultivate statistics for more than a thousand years. 
The Arabs, when they captured Spain, charged their scientists to 
compile its statistics. In 721, El Samali, the Viceroy of the Peninsula, 
sent the Caliph a detailed Table of the country, its shores, rivers, 
towns, population, and revenues (Conde). Among the works of Arab 
authors there is a multitude of numerical data which proves that the 
Moors perfectly well [?] knew the number of the inhabitants of each 
town, the number of manufactories of each kind, of their workers, of 
books in the libraries and other notions which we feel happy to obtain 
in our modern societies. 

It is known that in the 8th century people having creative capabilities 
to calculate, those to whom we owe our numerical characters11, 
compiled the statistics of Spain, i. e. at the time when Charlemagne, 
the greatest sovereign of Christian Europe, was unable to write. We 
also understand that the Chinese, who were geometers, astronomers, 
chemists, and for three or four thousand years possessed sciences and 
industries which we only acquired a few generations ago, had 
compiled the statistics of their vast empire. Europe then had still been 
a region of savages.  

Long before our era the Chinese had the surveying compass, gun powder, 
fireworks, balloons, hydraulics [irrigation?], shorthand, enamelled pottery, porcelain. 
They fabricated glass, spun and weaved flax and silk, they had five types of grain 
and six species of domestic animals. But first of all, they had free labour and civil 
equality and capable men had been admitted to political posts.  

Here, however, is a human race separated from the Old World from 
the beginning of things. [To Europe,] they appeared all of a sudden 
with their liberal arts, perfect agriculture, with surprising industry and 
inventions which did not owe anything to our hemisphere. These first 
two people of that new [for this story] race, the Mexicans and the 
Peruvians, possessed extensive and diverse statistical notions and 
applied them in the usual way to the needs of their countries and the 
policy of their governments. Says the historian Herrera: 

Montezuma [II], the Emperor of Mexico, had a hundred large 
towns, capitals of so many provinces, from which he received the taxes 
and where he had governors and held garrisons. He knew perfectly 
well, added Cortés in his first letter to Charles V, the state of the 
finances of his Empire and together with many other things 
represented it in distinct and intelligible characters in the progress 
registers (registres points).  

At the other extremity of America, that vast continent which 
occupies one of the two hemispheres of the globe and extends, so to 
say, from one pole to the other, were the Peruvians, squeezed between 
the high chain of the Andes and the great ocean with no 
communication with any civilized people until Pizarro discovered and 
subjugated their empire. That new country possessed a statistics as 
complex as the best we have today. And still, the only means to write 
or calculate known to that people was the Quipos, i. e., the somehow 
joined strings of differing colours and knots.  



 

    Garcilasso de la Vega and other historians of that conquest report 
that the Peruvians applied those strings for performing and keeping 
most complicated and most extensive accounts. Thus they stated the 
number of births and deaths; enumerated men able to bear arms in 
each province, munitions, stocks of foodstuffs and other elements of 
civil and military administration. Such numerical details are only 
collected in some states of the 19th-century Europe. 

[5] Those examples and many others which we will provide 
elsewhere incontestably prove that statistics had existed from times 
immemorial but remained an unnamed science like political economy, 
zoology, geology and so many other branches of human knowledge of 
the first rank. Since all through the centuries it has been a public 
necessity for every country, the principal civilized people of the globe 
practised its operations during three or four thousand years. 
Nevertheless, we should recognize that it had almost always been 
empirically applied for answering the requirements of the moment 
without defining it, or restricting its scope or classifying the objects it 
covered according to their similarity, or studying which method it 
ought to follow, and without answering the following questions: 

 
What kind of operations constitute its investigations; which means 

should it apply for numerically establishing each social fact important 
for the interests of the country; which arrangements and methods of 
joining tabular numerical terms most evidently render the certitude of 
facts; which trials can distinguish proper numbers in the data from 
defective or fraudulent numbers; what advantages are provided to 
statistics by introducing the language of numbers and numerical 
analysis in civil, administrative and political transactions; what kind of 
errors are mixed up with the true results and how to defend ourselves 
from the ensuing mistakes; what obstacles are occasioned in statistical 
work a) by ignorance which hinders less when depreciates its results 
rather than pretends to assist the work; b) by indifference whose 
repose is troubled by requirements; c) by interests afraid of its light; d) 
by the feelings of the system which wrongly appreciates its estimates; 
e) and by a thousand fortuitous circumstances which are opposed to 
the success of its operations or at least render them laborious and 
difficult.  

 
The solution of these questions provides the essential elements of 

our science and it can be reasonably thought that they, the questions, 
had likely been thoroughly examined long ago and that, if the antiquity 
did not deal with them, at least our inquisitive century had studied 
them. A grave mistake! These questions were not even posed and until 
now almost always statistics is considered as a science that intuitively 
reveals itself to its partisans rather than recognised as a branch of 
knowledge which, like the other branches, can only be mastered by 
studying, practice and instruction. 

People wrongly consider its origin; it is incompletely defined; the 
system of its operations is not described; its methods had not been 
subjected to enlightened criticism; and finally, its scattered elements 



 

were not yet joined, enumerated or rationally grouped as required by 
the laws of logic. 

[6] Official duty instructs us to fill in, at least as it is in our power, 
these gaps harmful for the progress and application of statistics. We 
devote our next pages to satisfying this requirement and draw on our 
40 years of statistical work while serving the country as stipulated by 
the orders of public authorities. In this work [of 40 years] we proposed 

1) To warn young statisticians against the uncertainty of the path 
which they ought to follow in their first assignments. 

2) To stimulate those who, living in some smallest town or even in a 
rural commune, and having at their disposal the local archives, 
registers of civil status, market price-lists and other documents whose 
numbers are worthy of interest, − those who nevertheless believe 
themselves unable to accomplish any statistical work.  

3) To appeal to the departments for their assistance in present and 
future statistical research by allowing to use such sources as 
depositaries of old manuscripts containing numerical information 
about a multitude of important and curious objects, especially 
meteorological observations, Tables of wages in remote times, 
expenses of education in colleges, assurances, arrangements of lease 
[of land], former prices of transportation and the duration of the 
voyages, wages of labourers and artisans at different epochs and many 
other  particular statistical matters which can not be studied otherwise. 

4) To guard the publicists against numbers of unknown origin, 
events engendered by circumstances and statistical compilations 
insulting both science and truth and published in view of a mercantile 
gain. 

5) To prove how unanimous the most enlightened European 
governments are now patronizing statistics and are usually applying its 
works for guiding their administrative and political operations. 

6) And finally, to maintain the hope that statistics ever more merits 
its successes and the honour of its participation in state affairs not only 
by the higher rectitude of its numbers, but also by the elevated essence 
of its works which should be inspired by the attachment to the public 
weal and effectively contribute to the amelioration of the lot of 
humankind. 

Chapter 2. Classification of Statistics 
[7] The great European states have such vast territories, so 

numerous populations and belong to the civilization which renders 
their societies so complex, that the execution of their statistics is very 
difficult. It is not so at all for secondary states such as Belgium or the 
Kingdom of Sardinia only equal to five or six our départements. 
Indeed, in explorations of such nature the obstacles become more 
serious with the increase of the numbers to be researched and 
established.  

It is therefore a false idea as recently expounded to compare the 
statistics of those states done on a small scale with that of France with 
a territory of 0.53 mln km2 and a population of 35 mln inhabitants. We 
should not flatter ourselves with hope for covering that immense area 
without guiding our work by a powerful method such as analysis and 
rational classification such as a systematic separation of the objects. 



 

Industry remains unsuccessful when wishing to accomplish 
everything all at once and it flourishes when labour is divided and 
itself specialized for each of its branches. The same is true for 
statistics. It fails when attempts to attain immediate success. A century 
ago the intendants of Louis XIV and [later] Napoleon’s prefects had 
suffered a set-back for the same reason. They only accomplished 
partial and scattered statistics without any connections between them 
and therefore incapable of providing general results. They embarrassed 
all France which actually was proposed by their aim.  

Our time will profit from those two unsuccessful experiences and by 
being taught that at first a plan of a simplest possible statistics should 
be drawn up. Then the work should be carried out in consecutive parts 
[parties; by consecutively studying the necessary subjects] with an 
appeal to all quarters for necessary materials. That method is equally 
suited for the statistics of an empire, a département or a province. 
Applying it with perseverance, we executed the statistics of France 
which remained impossible for so long.  

[8] That system of work is so natural and logical that no one has 
mentioned its use; it seems that everyone believes that no other can be 
adopted. However, this was its first application, and it is quite contrary 
to what is done in England or in France during the reign of Louis XIV. 
According to the new system, the different parts of the statistics follow 
in the order that establishes the connections which logically exist 
between its diverse objects (sujets). Each of these constitutes an item 
and comprehensively treats some matter separated and subdivided 
according to the requirements demanded by its volume, elementary 
composition and lucidity. 

Now, we briefly sketch the separation of statistics according to this 
method. 1. Territory. 2. Population. 3. Agriculture. 4. Industry. 5 and 
6. Home and foreign trade. 7. Navigation. 8. Colonies. 9. Public 
administration. 10. Finances. 11. Military forces. 12. Justice. 13. 
Public instruction12. 
    [9] The territory is the native soil with its associations, the 
fatherland with its affections, the estate with its powerful interests, the 
agricultural domain with the labour which is the people’s fortune. And 
still, this first element of a country is not thoroughly or completely 
known. With a great deal of trouble we found out the area of France’s 
territory. For exactly fixing that term we should wait for the 
conclusion of our cadastral survey. At the times of Charles IX and 
Louis XIV our territory had been exaggerated by 50 and 25% 
respectively. Uncertainty still equals some hundred [square] leagues [1 
league = 4 km]; in England it is many [square] miles and Russia is an 
empire the errors of whose estimated territory are of the order of its 
territory.  

For determining the area of a country, very delicate and very 
numerous scientific operations are necessary. They demand deep 
knowledge acquired by many people. Astronomers are needed for 
tracing a meridian and fixing the directions to the benchmarks, and 
geodesists, for executing the main triangulation and determining the 
altitude of the relief13. Then, many surveyors for measuring the areas 
of properties and filling in the intervals in the triangular network, and 



 

finally for backing it all up, agents, draughtsmen, inspectors, couriers, 
wardens, managers. All these form such an expensive administration 
that many European countries do not anymore have the means to pay 
for, or even organize great enterprises of that kind.  

And still, many other operations are needed for describing the 
physical state of a country. Levelling for constructing railways and 
laying out irrigational systems; determining the volume and rapidity of 
water currents for regulating their regimes; exploring the country for 
mapping the minerals; drilling boreholes and tapping water for 
domestic use, watering plants, ensuring the work of machines, etc. 
Then, long and numerous meteorological observations for finding out 
the power of the elements of climate and its action on agricultural 
products and public health.  

Statistics carefully compiles the numerical data provided by those 
operations, classifies them in analytical tables which make known  

1) The physical state of the geographical regions: their [the ridges’?] 
direction, their borders, heights, mountains, rivers, and geological 
structures of the various kinds of the terrain. 

2) The climate: mean and extreme temperatures; the rainfall that 
waters plains and mountains; air pressure and other meteorological 
elements. 

3) The physical division of the territory: the areas of mountainous 
regions, plains, valleys, arable lands, pastures and forests. 

4) The political and administrative division, former and present. 
    France is the European state whose territorial statistics is the most 
advanced. In some years it will hopefully become complete and 
satisfactory. Among the recent advances we should praise the general 
map compiled by the military depositary and the geological map which 
we owe to the knowledge and perseverance of Elie de Blaumont and 
Dufrenoy. We ought to appreciate these magnificent maps all the more 
since they are still the only ones. The kingdoms which are playing a 
great part in contemporary history did not yet accomplish any of those 
investigations, which constitute the necessary foundation of the 
amelioration required by public prosperity.  

[10] Population is the soul of a country, its strength, power, 
richness and glory, − if well and successfully governed. Without 
satisfying this rare and difficult condition, the more is the population 
growing, the more it is distressed of which Ireland is a vivid example.  

Being an object of all social interests, the population is the basis of 
statistical operations and the expression measuring their results. The 
inhabitants of a country should be counted for establishing what they 
ought to obtain from the land for their subsistence and for determining 
the forces by which they will oppose their enemies. And should we 
suppose that the first known censuses had occurred 40 centuries ago, 
and is it evident that in those times there had only been a relevant 
Egyptian tradition whose origin is lost in the mist of time. 

It does not suffice for the public economy only to know the number 
of inhabitants; it is also important to reveal the distinct parts making 
up that multitude, their shares, the movements which act on it, and 
especially the conditions of its consecutive renewal, its increase or 
decrease. For coming to know these particulars statistics studies 



 

1) The population, its more or less remote former and present states 
and compares them.  

2) The home movements of the population: births, deaths, marriages 
in towns and rural areas and the country as a whole. 

3) The civil status of individuals: unmarried, married, widowers and 
widows, babies born in and out of wedlock. 

4) The sex ratio at birth, at death, during life, of the widowed, all 
this for each civil status. 

5) The age structure of the living and dead. 
6) The ordinary mortality owing to usual and epidemic diseases and 

accidental and violent. 
7) The mean yearly increase in the number of inhabitants. 
8) The former and recent difference between the original races, 

creeds and social conditions. 
9) The individual political capacity in accordance with the 

requirements imposed by law. 
10) The nature and value of [land] property distributed by the 

categories of the owners according to the essence of the property. 
Even today much is lacking in the statistical data of the most 

advanced people of Europe, always something is wanting. In France, 
that is the age and the profession of individuals; in England, their civil 
status and even the sex of individuals is not provided. In Portugal, the 
stoves are counted rather than people; Spain allowed half a century to 
pass without censuses of the population. In France before the 
revolution registration of births, deaths and marriages had been the 
duty of the church, and only 57 years ago it was turned over to 
municipal administrations. In other Catholic countries civil acts are 
still tucked away in vestries. In England, only seven years ago that 
greatly important public service had been transferred from the priests 
and religious dissident communities and assigned to a special 
administration charged with the compilation of acts in each locality 
and the concentration of the data on the movements of the population.  

These divergences should not surprise us. Very long ago, under the 
Roman dominion, an imperial edict, which prescribed a census or any 
other measure of public utility, sufficed for extending their execution 
over 50 provinces each of them as great as our modern kingdoms, and, 
taken together, constituted the entire civilized world [of Europe]. 
However, during the Middle Ages Europe became parcelled out by the 
feudal power in a multitude of territories of sovereign princes and 
governed as though by good will but actually by caprices and arbitrary 
and violent wishes of the noblemen, owners of both the land and its 
inhabitants. 

The monarchies formed by conquering all those tiny states had been 
unable to do away with the innumerable diversities14 with a language 
unintelligible to the others. These monarchies, although the needs of 
their people had been the same, were not at all similar to each other, 
which could not have been otherwise. The rivalry and incessant wars 
inspired them with a perpetual aversion to everything done by their 
neighbours, and besides their arrogance spurned the most 
advantageous ameliorations such as a decimal system for the coins, 
unification of weights and measures, triangulation of territory, its 



 

administrative division into approximately equal units, cadastral 
surveying, censuses, statistical and geodetic operations and many other 
measures beneficial for the society.  

Nevertheless, a long peaceful period allowed many governments to 
understand better the interests of their people and for some years a 
successful progress was achieved, especially in England, Prussia and 
many parts of Germany. Regrettably, however, we ought to say that 
the states of Southern Europe remained stationary, alien to the 
application of science as much as they are ignorant of its benefits. 

[11] Agriculture is the main interest of the people, but, owing to an 
inconceivable fatality, it is the least known and the most neglected. In 
France, the registration of agricultural fertility had been vainly 
demanded for more than two and a half centuries. A relevant plan was 
imagined and prepared by (par) Louis XIV and Napoleon. Three times 
during the best epochs of governing the country, its execution had 
begun, but always proved unsuccessful owing to the method of 
evaluating everything at once, both blindingly and obstinately. They 
thought it possible to derive the volume of production for the entire 
kingdom by issuing either from the gross yield of a square mile, from 
the number of ploughs or, rather, by supposing that with 6521 
communes covered by cadastral surveying the other 30,730 will not 
differ from them at all. These inductive methods were due to Vauban, 
Lavoisier and Chaptal respectively15. 

It is certainly not by applying similar conjectures that the 
agricultural production of France was estimated in its general statistics. 
An official investigation of the 37,300 communes was executed. It 
established the volume of the rural production and its value. That 
gigantic enterprise required six years of work and persistently 
demanded a classification whose lucidity enlightened the great mass of 
materials. For achieving, if at all possible, that important goal, those 
responsible studied immense collections of official numbers which had 
existed then and exist now and established 

1) The area occupied by each kind of culture. 
2) Its seeding in volume and value. 
3) Its yearly production, total and per hectare. 
4) The value and the price of that production per département and 

total. 
5) The consumption of the agricultural products per locality and 

inhabitant, and for the entire kingdom. 
6) The trade in these products, home and foreign. 
Also consecutively examined were 
1) Cereals totally, and their kinds separately. 
2) Wines and vodka. 
3) Various cultures: alimentary, industrial and horticultural. 
4) Pastures: natural meadows, artificial meadows, unploughed land. 
5) Woods and forests belonging to the crown, to the state, to 

individuals. 
6) Finally, the agricultural domain in general in its actual state and 

formerly, at different memorable epochs in the history of the country. 
The second part of the investigation treated the bred domestic 

animals. They were numbered by species, sex, age and locality, their 



 

value, profitableness, number of, and price for those slaughtered for 
consumption, their gross and net weight, quantity of meat of each 
variety consumed by an inhabitant in each district (arrondissement) 
and département of the kingdom. 

That immense work concluded by a general recapitulation of the 
various branches of the production and the relevant profits during a 
mean year. The final result is the numerical total agricultural richness 
of the kingdom, a main fact to be studied for many generations of 
economists and statisticians. Its completion was only possible by 
successfully carrying out a long and difficult investigation to which we 
all are obliged. The coherent classification applied in that persevering 
work can not be appreciated by comparison since it still is the only one 
of its kind in Europe. The execution of that work proved the possibility 
of determining by rational operations the agricultural production of a 
country with a territory of 0.53 mln km2. It is an example whose utility 
is apparently recognized and admitted by eminent statesmen of 
countries best prepared for carrying out such enterprises. 

[12] Industry, that king of our century whom science certainly still 
did not honour either as a historical event or as a statistical object. All 
that has been said until now about its production and the relevant 
estimates of quantities and values in England and France are more or 
less brave conjectures. This certainly means that a classification of the 
branches which comprise that immensely interesting subject is lacking 
or at least no traces of that procedure are left.  

We know well enough how remote is the reality from speculative 
plans neither restricted nor depressed by the innumerable obstacles 
encountered in practice when researching the truth. Nevertheless, 
while accomplishing those grand investigations connected with the 
statistics of France, the participants had arrived at the statistics of 
industry. Today, after concluding a half of these operations, we can 
present a classification of a wide scope sanctioned by their results. 
Here it is. 

Industry is separated in two structures quite different in importance 
but having similar aims, production of everything answering the real 
or imagined needs of the society:  

Manufactories and mining industry; handicraft 
Both are distributed by regions, départements, districts and 

communes so that actually this is the industrial geography of the 
country. Then, they are grouped and numbered according to the nature 
of their products. For example, all the coal mines of a département 
form a single item; all the smelting houses, another item. All the mills 
spinning flax, cotton and wool, are appropriately joined, etc. This is 
veritably the statistics of industry. All its parts are separated in three 
sections according to the nature of the treated elements: 

Mineral; vegetable; animal products  
Each series [?] enumerates the manufactured or mined products 

from the simple to the complicated. Thus, the land and the products 
resulting from its mining are the first ones; then follow the metals 
according to the volume of labour required by their various 
transformations. In the second and the third sections the tissues occupy 
the last places.  



 

Each article of each branch of industry undergoes two series of 
numerical research: value and quantity. The values are those of the 
patents, locations, primary materials and end products. The quantities 
concern both the primary materials and end products accompanied by 
their partial and total prices. 

In addition to these special indications pertaining to each 
establishment and comprising the statistics of production, there is the 
inventory of the forces which dispose everything: the number of 
workers by sex, age, daily wages of each, as well as the industrial 
movables: motors, water mills, windmills, horse-driven mills, steam 
engines, animals; as furnaces, blast-furnaces, forges; as lathes, 
generators etc.  

This recapitulation indicates industrial products in all details: 
1) By district, département and region. 
2) By products mined or manufactured. 
3) By series of products the elements of whose production are 

similar or the results analogous.  
Unlike agricultural products, the industrial products are not 

restricted to a domain of natural things; on the contrary, being aided by 
the inventive talent of our century, they traverse the boundless regions 
of human intelligence. Nothing is more difficult than tracing a logical 
classification closely covering and interconnecting them in the order of 
their affinity without ever underestimating the need to remain within 
the possibility of administrative execution of the investigation. 

[13] Home trade constitutes the greatest movement of public 
wealth which can exist in a country. Banks, taxes, the value itself of 
the money in circulation are only insignificant as compared with that 
immense capital in kind, infinitely diversified in origin and form. That 
trade aims at satisfying all the real or imagined needs of the population 
beginning with daily sustenance and finishing with splendid spoils of 
luxury and mode. 

All kinds of merchandise therefore perpetually circulate and their 
mass is everywhere proportional to the demand of the consumers with 
prices regulated by their available quantities. Wholesale and retail 
selling is going on in markets, indoor markets, shops and stores. Sold 
are 

1) Home agricultural products. 
2) Products of the manufacturing industry and handicraft less the 

commodities directly exported abroad but increased by those imported 
from abroad for consuming. 

The necessary means for that trading are 
1) Warehouses, fairs, Exchanges, banks, indoor markets, markets of 

every type. 
2) Transport for cabotage and navigation through canals, streams 

and rivers; for highways, country roads and railways.  
Formerly the nature and value of the objects of home trade had to be 

determined since toll was demanded at each step. Nowadays, the 
circulation of merchandise and the trade in them is free so that their 
quantities are not known exactly and neither is their value estimated 
comprehensively. The opposing difficulties are insurmountable.  



 

If wishing to base the reckoning on transportation, an immense 
mistake will be caused by the mass of products of every nature sold on 
the spot, at the place of origin without any transportation allowing the 
establishment of its quantity. When choosing as that basis the 
agricultural and industrial products, we are led to miscalculate since 
their great part is consumed by the producers themselves, is not sold, 
and does not enter the home trade. When adopting consumption as the 
initial point the same cause will lead to the same result, and we are 
thus unable to find out the home commercial movement either by the 
statistics of transportation, or production, or consumption although all 
such studies are indispensable for our aim.  

Even that is not all. Such essential work is yet only done in France. 
Other countries do not even have any statistics of handicraft which is 
necessary for a general investigation of the home trade. We see that 
nothing is ready for that enterprise and that much time will have to 
pass before it becomes possible to contemplate it. It is therefore 
unnecessary to study here how the home trade should be classified.  

[14] Foreign trade does not encounter the same obstacles to its 
study and among all the branches of statistics it is the best known. 
Custom-houses encircle each state, levy duty on importing and even 
exporting merchandise of every kind and thus become active agents of 
the investigation. Established by the treasuries, they are serving 
science without wishing, and often without even imagining it.  

Financial interest connected with their operations ensures exactitude 
although in many states their greed engenders a dangerous adversary: 
the smuggling that withdraws a part of the merchandise from 
government taxes and all scientific registration as well. 

Foreign trade is naturally separated in two great sections, 
importation and exportation. In turn, these are also subdivided: 

1) Merchandise, imported for consumption and exported, again for 
consumption, and provided by the land or industry of the country. It 
comprises the special trade of importation and exportation. 

2) Merchandise imported and deposited in storehouses together with 
the exported but not provided by the land or industry of the country. It 
comprises the general trade of importation and exportation. 

From the viewpoint of the origin and destination the special 
commerce is separated as follows. 

1) Importation of colonial products and foreign merchandise. 
2) Exportation of merchandise to colonies and foreign countries. 

Another important division applicable to all the trade distinguishes the 
merchandise according to the nature of transportation: 

1) Goods imported or exported by land. 
2) Same, by sea. 
However, the most important and the most luminous classification is 

that which shows importation and exportation 
1) By countries of origin and destination. 
2) By merchandise according to the nature and object of each. 
In the first case each country of the globe is comparatively shown in 

particular annual Tables which indicate the transactions in quantity 
and value and also note the duties levied by the custom-houses. In the 
second case the numerical history of each agricultural and industrial 



 

merchandize is shown and accompanied by the variations of its 
importation and exportation experienced under the different regimes of 
the custom-houses to which it was subjected. 

Those statistical tables are certainly the most interesting for studies 
by statisticians and merchants and it is evident that the most successful 
lessons can be thus easily obtained. The merchandise is methodically 
classified as follows.  

1) Concerning importation: objects necessary for the industry. Main 
natural objects for consumption. Main manufactured objects for 
consumption. 

2) Concerning exportation: main natural and manufactured products. 
Here, both the agricultural and industrial products are separated 
according to the trade with colonies and foreign countries.  

When treating foreign trade in any respect, it is important to 
compare the numbers for a succession of years. Indeed, without 
collecting the testimony of the past and the present, statistics will only 
feebly explain and corroborate the present by the previous. 

[15] Navigation. This branch of statistics only exists in, and is very 
important for the exploration of the states of Western and Southern 
Europe. It is not difficult to collect the data and regularly coordinate 
them. Navigation is here understood as concerning the merchant ships 
rather than the navy. Three objects comprise this subject, materials, 
personnel and the navigation itself.  

1) Material is the entirety of the merchant ships whose condition at 
different epochs indicates their loss or advance. To be found out are 
the number of ships, their ages, ports of registration, the strength of 
their ordinary crews, the newly built, the extinctions, their yearly 
distribution by series of displacements from 1000 to 30 tons.  

2) The personnel by ages, rank, service record, port of registration. 
3) The annual movements, calling at and leaving ports, the numbers, 

displacement and crews of the ships sailing from the colonies or 
foreign countries or going there, and the same details except origin and 
destination for the high-sea and river cabotage and fishing. These 
movements ought to be general and cover as many consecutive years 
as possible. Other similar Tables will indicate the alterations in the 
navigation for each port. 

All European maritime powers, even England, lack a historical 
statistics of their commercial navigation before the 13th and 14th 
centuries. This is possible to remedy and would be curious indeed. 

[16] At first, the colonies had been the remote possessions of the 
European maritime powers destined to ensure them an exclusively 
advantageous trade. A century ago events had destroyed that system 
and changed the distribution of those overseas possessions. England 
acquired an enormous [?] number of them, France still retained some. 
Spain and Holland lost much, but what remained is worthy of envy 
whereas other European countries have nothing or very little.  

Colonies are provinces separated from the metropolises and their 
administration is difficult and important. It is essential to explore them 
carefully so that they will possess statistics of good quality. A better 
knowledge of their transatlantic [?] possessions would have possibly 
prevented the discord between England and Spain. And, had France 



 

better known its colonies, it would have derived more benefit. If 
executed conscientiously and ably, colonial statistics should be 
therefore ranged among the most useful enterprises.  
    Each such statistics should form a single whole comprised of the 
same parts as the general statistics of the European countries except 
the trade whose classification ought to be somewhat modified owing to 
the complexity imposed by the proper interests of the metropolis and 
those connected with the colony in the degree of the extension 
experienced by the introduction of merchandise from foreign 
countries. 

[17] Public administration forms a part of statistics which throws 
the brightest light on the daily discharge of duties by the authorities. It 
covers the institutions of public utility and classifies them in the 
following way. 

1) Political establishments: voters16, elections, jurymen, the 
Chamber of Deputies, the Chamber of Peers. 

2) Financial establishments: the Bank of France, other banks, 
savings banks, pension funds, life insurance offices, other insurance 
institutions. 

3) Welfare establishments: kindergartens, shelters, homes for 
foundlings, hospitals and hospices, mental hospitals, welfare offices, 
workrooms in convents, pawnshops. 

4) Establishments of repression: départemental prisons, 
reformatories, agricultural colonies for young prisoners, poorhouses, 
detention centres, prisons for those sentenced to hard labour, colonies 
for the deported. 

There is no collection of works embracing all these subjects for any 
European country except France which had recently published the 
statistics of its establishments of welfare and repression. It describes 
the situation and movements in them, mortality of people living there, 
the expenses of these establishments, the value of work done there, 
and curious details about the origin of the convicted, their ages, 
previous and present specialities, the crimes they committed, 
recidivism, the degree of their instruction etc17. 

The publication of these details efficiently contributes to the 
improvement of the situation in these public establishments and, for 
example, since hospital mortality is not anymore a gloomy secret, it 
does not stop lowering owing to generous care and efforts. 

[18] Finances are as though nerves of modern life. In the excess and 
poor distribution of taxes they show an imminent cause of misery, 
bankruptcy and revolutions. Their statistics is known under the names 
of Budget and reports on the expenses, in parliamentary acts etc. 
However, they are overburdened by details which will be suppressed 
in a special publication. In addition, for compiling comprehensive 
tables it will be necessary, when studying anything, to estimate its 
quantity, then take into account the values and collect the data 
belonging to previous epochs [as well]. 

Financial statistics is naturally separated into three main sections: 
1) Ordinary and extraordinary revenue. 
2) Public expenses. 
3) Registered and floating national debt. 



 

The first chapter (!) enumerates all kinds of taxes as well as their 
yearly value, their distribution per locality and inhabitant. Under the 
second head all the expenses should be registered with their various 
destinations per ministries. Finally, the third section is a résumé of the 
movements of the national debt, its increase or decrease and its level at 
various epochs. Financial statistics should include studies of the 
moneys in circulation accompanied by a table of new emissions of 
coin, paper money and other assets. 

[19] Military forces securing the state’s independence are formed 
by two very different sections 

1) Army. 
2) Navy. 
Considered in each is the personnel and its material with the means 

of its conservation and increase, expenses in peace and war. All this is 
constantly debated and studied down to minutest elements and there is 
no obstacle to uniting the well-known numbers, so this branch of 
statistics is certainly the least difficult if only the state does not conceal 
it all. 

[20] The administration of justice presents one of the most 
interesting objects of statistics: the knowledge of the number of crimes 
and criminals, their nature, means of perpetration and the punishments 
inflicted on them. Beginning with 1825, France provides an example 
of such a curious study18 which enables the calculation of the danger 
experienced by people and property in the war thrust on them by 
perversity, vice and misery. That continuing [from 1825] and 
progressively improved work is worthy of the highest appraisal and we 
can not do better than to refer to its yearly systematic classification of 
that very complicated matter. 

[21] Public instruction allows us to expect the appearance of a 
more instructed generation, probably better than ours. This subject has 
the right to occupy a place among the most curious subjects of 
statistics. It yearly shows the sexes, the establishments (!), the nature 
of the institutions, the schools of the state, its colleges and academies, 
special, professional and other instruction. It concludes by studying 
institutions from the five classes of the Institut19 and public libraries, 
museums and the periodic press, one of the most active means of 
public instruction, provided that it fulfils its mission. 

[22] Capital cities. In our time, the centres of civilization are so 
mighty, the places of commerce so rich, and the populations of cities 
so numerous and condensed, that that subject ought to be treated 
separately and comprise a special chapter of statistics. Here, it is 
convenient to consider it as a separate entity and, without leaving its 
confines, to glance at the same subjects as those required by an empire 
and studied numerically. We will most certainly discover the means 
for such an investigation as though carrying out a study of a province 
[not an empire?]. 
    [23] In concluding this chapter, I remark that the classification of 
the subjects is determined by the existence, discovery and unification 
of materials. By rearranging the preparatory operations it often occurs 
that, instead of beginning a statistics by long and difficult research of 
these subjects, we waste our time and expend our diligence and ardour 



 

by distressingly constructing their classification without knowing 
whether we will be able to treat them or whether the collected 
anticipated materials are sufficient. 

We usually suppose to be perfectly knowledgeable about our 
subjects and the manner of work. After beginning it, preoccupation 
with this supposition will prove fruitless. It is more important and wise 
to postpone the ranking and separation of the subjects until deciding 
by profound examination which acquisitions we have made, what kind 
of developments can be accomplished, what subdivisions is it possible 
to adopt and how wide are the boundaries within which it should be 
necessary to restrict ourselves. 

 
Notes 

1. This is wrong, recall Süssmilch and Quetelet (and even Graunt) as well as 
Laplace (1814/1995, p. 62): 

Let us apply to the political and moral sciences the method based on observations 
and the calculus, a method that has served us so successfully in the natural sciences. 

2. Does the author agree? C. Schlözer (1827, p. 11) stated that it was necessary to 
establish general historical principles. A bit below the author remarked that statistics 
calculates and studies, but did not add … causes and effects. There also, it is unclear 
why discussions in geography are unlike those studies. Half a page below the author 
mentions geographical theories. 

3. The author almost repeated himself. 
4. Napoleon, as the First Consul, fervently supported the Statistical Bureau [of 

France]. However, after becoming Emperor, he suspiciously regarded publication of 
statistical data. The Bureau fell into decay (A. I. Chuprov 1910, p. 60).  

5. That statistics remained a science of learned men etc is doubtful. In Sweden, a 
state that the author mentioned just above, the situation had certainly been different 
(Nordenmark 1929). The author’s reservation which followed next does not entirely 
remedy his remark.  

6. This list is not in accord with the author’s Chapter 2.  
7. Kendall (1960) remarked that the word statistics had appeared in Italy in 1589. 
8. The numbers in that source were apparently provided not more precisely than 

to within 10. In one case which described the redemption of the first born the number 
was 22,273. The subsequent drawing of lots deserves a special mention (Sheynin 
1998, pp. 192 – 193). 

9. Did the author really think that the term political arithmetic had been known in 
antiquity? 

10. This is definitely wrong. The aims had been incomparably narrower and the 
methods, certainly primitive. The document compiled by Augustus (see just below) 
was a balance sheet of the Roman Empire (Kendall 1960) and it is also remarkable 
since ancient science had been qualitative. 

11. The introduction of our present system of numeration had been one of the 
most important merits of the Baghdad school (Rosenfeld & Youshkevitch 1970, p. 
209). It occurred in the first half of the 9th century. 

12. At the end of Chapter 2 the author added another item. This is one of quite a 
few instances of his carelessness. 

13. Suffice it to say that the author was ignorant of such astronomical and 
geodetic work. 

14. Here is the end of that sentence: et l’on pourrait en citer, qui se composent de 
60 provinces etc. Suppose that qui should have been que, but the provinces?  

15. The author understandably denies sampling which had not been recognized as 
a scientific method until the beginning of the 20th century. However, he could have 
recalled Laplace’s sampling estimate (1786) of the population of France largely 
repeated in the Théor. Anal. Prob. 

16. Voters became establishments … 
17. This as well as the appropriate place in § 20 is extremely superficial. Did the 

author read Poisson (1837)? 
18. The author refers to the Comptes (1825 and later). 



 

19. The author meant the Institute of France which was comprised of five 
academies. 

 
Brief Information about Mentioned Personalities 

Augustus, 63 BC – 14 AD, Founder and first emperor of the Roman Empire 
Blaumont J.-B. A. L. L. Elie de, French geologist, 1798 – 1874 
Büsching A. F., 1724 – 1793, geographer, historian, educator, theologian 
Chaptal J.-A., 1756 – 1832, French chemist and statesman 
Charlemagne, Charles the Great, 742 or 748 – 814. From 800 emperor of 

Western Europe 
Charles V, 1500 – 1558. King of Spain from 1516, Emperor from 1519 
Charles IX, 1550 – 1574. King of France 
Cortes Hernando de Monroy y Pizarro, 1485 – 1547. His expedition caused the 

fall of the Aztec Empire  
Diodorus Siculus (Sicilian), wrote between 60 and 30 BC 
Louis XIV, Louis the Great, Le Roi-Soleil (Sun King), 1638 – 1715  
Montezuma II, 1466 – 1520, Ninth emperor of the Aztec Empire  
Petit-Dufrenoy O.-P.-A., French geologist, 1792 – 1857  
Pizarro Francisco González, 1471 or 1476 – 1541, conqueror of the Inca Empire  
Vauban S. Le Prestre de, 1633 – 1707, military engineer 
Yu the Great, ca. 2200 – 2100 BC, Chinese emperor 
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IX 
 

N. Bernoulli 
Letter to P. R. Montmort, 23 January 1713 

 
Montmort (1708/1713, pp. 388 – 394) 

 
    I am sending you a list of the babies of each sex born in London 
from 1629 to 1710 with my proofs of what I have written you1 about 
the argument according to which it can be proved that it is miraculous 
that during 82 years in succession the numbers of babies of each sex 
born in London do not differ more from each other. It is impossible 
that during such a long time they had always been contained by chance 
within such narrow boundaries as indicated in the list showing these 
82 years. 

I state that [nevertheless] there is nothing to be surprised at and that 
there is a high probability for the numbers of boys and girls to be 
contained within still narrower boundaries. For proving this, I suppose 
that the number of all the babies born yearly in London is 14,000, 
7200 boys and 6800 girls if only these numbers exactly follow the 
ratio 18:17 which expresses the facility of the birth of both sexes. 

Since the number of boys is sometimes greater and sometimes 
smaller than 7200, let us assume a limit. For example, take the year 
1703 when the number of girls was nearest to the number of boys, 
7683 and 7765, or 6963 and 7037 if their sum is reduced to 14,000. 
The number of girls thus exceeded 6800 by 163, and the number of 
boys was equally less than 7200. And I will prove that it is quite 
possible to bet on the [yearly] number of boys not being either larger 
or smaller by 163 than 7200. 

This means that the ratio of boys to girls will not be larger than 
7363:6637, or smaller than 7037:6963. To prove this, let us imagine 
14,000 dice with 35 faces each, 18 white and 17 black. You know that 
the terms of the binomial (18 + 17) raised to the power of 14,000 
indicate all the possible cases for obtaining with those 14,000 dice any 
number of white faces. The first term shows all the cases for all the 
faces to be white; the second and the third terms, for obtaining 1 and 2 
black and 13,999 and 13,998 white faces, etc.  

The 6801-st term therefore expresses all the cases for getting exactly 
6800 black and 7200 white faces; the 6638-th and the 6964-th terms, 
6637 and 7363 white and 6963 and 7037 black faces. It is therefore 
required to determine the ratio between the sums of all the terms from 
the 6638-th to the 6964-th inclusive and of all the other terms, those 
not exceeding the 6638-th and larger than the 6964-th. However, all 
these terms are extremely large, and, for calculating this ratio, a special 
trick is needed. Here is how I am doing it. 

Let the number of all the babies be n rather than 14,000, the 
facilities of the births of a boy and a girl be as m:f and the limit l rather 
than 163. Denote also p = n/(m + f) rather than 18:17, so that n = mp 
+ fp. In our example, mp = 7200 and np = 6800. At first, I look for a 
very close approximation of the ratio of the (fp + 1)-st term to the (fp – 
l + 1)-st term. By the law of the course of these terms, the former is 
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and the ratio of the former to the latter is 
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Replacing (n – fp) by np [by mp], it becomes  
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Then I suppose that all the factors in the left side except the last one, 
(f/m)l, are in a geometric progression and their logarithms, in an 
arithmetic progression. This supposition is very near to reality, 
especially if n is a large number. The sum of all these logarithms is 
therefore 
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which is the sum of the logarithms of the first and the last factor 
multiplied by half the number of all the terms. Adding the logarithm of 
(f/m)l equal to llgf/m we have 
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And this is the logarithm of the ratio sought. The ratio itself is 
therefore 
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If a better approximation is needed, we can separate that sequence 

of factors 
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into many parts and suppose that the factors of each are in a geometric 
progression, but this is not necessary since the values determined in 
accord to these suppositions will very little differ one from another and 
even although the first supposition leads to a slightly larger ratio than 
it is, that excess will be much less considerable as compared with what 
I will neglect further. 
    If I consider now the terms fp and (fp – l) which immediately 
precede the terms (fp + 1) and (fp – l − 1), their ratio will be 
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which is larger than (1) or 
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since each factor of the first sequence is larger than the corresponding 
factor of the second. Just the same, the ratio of the terms (fp – 1) and 
(fp – l – 1) is larger than the ratio of fp and (fp – l); (fp – 2):(fp – l – 2) 
larger than (fp – 1):(fp – l – 1) etc until we reach the first term.  

This is why, if we separate all the terms preceding the term number 
(fp + 1) in classes each containing l terms, and, beginning with the 
term fp, calculate the ratio of the first term of the first class to the first 
term of the second class, it will be larger than the ratio of (fp + 1):(fp – 
l + 1) and the ratio of the second term of the first class to the second 
term of the second class will be still larger, etc. And so, the ratio of all 
the terms of the first class taken together to all the terms of the second 
class taken together will be larger than the ratio of (fp + 1) to (fp – l + 
1). The ratio of all the terms of the second class to all the terms of the 
third class will be still larger; and the ratio of all the terms of the third 
class to all the terms of the fourth class will be yet larger, that is, larger 
than (3). 
    Call this expression q and denote by s the sum of the terms of the 
first class. Then the sum of the terms of the second class will be 
smaller than s/q, the sum of the terms of the third class smaller than 
s/q2, of the fourth class, s/q3 etc. The sum of all the classes, be their 
number infinite, except the first one will be smaller than  

 
s/q + s/q2 + …, 
 

that is, smaller than s/(q – 1). 
It follows that the ratio of the sum of the first class, i. e., of all the 

terms between those of numbers (fp + 1) and (fp – l + 1) including also 
the latter, and the sum of all the preceding terms is larger than  
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Therefore, replacing f by m and m by f, we see that the ratio of the sum 
of all the terms between (fp + 1) and (fp + l + 1) including the latter 
and the sum of all the subsequent terms including the last one is larger 
than 
 

    

/2
1

1.
1

l
fp l fp mp

mp l fp fp

 + +
− 

− + 
                                          (4) 

 
And finally the ratio of the sum of all the terms between those (fp – l 

+ 1) and (fp + l + 1), including them both but even without the 
middlemost term (fp + 1) and the sum of all other terms is larger than 
the smaller of the two magnitudes (3) and (4), QED. 

Let us now apply this to our example in which n = 14,000, mp = 
7200, fp = 6800, and l = 163 and we will find that (4) is equal to 

 
163 7363 7201 6800

[lg lg lg ]
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163/2[0.0450176 + 0.0000603 − 0.0248236] = 1.6507254. 
 

The number having this logarithm is 4474/100; replacing mp by fp and fp 
by mp we will find 
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163 6953 6801 7200

[lg lg lg ]
2 7038 6800 6800
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163/2[− 0.0046529+0.0000639+0.0248236] = 1.6491199. 

 
The number having this logarithm is 4458/100 and I conclude that the 
ratio of the probability that among the 14,000 babies the number of 
boys will not be either larger than 7363 or smaller than 7037 and the 
probability of the contrary is at least higher than 4458/100. And it will be 
advantageous to bet that the number of boys will not be beyond those 
limits more than three times in 82 years.  

However, when examining the list of babies born in London during 
82 years, we find that the number of boys 11 times exceeded 7363, − 
in 1629, 39, 42, 46, 49, 51, 59, 60, 61, 69, 76. You will also easily 
determine that it is possible to bet more than 226 against 1 on the 
number of boys not exceeding those limits 11 times in 82 years. You 
will also note that, when assuming a limit greater than 163, but smaller 
than the largest contained in the list, I will determine a probability 



 

much higher than 43:1 that each year the number of babies of both 
sexes is contained rather within than beyond it. 

It is not therefore surprising at all that, just as I wished to 
demonstrate, the numbers of babies of both sexes are not more 
different from each other. I recall that my late uncle had proved a 
similar statement in his Ars Conjectandi now in the press in Basel, that 
when wishing to discover something by often repeated trials, the 
numbers of cases in which a certain event can occur or not, we can 
increase the number of observations so that finally the probability that 
we have discovered the real ratio existing between the numbers of 
those cases will be higher than any given probability. When his book 
appears, we will see whether in such matters I have found as good an 
approximation as he did.  

I have the pleasure of remaining with perfect esteem your etc. 
 

Note 
    1. See Bernoulli’s letter to Montmort of 11 Oct. 1712 (Montmort 1708/1713, p. 
374). 
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P. S. Laplace 
 

Application of the Preceding Studies  
to the Analysis of Chances 

 
Application des recherches précédents à l’analyse des hasards,  

this being a section (pp. 144 – 153) of  
Recherches sur l’intégration des équations différentielles finies 

et sur leur usage dans la théorie des hasards (1776).  
Œuvr. Compl., t. 8. Paris, 1891, pp. 69 – 197 

 

The present state of the system of nature is evidently the sequel to 
its preceding moment. And, if we imagine an intelligence that 
embraces all the relations between the beings in this universe existing 
at a given instant, it will be able to determine, for any time past or 
future, the respective positions, the movements and generally the 
connections between those beings1. 

Physical astronomy which, of all branches of our knowledge, shows 
the greatest respect to the human mind, offers an idea, although 
imperfectly, of what such intelligence would have been. The simplicity 
of the laws which move the celestial bodies and the relations of their 
masses and distances allow the analysis to follow up in a certain 
measure their movements. It suffices geometry to observe the position 
and velocity of the system of those great bodies at some moment for 
determining their state in the past and future centuries.  

Man has therefore the advantage of calculating by applying the 
power of his instruments and a small number of relations. However, 
the ignorance of the different and complicated causes which jointly 
produce the events coupled with the imperfection of the analysis 
prevents us from pronouncing our conclusions about very many 
phenomena with the same certainty. 

It follows that for us there exist uncertain, more or less probable 
matters. It is impossible to comprehend them and we are therefore 
attempting to make this up by determining their different degrees of 
likelihood and are thus indebted to the feebleness of our mind for a 
most delicate and most ingenious mathematical theory, the science of 
chances or probabilities2. 

Before going any further, we ought to fix the meaning of these 
words, chance and probability3. We regard a thing as an effect of 
chance if it does not offer our eyes anything regular or a sketch [of 
itself] and in addition if we are ignorant of the causes which produced 
it. In itself, therefore, chance is not real; it is only a term proper to 
denote our ignorance about the manner in which the various parts of a 
phenomenon are related to each other and to the rest of the nature.  

The notion of probability includes this ignorance. If we are sure that 
one of the two events which can not coexist necessarily occurs, but do 
not see any reason for one of them to arrive rather than the other, the 
existence and non-existence of each is equally probable. And if one of 
the three events mutually excluding each other necessarily occurs and 
we see no reason for any of them to arrive rather than another, their 



 

existence is equally probable, but the non-existence of each is more 
probable than its existence in the ratio of 2:1 since out of three equally 
probable cases there are two favouring the non-existence and only one 
contrary to it. 

If the number of possible cases remains the same, the probability of 
an event increases with the number of favourable cases; on the 
contrary, if the number of favourable cases remains the same that 
probability decreases as the number of possible cases increases. 
Probability is therefore directly proportional to the number of 
favourable cases and inversely proportional to the number of all the 
possible cases. 

The probability of the existence of an event is only the ratio of the 
number of favourable cases to all the possible cases if we see no 
reason for one of the cases to arrive rather than another one. It is 
therefore represented by a fraction whose numerator is the number of 
the favourable cases, and the denominator, of all the possible cases. 
Similarly, the probability of the non-existence of an event is the ratio 
of the contrary cases to all the possible cases and should therefore be 
expressed by a fraction whose numerator is the number of the contrary 
cases and the denominator, the number of all the possible cases. It 
follows that the probability of the event’s existence joined with the 
probability of its non-existence makes up a sum equal to 1 which 
therefore expresses entire confidence since an event should evidently 
either arrive or fail.  

Then, a thing necessarily occurs if all the possible cases favour it, 
and the fraction expressing its probability is therefore itself 1. 
Certitude can thus be represented by unity, and probability, by a 
fraction of certitude. It can approach unity ever closer and even differ 
from it less than by any given magnitude, but it can never become 
larger. The goal of the theory of chances is to determine these 
fractions, and it thus supplements the uncertainty of our knowledge in 
the best possible way. 

Certitude and probability, as we defined them, are obviously 
comparable and can be subjected to a rigorous analysis. However, 
suppose that all the possible cases favour an event or, alternatively, 
that it is found that many of them are contrary to it, then these 
instances [possibilities] are absolutely incomparable and it is 
impossible to say that the first is twice or three times greater than the 
second since truth is indivisible. 

Here we arrive at the same thing that is encountered in all physical 
and mathematical sciences. We measure the intensity of light, the 
different degrees of the temperature of a body, their (?) forces, their 
resistances, etc. In all these studies the objects of analysis are the 
physical causes of our sensations rather than the sensations 
themselves.  

The probability of events serve for determining the expectation or 
the fear of those who are interested in their existence and it is from this 
viewpoint that the science of chances is one of those most useful for 
civil life. The word expectation has various meanings. Ordinarily it 
expresses the state of the human mind when some blessing should 
happen owing to certain suppositions which are only likely. In the 



 

theory of chances expectation is the product of the expected sum by 
the probability of obtaining it. For distinguishing the two meanings, I 
call the former moral, the latter, mathematical expectation4.  

Suppose that n people have an equal probability of getting a sum a, 
and that that sum should certainly belong to one of them. The total 
probability of that event is 1, or certitude and the probability of each of 
those people getting it is evidently 1/n and the mathematical 
expectation, a/n. This is also the sum which should be given to [each 
of] them if they wish to share the entire sum without running the risk 
connected with the event.  

If one of those people has a double probability as compared with 
each of the others, his mathematical expectation and therefore the sum 
that should be given him in the former case will consequently be also 
twice larger. Indeed, if (n + 1) people have the same probability to 
obtain the sum a, then their probability of getting it is 1/(n + 1), and 
the mathematical expectation, a/(n + 1). If now one of them gives up 
his claims and his expectation to A, then A acquires a double 
probability, and a double expectation, 2a/(n + 1). When sharing the 
total sum he should get twice more than each of the others.  

We see that mathematical expectation is just the partial sum to be 
obtained when those people do not wish to run the risk connected with 
the event and when supposing that the share of the expected sum is 
proportional to the probability of obtaining it. Actually, it is the only 
equitable way to share the sum when leaving aside all alien 
considerations since equal degrees of probability lead to equal rights to 
the expected sum.  

Moral expectation, just like the mathematical expectation, depends 
on the expected sum and the probability of obtaining it, but it is not 
always proportional to the product of these two magnitudes. Regulated 
by a thousand variable circumstances, it is hardly ever possible to 
define and still less subject to analysis. True, these circumstances only 
increase or decrease the advantages provided by the expected sum, so 
we may regard moral expectation as the product of that advantage by 
the probability of obtaining it, but we should distinguish the relative 
and the absolute value of the expected blessing. The latter is 
completely independent from the needs and other reasons for desiring 
that blessing whereas the former increases according to various 
motives. 

We are unable to offer any determinate method for appreciating that 
relative value. Here, however, is a very ingenious rule proposed by the 
illustrious Daniel Bernoulli (1738): the relative value of a very small 
sum is proportional to its absolute value divided by the entire fortune 
of the interested person. That rule is not, however, general but it can 
serve us in a great many number of circumstances which is all that can 
be desired in that matter.  

Most of what is written about chances apparently confuses moral 
expectation and probability with mathematical expectation and 
probability or at least regulates one by another. It was thus desired to 
extend the provided theories, which was impossible since then they 
become obscure and barely satisfy the minds accustomed to the 
rigorous clarity of geometry. D’Alembert proposed very shrewd 



 

objections to them and thus turned the attention of geometers to this 
matter. When a large number of circumstances are involved, the 
absurdity to which the results of the calculus of probability leads those 
authors, becomes realized as also, consequently, the need to 
distinguish in these matters the mathematical and the moral. That 
calculus is indebted to him for being now based on clear principles and 
restricted to its veritable limits5.  

Permit me to digress about the difficulties to which the analysis of 
chances is apparently susceptible. The probability of uncertain things 
and the expectations connected with their existence are, as I said, the 
two objects of that analysis. The distinction established above between 
the moral and the mathematical expectations answers, as it seems to 
me, all the possible objections to the latter, so let us therefore examine 
those which are levelled against the former.  

When studying the probability of events, we evidently start from the 
principle according to which the probability is the number of 
favourable cases divided by all the possible cases. The difficulty can 
only concern the supposition of an equal possibility of two unequally 
possible cases and we ought to agree that the application of the 
calculus of probability to objects of civil life made until now is 
subjected to that difficulty.  

I suppose, for example, that the coin used in the game heads or tails 
has a tendency to land on one side rather than on the other but that the 
gamblers do not know which side is favoured. It is evident that they 
can equally bet on the arrival of each. We may therefore suppose, as it 
is done usually, that at the first throw both outcomes are equally 
probable. This supposition is not however permitted anymore, for 
example, if one of the gamblers bets on the appearance of heads in two 
throws. The unequal possibilities of heads and tails ought to be taken 
into consideration although we do not know which side appears more 
frequently.  

Indeed, an inequality always favours the gambler who bets on the 
heads not to appear in two throws since the probability of that event is 
higher than in the case in which the equal probability of both outcomes 
does not exist. Among the cases heads, heads; heads, tails; tails, 
heads; and tails, tails the first and the last are more probable than the 
other ones. Suppose that the probabilities of the two outcomes of a 
throw are (1 ± w)/2 [and 0 < w < 1]. Then heads, heads will have 
probability (1 ± 2w + w2)/4. Having no reason to prefer one of the 
possibilities rather than the other, both probabilities should be added 
and the sum divided by two. So the probability of heads, heads (and 
tails, tails) will be (1 + w2)/4. A similar calculation results in 
probability (1 − w2)/4 for either of the two other possibilities, QED6. 

What is stated about heads or tails can be applied to dice games and 
generally to all games in which the different events are prone to 
physical inequality. I have sufficiently developed this remark 
elsewhere (1774), and here I only note that, although not knowing 
which of those events is more probable, we can almost always 
remarkably determine to whom of the gamblers is this inequality 
advantageous. 



 

The theory of chances also supposes that if heads and tails are 
equally possible, the same will hold for all the combinations heads, 
heads, heads; tails, heads, tails; … Many philosophers think that this 
supposition is not exactly true and that the combinations in which an 
event occurs many times in succession are less probable than the 
others. However, we then ought to suppose that past events somehow 
influence those that should occur later, which is not admissible at all. 
Actually, in the ordinary course of nature the events are intermixed, 
but only since, as it seems to me, because the combinations with such 
events are much more numerous. Here, however, is an apparently 
difficult problem which it is proper to discuss. 

If heads appears for example 20 times in succession we are strongly 
tempted to believe that it did not happen by chance, whereas, if heads 
and tails are somehow intermixed, we certainly do not look for a 
cause. So why are these two cases different if one of them is not 
physically less probable than the other?  

I answer in general that, when we note a symmetry, we always 
admit the effect of a cause acting orderly and thus deliberate according 
to probabilities. Indeed, symmetry is produced either by chance or a 
regular cause, and the latter supposition is more probable. Let 1/m be 
the probability of the former, and 1/n, of the latter. Then (1774) the 
existence of that cause has probability 
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and we see that the larger is m as compared with n, the higher is the 
probability of the latter supposition. It is not since a symmetric event is 
less possible than the others, but because we can bet much more that it 
was due to an orderly acting cause than to chance and therefore try to 
discover that cause. 

Here is a very simple example explaining this remark. Printed letters 
lying on a table form the word INFINITESIMAL7. The reason that 
leads us to believe that that arrangement was not accidental can not be 
due to its being physically less possible than the others. Indeed, had 
not that word be used in any language, it would have been neither 
more, nor less possible but we will not then suspect an act of some 
particular cause. However, we do use that word and it is incomparably 
more probable that someone had disposed those letters, that that 
arrangement was not due to chance. 

I return now to my subject. The uncertainty of human knowledge 
concerns either the events or their causes. If we are sure, for example, 
that an urn only contains white and black tickets in a given proportion 
and the probability of extracting a white ticket by chance is required, 
the event is uncertain, but the cause on which depends the probability 
of its existence, i. e., the ratio of the white and black tickets, is known. 
In the following problem the event is known but the cause is not. 

An urn supposedly contains a given number of white and black 
tickets. A white ticket is drawn and it is required to determine the 
probability that the proportion of the white and black tickets is p:q. 
The event is known but the cause is not. 



 

We can reduce all problems depending on the theory of chances to 
these two classes. Actually, there exist a very large number of 
problems in which both the cause and the event seem unknown, for 
example: 

An urn is equally supposed to contain 2, 3, …, or n white and black 
tickets. Determine the probability that two extracted tickets will be 
white. 
The proportion of the white and black tickets, their total number and 
the event which should follow, are all unknown. However, here we 
ought to consider as the cause of the event the equal probability of all 
the numbers from 2 to n and the indifference of the colours of the 
tickets8. The problem therefore belongs to those in which the cause is 
known but the event is not. 

I did not at all intend to provide here a complete treatise on the 
theory of chances and am satisfied to apply the previous researches to 
the solution of many problems of that theory. I even restrict my 
attention to those of them in which the cause is known and it is 
required to determine the events and I (1774) have earlier considered 
the case in which it was proposed to establish the events given the 
causes [read: … the causes given the events]. 

 
Notes 

1. Laplace’s later statement (1814/1995, p. 2) is more generally known. He did 
not, however, admit an existence of any such intelligence. Anyway, there exist 
unstable and even chaotic movements and the utmost importance of the latter has 
been recently recognized. Maupertuis (1756, p. 300) and Boscovich (1758, § 385) 
had formulated similar statements earlier (Boscovich: calculations will then be 
possible to infinity on either side) but disclaimed such a possibility. 

2. Actually, the existence of the theory of probability is due to the need for 
studying the regularities of chance in mass trials (observations). Laplace (1814/1995, 
p. 3) left a related statement: Probability is relative in part to our ignorance and in 
part to our knowledge. 

3. Very much can be added about each of these terms. I myself have published 
two papers (1991; 2011) about the former and I noted Bayes’ considerable merit as 
the main forerunner of Mises (2010). 

4. Laplace (see below) understood moral expectation more generally than Daniel 
Bernoulli. Later, however, he (1812/1886, p. 189) restricted his attention to the 
Bernoulli’s proposal and once more suggested to apply the term mathematical 
expectation for distinguishing it from the then topical new notion. This latter 
adjective, which took root in the French and Russian literature, had long ago become 
obsolete. 

5. Laplace had certainly prettified D’Alembert (Sheynin 2009, § 6.1.2). For one 
thing, the latter was one of the philosophers who wrongly reasoned on the 
probability of symmetric events (see below). 

6. Although admitted by Hald (1998, p. 192), this reasoning is certainly wrong. 
Laplace himself (1812/1886, p. 411) stated the opposite: the probability of (heads, 
heads or tails, tails) is higher than the probability of the two other possible outcomes 
and it is advisable to bet on the former compound event. 

7. Laplace repeated this statement, first in his Leçons de mathématiques of 1795 
delivered at the Ecole normale, published in 1812 and reprinted in his Oeuvr. 
Compl., t. 14. Paris, 1912, see p. 163, then in his Essay (1814/1995, p. 9), but 
replaced infinitesimal by Constantinople. His example was due to D’Alembert 
(1767) who had wrongly discussed it. 

8. Indifference of the colours was not stipulated. However (Laplace, for example 
1814/1995, p. 116), hypotheses should not be considered to be true and ought to be 
continually corrected by new observations.  
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XI 
 

P. S. Laplace 
 

Lectures in Mathematics. Lecture 10 (Fragments)1  
on Probabilities  

 
Laplace P. S. (1812), Leçons de mathématiques  

données à l’Ecole normale en 1795. 
Œuvr. Compl., t. 14. Paris, 1912, pp. 10 – 177.  

Dixième séance. Sur les probabilités, pp. 146 – 177 

 
Page 146. For following the programme in mathematics which I 

myself sketched, I should have additionally discussed the differential 
and integral calculus involving finite and infinitely small differences 
(calcul différentiel et integral aux différences soit finies, soit 
infiniment petite); mechanics; astronomy; and the theory of 
probability. The short duration [of studies] at the Ecole normale does 
not permit that at all. However, concerning mechanics and astronomy, 
I proposed to compensate the impossible lectures by publishing a 
treatise called Exposition … [1796] in which, independently from the 
analysis, I will present the sequence of discoveries made until now 
about the system of the world. Today, I devote the last lecture to the 
theory of probability, interesting both in itself and owing to its 
numerous relations with the most useful social matters. 

All events, even those which because of their insignificance seem to 
be independent from the great laws of the universe, are their 
corollaries as necessary as the rotation of the Sun. Being ignorant of 
the ties which join them with the entire system of nature, we believe 
that they depend on final causes or chance depending on their regular 
or apparently confused appearance and succession. However, these 
imaginary causes have been retreating one after the other with the 
boundaries of our knowledge and finally disappear in the face of sober 
philosophy which only perceives them as an expression of our 
ignorance of their veritable causes.  

We will become convinced in this important result of the advance of 
enlightenment when recalling that in bygone times floods, great 
draughts, comets trailing very long tails, eclipses, northern lights, and 
generally all the extraordinary phenomena had been regarded as signs 
of celestial wrath [Laplace (1814/1995, p. 3)]. 

Page 157. When considering a very large number of events, the 
formulas to which we come are composed of so many terms and 
factors, that their numerical calculation becomes impractical. It is 
therefore necessary to be able to transform those formulas in 
converging series. I provided a suitable method based on transforming 
functions of very large numbers into definite integrals and application 
of rapidly converging series2. And it is remarkable that the integrands 
are generating functions of the functions expressed by the integrals. 
The theories of generating functions and the approximations of 
functions of very large numbers can be thus considered as two 
branches of the same calculus which I named the Calculus of 
generating functions.  



 

The boundaries of the probability of the results and the causes 
indicated by a large number of events as well as the laws according to 
which that probability approaches its boundaries as the events multiply 
can be easily determined when applying that calculus. This research, 
the most delicate in the theory of chances, merits the attention of 
geometers by the analysis that it requires, and of the philosophers by 
showing how the regularity becomes established even in matters which 
seem to be entirely given up to chance and how we reveal in them 
hidden although constant causes on which that regularity depends3. 

Page 161. When observations or experiences are multiplied 
indefinitely their mean result converges to a fixed term [number]. 
Therefore, when choosing an arbitrary small interval extending over 
both sides of that term, the probability that the mean result becomes 
finally contained within that interval will differ from certitude less 
than by any assignable magnitude. 

That term is verity itself provided that positive and negative errors 
have the same facility4. And generally it is the abscissa of the curve of 
the facility of errors corresponding to the centre of gravity of that 
curve’s area5 if only the origin of coordinates coincides with the origin 
of the errors. 

The mean result of a large number of future observations will thus 
almost coincide with that of a large number of already made 
observations. 

Pages 168 – 169. It is noted that there are more women than men in 
spite of more boys being born than girls. In countries with a constant 
population6 its ratio to yearly births equals the number of years in the 
mean life. That duration is therefore larger for women than for men 
either because of their constitution or since they are exposed to lesser 
dangers.  

The mean life will obviously increase with wars becoming rarer, 
with better and more generally extended welfare, and if man will 
somehow render our land [environment] healthier and get rid of some 
diseases and decrease their danger. 

This last-mentioned circumstance happened with smallpox, one of 
the most destructive scourge of mankind. Ingeniously applying the 
calculus of probability, Daniel Bernoulli [1766] discovered that 
inoculation sensibly increases the mean life even if supposing that one 
person out of 200 dies from that procedure. Inoculation is therefore 
undoubtedly beneficial for the state. However, who wishes to be 
inoculated, ought to compare the very low but immediate danger of 
dying with a very much higher but protracted danger of dying from 
natural smallpox. 

Although the former does not exist for the state which only 
considers masses of citizen, it is not so for individuals. Nevertheless, 
properly accomplished inoculation kills so little people and the ravages 
of natural smallpox are so great, that the interest of an individual joins 
the interest of the state in adopting inoculation. The head of a family7, 
whose attachment to his children increases with them [with their 
number? their ages?], certainly should not waver when subjecting 
them to an operation which delivers all of them from worry and the 
danger of such a cruel disease and ensures him the fruit of his care and 



 

their education. I do not therefore hesitate to advise this salutary 
practice of inoculation and I regard it as one of the most advantageous 
results obtained by medicine through experience. 

Pages 169 – 170. Games are as much immoral as these institutions 
[annuities, tontines] are beneficial for the morals by favouring the 
peaceful tendencies of nature in the greatest possible measure. And the 
capitals being insignificant and remaining idle in the hands of each 
individual become productive, nourish the business going on in the 
large establishments which receive them, and, owing to the bulk of the 
joined capital ensure a certain benefit if the capital is properly 
understood (conçus) and wisely managed. 

There is nothing inconvenient and similar to what we have remarked 
about even the most fair games in which losses are more sensitive than 
gains. On the contrary, the capital provides the means for changing 
from surplus to sure future resources. The government should 
therefore encourage these establishments and show regard to their 
vicissitudes since the hope they provide concerns remote future so that 
they can only prosper when being delivered from any unease about 
their continuance. 

Pages 172 – 173. When wishing to correct one or many already 
approximately known elements [unknowns] by a set of a large number 
of observations, we compile conditional equations, as they are called. 
The analytical expression of each observation is a function of the 
elements. Substitute their approximate values together with their 
[unknown] corrections in each observation, expand the obtained 
expressions in series neglecting the insignificant squares and products 
of the corrections and equate the series to the observations which they 
represent. Thus we get conditional equations connecting the 
corrections of the elements. 

Each observation provides such an equation. Had the observations 
been exact, it would have sufficed to obtain as many of them as there 
are elements. However, since observations are always corrupted by 
errors, we consider a large number of observations so that their errors 
will almost compensate each other in the mean results.  

The observer ought to choose the most favourable circumstances for 
determining the elements [for observation] whereas the art of the 
calculator consists in combining the conditional equations provided by 
the observations in the most advantageous way and thus in reducing 
their number to the number of the elements. All possible combinations 
come to multiplying each equation by a particular factor and summing 
up those products. This will provide the first final equation8 relative to 
the applied factors. A second system of factors will lead to a second 
final equation etc. until as many of them are compiled as there are 
elements. 

The most precise correction will be evidently found if the system of 
factors is chosen in such a manner that for each element the mean error 
to be feared in either direction is minimal. The mean error should be 
understood as the sum of the products of each error to be feared by its 
probability. The investigation of that minimal value, one of the most 
useful in the theory of probability, requires singular analytical tricks. I 
will only say that here we are led to a remarkable result: the most 



 

advantageous way to combine the conditional equations consists in 
bringing the sum of the squares of the observational errors to a 
minimum which will provide as many final equations as there are 
corrections sought9. 

Pages 173 – 174. Let us imagine a hundred men gathered 
indiscriminately and asked to decide whether the Sun daily rotates 
about the Earth. We have good reason to believe that a majority will 
decide affirmatively and this conclusion will become still more 
probable when a thousand or ten thousand men are gathered instead of 
a hundred. Simple common sense allows us to infer that it is extremely 
important as a public matter that instruction be much extended and that 
the national representation [the parliament] be consisted of an elite of 
fair and enlightened men. 

Truth, justice, humanism, − such are the eternal principles of the 
social order which should only rest on earnest relations of man with 
his fellow creatures and nature. They are also as necessary for 
maintaining that order as the universal gravitation for the existence of 
the physical order. The most dangerous error is the belief that we may 
sometimes deviate from those principles and deceive or enslave people 
for their own good fortune. Fatal experience had proved that those 
sacred principles can never be violated with impunity. 

 
Notes 

1. Greatly extended, this Lecture 10 formed Laplace’s Essay (1814). I am only 
translating those pieces which he had not included in that later contribution. 

2. I had not seen the paper Kurdiumova (1972) which possibly discusses that 
method. The Editors referred the readers to Laplace’s Oeuvres Complètes, tt. 9, 10 
and 12.  

3. Laplace thus indirectly formulated one of his aims. 
4. See my paper Sheynin (2007). 
5. Many authors had been using this loose expression. 
6. Did Laplace know any such country? 
7. Did Mother have any say? In 1848, Buniakovsky (Sheynin 1991, pp. 216 – 

217), when discussing the dread of cholera, had also failed to mention Mother. 
8. Laplace’s final equation was not necessarily a normal equation as understood 

nowadays. 
9. The last lines could have only appeared in 1811 or 1812, after the publication 

of two papers by Laplace (or during their preparation).  
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XII 
 

P. S. Laplace 
 

Statement about the  
Théorie analytique des probabilités,  

either forthcoming or just published 
 

Conn. des Tem[p]s, 1812 for 1815, pp. 215 – 221  

 
1. We can not better describe that work than by copying the 

announcement made by the author himself at its beginning1(au 
commencement). 

I propose to provide an analysis and formulate the principles 
necessary for solving problems about probabilities. That analysis is 
comprised of two theories which I have been discussing for 30 years in 
the Mémoires de l’Académie des Sciences, of the Theory of generating 
functions and the Theory of approximating functions of very large 
numbers. They are treated in Book 1 in which I describe them even 
more generally than in those Mémoires. Their rapprochement clearly 
shows that the latter is only an extension of the former and that they 
can be considered as two branches of the same calculus of generating 
functions, as I named it, which is the foundation of my Théorie des 
probabilités treated in Book 2.  

The problems concerning events occasioned by chance most often 
easily lead to linear difference and partial difference equations and the 
first branch of the calculus of generating functions provides the most 
general method of integrating this kind of equations. However, when a 
large number of the considered events is available, the expressions to 
which we arrive consist of so many terms and factors that their 
numerical calculation becomes impractical. It is therefore necessary to 
have a method for transforming them in convergent series. This is 
what the second branch of the calculus of generating functions 
achieves the advantageously the more necessary this method becomes. 

2. [This section is also the Introduction to the first edition of the 
Théorie analytique.] I aim at presenting here the methods and general 
results of the theory of probability and I especially treat the most 
delicate, most difficult and at the same time the most useful issues of 
this theory. I try my best to determine the probabilities of causes and 
of the results indicated by a large number of events and look for the 
laws according to which those probabilities approach their limits as the 
events are multiplied.  

This study merits the attention of geometers owing to the analysis 
that it requires. It is here that the theory of approximating functions of 
large numbers finds its most important applications. Then, this study 
interests the observers by indicating the means that should be chosen 
of the results of their observations and the probability of errors which 
are still to be feared. Finally, it merits the attention of philosophers by 
showing how regularity becomes established even in matters which 
seem to be entirely given up to chance and by revealing the hidden but 
constant causes on which that regularity depends. It is this regularity of 



 

the mean results of a large number of events on which such various 
establishments, as annuities, tontines and life insurance, are founded. 
The problems relative to them [?] such as smallpox vaccination or 
decisions of electoral assemblies do not offer any difficulties when my 
theory is applied. Here, I restrict my attention to resolving the most 
general, so that the importance of these matters for civil life, the moral 
issues which complicate them and the numerous observations which 
they imply require a special contribution. 

When considering the analytical methods which were already born 
owing to the theory of probability and those which will additionally 
appear; the fairness of the principles which serve as its foundation; the 
rigorous and delicate logic required by its application for solving 
various problems; the establishments of public utility which rest on 
this same theory; if finally noting that it provides opinions as surely as 
possible which can guide our judgements and teaches us to guard 
ourselves against illusions which often bewilder us even in those 
matters which could not be subjected to analysis, − when taking all 
this into account, you will see that there certainly does not exist any 
other science either worthier of our deliberations or whose results are 
more useful than the theory of probability.  

Its birth was due to two French geometers of the 17th century, of the 
period so fruitfully producing great men and great discoveries, and 
perhaps honouring the human mind higher than any other century. 
Pascal and Fermat proposed and solved some problems in probability 
and Huygens brought together these solutions and extended them in a 
small treatise. After him the Bernoullis2, Montmort, De Moivre and 
many celebrated geometers of the recent period considered that subject 
more generally.  

3. The work that we are announcing includes everything important 
done in that branch of human knowledge which the author had 
perfected either by the generality of his analysis or by the novelty and 
difficulty of the problems which he solved. Among these numerous 
problems those which concern the means which ought to be chosen of 
the results of observations as well as probabilities of phenomena, of 
their causes and of future events derived from those observed, − all 
those problems should particularly draw the attention of geometers.  

After describing how often had the observations taught the analysts 
by making them feel the need to rectify their approximations and how 
did it happen on its own by considering probabilities of large periodic 
secular inequalities in celestial motions, the author continues: 

It is seen now how necessary it is to study attentively the indications 
of nature when they result from a large number of observations even if 
they seem to avoid explanation by known means. Therefore, I invite 
astronomers to follow with a particular attention the secular lunar 
inequality which depends on the sum of the longitude of the Moon’s 
perigee and twice the longitude of its nodes and which is already very 
likely indicated by observations. If the sequence of observations 
continues to verify it, geometers will be compelled to turn once more 
to the lunar theory and allow for the possible difference between the 
northern and southern hemispheres of the Earth. That difference seems 
to be mostly dependent on it.  



 

And we may say that nature itself assists with perfecting the theories 
resting on the universal law of attraction which in my opinion is one of 
the most convincing proof of the verity of that admirable principle. 

4. [The following passage repeated in the author’s Essai 
(1814/1995, pp. 60 – 61) discusses the discovery of causes acting on 
the organic matter and animal magnetism. Then Laplace stated that 
the existence of the inexplicable, whose denial is unphilosophical, can 
become obvious if its existence is proved by observations.] 

5. The same analysis can be extended into various results of 
medicine and political economy and even into the influence of moral 
causes. Indeed, the action of these causes when repeated many times 
provides their results the same regularity as that of physical causes. 

6. [Repeated on p. 56 of the Essai is this phrase:]  
One of the most remarkable phenomenon in the system of the world 

is that the planets and their satellites move almost circularly in the 
same direction and almost in the same plane whereas the comets move 
in very eccentric orbits indifferently in both directions and anyhow 
inclined to the ecliptic.  

7. Count Laplace analysed the probability of the existence of that 
singular phenomenon if supposed to be due to chance. He found that 
that probability is an extremely small fraction and decided that that 
phenomenon indicated a particular cause with a probability higher than 
that of most historical facts about which no doubt is permitted. In his 
Exposition (1796) he showed that that cause can only be the solar 
atmosphere initially extending beyond the planetary orbits and that the 
cooling down and the attraction of the sun successively contracted it.  

8. [On pp. 57 – 58 of the Essai Laplace, repeating his text of 1812, 
discussed the origin of stars and mentioned Michell’s examination 
(1767) of the particular disposition of some stars. He described 
Herschel’s findings (Dale, the translator of the Essai, provided the 
relevant references) who concluded that the Sun had formerly been 
surrounded by a vast atmosphere (of nebulous matter). Only in 1812 
Laplace noted that Herschel and he himself made this inference by 
opposite routes.]  

9. Herschel’s fine researches justly deserve their due. We modify 
them in respect of his opinion about the cause of the rotation of the sun 
and the stars. A cluster of initially immovable molecules can not by 
contraction, as he seems to believe, produce a star capable of rotation. 
In his Mécanique Céleste Count Laplace showed that if, after being 
united, all the molecules begin to form a body possessing such a 
capability, the axis of rotation will necessarily be the line 
perpendicular to the invariable plane of maximal areas and passing 
through the centre of gravity of the entire mass. The rotation ought to 
be such that the sum of the projections on that plane of the areas 
circumscribed by each molecule invariably remains as it was initially. 
Therefore, that rotation will not exist if all the molecules were initially 
at rest.  

My Exposition shows that that permanence of the areas maintains 
the uniformity of the earth’s rotation and of the duration of the day 
which, in spite of the winds, the ocean currents and all the interior 
convulsions of the globe, had not varied from the time of Hipparchus 



 

even by 0.s01. However, in a nebula with numerous nuclei nothing 
prevents the resulting stars from rotating in different directions. 
Indeed, is it not true, as many celebrated philosophers have suggested, 
that universal attraction can not produce any permanent motion for a 
system of bodies initially at rest and that they should unite in the 
course of time around their common centre of gravity. 

Herschel’s research once more ensures him the right to be 
recognized by astronomers as did all his important discoveries since 
long ago. And one of the main ones was the discovery of Uranus and 
its six satellites which he was able to see through his telescope. Only 
two of them have been discerned by other observers. It is desirable that 
that celebrated astronomer publishes the observations he certainly 
made for establishing the existence of these celestial objects and 
determining their motion. 

 
Notes 

1. Laplace had repeated some parts of this text elsewhere and I have therefore 
subdivided it into sections and indicated the relevant sources. Sections lacking such 
indications were also mostly borrowed from somewhere as Laplace stated in his first 
lines (and confirmed by inverted commas omitted in the translation).  

2. On p. 118 of the Essai (1814/1995) Laplace appropriately named Jakob (James, 
in the translation) and Nicolas Bernoulli. The translation of this source contains 
commentaries and a Bibliography which includes the works of Herschel mentioned 
below.  
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XIII 

 
P. S. Laplace 

 
Théorie analytique des probabilités,  

four last sections of Chapter 4 
 

    21. Suppose now that there are two elements, z and z1, whose 
corrections should be determined by a set of a large number of 
observations. Form conditional equations1 just like in § 20; they can be 
written in this general way: 
 
    εi = piz + qiz1 – αi. 
 
Here, as before, εi is the error of the (i + 1)-st observation. When 
multiplying these equations by m, m1, …, ms–1 and adding up the 
products we get the first final equation2 
 
    Σmiεi = zΣmipi + z1Σmiqi – Σmiαi. 
 

Multiply then the same equations by n, n1, …, ns–1 and add up the 
products to obtain the second final equation 
 
    Σniεi = zΣnipi + z1Σniqi – Σniαi. 
 
The symbol Σ, just like in § 20, extends over the values of i from 0 to  
s – 1. When supposing that both functions, Σmiεi and Σniεi, which we 
denote by (1) and (2), disappear, these two final equations lead to the 
corrections z and z1. However, these corrections are susceptible to 
errors just as is the introduced supposition. Let us therefore imagine 
that those functions are not zero but l and l1 and denote by u and u1 the 
errors of the corrections z and z1 determined as above. The final 
equations will become 
 
    l = uΣmipi + u1Σmiqi, l1 = uΣnipi + u1Σniqi. 
 

Now we ought to determine the factors m, m1, …, n, n1, … so that 
the mean error to be feared in each element becomes minimal. To this 
end we consider the product 
 

    ∫φ(x/a)exp[– (mv + nv1)x 1− ] ∫φ(x/a)exp[– (m1v + n1v1)x 1− ] …  

    ∫φ(x/a)exp[ – (ms–1v + ns–1v1)x 1− ] 
 
in which the symbol ∫ covers all the values of х from – а to а and 
φ(х/а), as in § 20, is the probability of both errors, х and – х. After 
joining the two exponential functions corresponding to х and – х, the 
previous function becomes 
 
    2∫φ(x/a)cos[(mv + nv1)x]·2∫φ(x/a)cos[(m1v + n1v1)x] …· 
    2∫φ(x/a)cos[(ms–1v + ns–1v1)x], 



 

 
where the symbol ∫ extends over all the values of х from 0 to а. 
According to supposition, both х and а are divided into infinitely many 
parts of unit length. 

The term not depending on these exponential functions in the 

product of the previous function by ехр[− (lvi – l1vi) 1− ] is the 
probability that function (1) is equal to l and that at the same time the 
function (2) is equal to l1. That probability is therefore 
 

(1/4π2)∫∫dvdv1ехр[− (lv + l1vi) 1− ][2∫φ(x/a)cos[(mv + nv1)x] … ×  
 

    2∫φ(x/a)cos[(ms–1v + ns–1v1)x], 
 
where the integrals are taken over [– π, π]. 
    And now, wholly following the analysis of § 20, we will find that 
the previous function is almost exactly reduced to 
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And it is also seen that both integrals can be taken over (– ∞, ∞).  
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E = Σmi
2Σni

2 – (ΣmiΣni)
2, 

 

then the double integral becomes  
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    Supposing that these integrals are also extended over (− ∞, ∞), we 
arrive at 
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    To determine the probability that the values of l and l1 are contained 
within given boundaries, we will now multiply this magnitude by dldl1 
and integrate it in those boundaries. Denoting the result by Х, we see 
that the probability sought is ∫∫Хdldl1. However, for getting the 
probability that the errors u and u1 of the corrections of the elements 
are contained within given boundaries we should replace l and l1 in the 
obtained integral by their values expressed through u and u1. And, 
when differentiating the expressions for l and l1 but considering l1 
constant, we will have 
 
    dl = duΣmipi + du1Σmiqi, 0 = duΣnipi + du1Σniqi, 
    dl = du(ΣmipiΣniqi –ΣnipiΣmiqi) ÷ Σniqi. 
 
    If then we differentiate the expression for l1 but consider u constant, 
we will obtain 
 
    dl1 =du1Σniqi, dldl1 = (ΣmipiΣniqi –ΣnipiΣmiqi)dudu1. 
 
    Introduce now 
 

F = Σni
2(Σmipi)

2 – 2ΣminiΣmipiΣnipi + Σmi
2(Σnipi)

2, 
 

    G = Σni
2ΣmipiΣmiqi + Σmi

2ΣnipiΣniqi – 
       ΣminiΣnipiΣmiqi +ΣmipiΣniqi, 
 

    H = Σni
2(Σmiqi)

2 – 2ΣminiΣmiqiΣniqi + Σmi
2(Σniqi)

2, 
 
I = ΣmipiΣniqi – ΣnipiΣmiqi 

 
and the function (3) becomes 
 

    
2 2

1 1
22

1 ( 2 )
exp[ ].

44 π

k k Fu Guu Hu

k a Ek a E

+ +
−

′′′′
 

 
    Integrate this expression with respect to u1 over (– ∞, ∞). If  
 

    t = [u1 + (Gu/H)] /4kH k″  ÷ a√E 
 
when calculating the integral with respect to t over (– ∞, ∞), and 
considering only the variation of u1, we will have 
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    But (FH – G2)/E = I2 so that that integral becomes 
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exp[ ].

4 π 4

du k k I u

a k k a HH
−

′′ ′′∫  

 
According to § 20 the mean error to be feared in either direction in the 
correction of the first element3 is obtained by multiplying the integrand 
by ± u and integrating over [0, ∞). The error in either direction will be 
 

    ± a√H ÷ I π/ .k k ′′  
 

Let us now determine such factors mi and ni that the mean error will 
become minimal. When only varying mi, we have 

 
    dlog(√H/I) = (dmi/I)[– piΣniqi + qiΣnipi] + 
    (dmi/H)[qiΣni

2Σmiqi – niΣmiqiΣniqi – qiΣminiΣniqi + mi(Σniqi)
2]. 

 
It is easy to see that the differential will disappear if the coefficients of 
dmi are 
 
    mi = µpi, ni = µqi, 
 
where µ is an arbitrary coefficient independent from i so that mi and ni 
can be natural numbers. 
    According to the previous supposition, the differential of √H/I with 
respect to mi [the appropriate derivation] is reduced to zero. We can 
similarly reduce to zero the differential of the same magnitude with 
respect to ni. Our supposition thus leads to a minimal mean error to be 
feared in the correction of the first element. The same method, when 
replacing H by F, will evidently lead to the minimal mean error to be 
feared in the second element. The correction of the first element thus 
becomes 
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α α
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[z1 is obtained from z by interchanging р and q].  
    It is easily seen that this method holds for any number of elements 
sought by the MLSq of observational errors, that is, by the minimal 
value of 
 
    Σ(piz + qiz1 – αi)

2. 
 
    It follows that this method holds for any number of elements sought 
since the previous analysis can be extended to include the general case. 
According to § 20 we can suppose that  
 

    
2ε

π 2 π
ik

a
k s

′′
=
∑  

 



 

where ε, ε1, … are the residual free terms of the conditional equations 
left after the inclusion of the least squares corrections. The mean error 
to be feared in the first element will be  
 

    
2

2 2 2 2ε
( ) .

2 π
i

i i i i iq p q p q
s

± ÷ −
∑ ∑ ∑ ∑ ∑                         (4) 

 
The mean error of the second element [is obtained by replacing q by 

р in the numerator]. It is therefore evident that the first element is 
determined better or worse than the second according to Σqi

2 being 
smaller or larger than Σpi

2. If the first r conditional equations do not at 
all contain q, and the last (s – r) do not at all contain р, then Σpiqi = 0 
and the previous formulas coincide with the similar formula of § 20.  

It is also possible to determine the mean error to be feared in each 
element calculated by least squares whatever is their number if only 
the number of observations is large. Let z, z1, z2, z3, … be the 
corrections of the elements. We represent the conditional equations in 
the general case in the form  
 
    εi = piz + qiz1+ riz2 + tiz3 + … – αi. 
 
For one single element that mean error is [see (4)] 
 

    
2

2ε
.

2 π
i

ip
s

± ÷
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    For two elements that error of the first element is obtained by 
replacing Σpi

2 by Σpi
2 – (Σpiqi)

2/Σqi
2 in formula (5) which leads to 

formula (4). For three elements the same magnitude is determined by 
(4) when replacing Σpi

2 by Σpi
2 – (Σpiri)

2/Σri
2, Σpiqi, by Σpiqi – 

(ΣpiriΣqiri)/Σri
2 and Σqi

2, by Σqi
2 – (Σqiri)

2/Σri
2. […]  

Continuing in the same way, we can determine that magnitude given 
any number of elements. […] We are thus led to a simple method of 
comparing the precision of different astronomical tables [catalogues]. 
It can always be supposed that all of them are represented in the same 
form and therefore only differ by the assumed epochs, mean motions 
[of the celestial bodies] and coefficients of their arguments. If, for 
example, one of the tables includes an argument lacking in all the 
others, we can evidently assume that in those cases it is zero. 
    When comparing these tables with all the suitable observations and 
correcting them accordingly, then, as shown above, the sum of the 
squares of the remaining errors in the thus corrected tables will be 
minimal. Tables closest to obeying that condition deserve to be 
preferred. It follows that, when comparing different tables containing a 
large number of observations, opinions about their precision should be 
advantageous for those in which the sum of the squares of the errors is 
minimal4. 
    22. Above, we supposed that the facilities of positive errors were 
equal to those of negative errors. Now, we consider the general case in 
which those possibilities can differ. Let а be the interval within which 



 

the errors of each observation can be contained. Suppose that it is 
divided into infinitely many, n + n1, equal parts of unit length. Here, n 
and n1 are the numbers of such parts corresponding to the negative and 
positive errors. Erect perpendiculars in each point of the interval a; 
they will represent the probabilities of errors and denote now the 
obtained ordinates corresponding to errors х by φ[x/(n + n1)]. Then 
consider the sum 
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which we represent as 
 

    
1

φ( )exp( 1)
x

qxv
n n

−
+∫ , 

 
where the symbol ∫ extends over all the values of х in [– n, n1]. 

According to § 21 the term independent from exp( 1)v −  and its 

powers in the expansion of  
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is the probability that the function 
 
    qε + q1ε1 + + … + qs–1εs–1                                            (7) 
 
equals l + µ. It therefore takes the value 
 

    
1

1
exp( 1)exp( µ 1) φ( ) exp( 1)

2π

x
dv lv v qxv

n n
− − − − −∫

+∫ …  (8)  

 
with the integral (l’intégrale) taken over [– π, π]. The logarithm of the 
function (6) with l = 0 is 
 

    
1

µ 1 log[ φ( )exp( 1)] ...
x

v qxv
n n
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    If n and n1 are infinite and if 
 
    x/(n + n1) = x′, 1/(n + n1) = dx′, k = ∫dx′φ(x′), 



 

    k′ = ∫x′dx′φ(x′), k″ = ∫x′2dx′φ(x′), …, 
 
with the integrals extending over [– n/(n + n1), n1/(n + n1)], then 
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    The error of each observation ought to be contained within the 
boundaries – n and n1 and the probability that this indeed occurs is  
 
    ∫φ[x/(n + n1)] = (n + n1)k, 
 
and should be unity. It is therefore easy to conclude that the logarithm 
of the function (6) with) l = 0 is 
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with µ1 = µ/(n + n1) and the sums covering all the values of i from 0 to 
(s– 1). The first power of v disappears if µ1 = (k′/k)Σqi and if we only 
consider its square, which is possible according to the previous since s 
is a very large number, we will have for the logarithm of (6) with l = 0 
[only the second term of the previous sum]. 
    When going over from logarithms to numbers this function becomes 
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and the integral (8) will be 
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The variation of l is unity, therefore 
 

    2
11 ( ) in n dr q= + ∑  

 
and the previous integral, after calculating it over t from – ∞ to ∞, 
becomes5 
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    And so, the probability that the function (7) is contained within 
boundaries 
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where the integral is taken from r = 0. 
    The magnitude (ak′/k), see (9), is the abscissa whose ordinate passes 
through the centre of gravity of the area of the curve of probability of 
the error of each observation. The product of that abscissa by Σqi is 
therefore the mean result to which linear functions of errors are 
invariably tending6. If 1 = q = q1 = …, that function becomes the sum 
of the errors and Σqi will be equal to s. Divide the sum of the errors by 
s; the obtained mean error will invariably tend to the abscissa of the 
centre of gravity so that when the number of observations indefinitely 
[unboundedly] increases, the probability that it is contained within an 
arbitrarily small interval on both sides of the centre of gravity will only 
differ from certainty less than by any assigned magnitude. 

23. We will now study the mean result which numerous and not yet 
made observations should most advantageously indicate and establish 
the law of probabilities of that result7. Consider the mean result of 
already made observations whose deviations from it are known. 
Suppose that we have s observations of one and the same class, А, A + 
q, A + q1, …, i. e., having the same law of error.  
    Magnitudes q, q1, q2, … are positive and increase which is always 
attainable by a suitable arrangement of the observations. Denote also 
the probability of error z in each observation by φ(z) and suppose that 
the true result is А + х. The observational errors will be − х, q – x, q1 – 
x etc. The probability of the simultaneous existence of all these errors 
is the product of their respective probabilities, 
 
    φ(– x) φ(q – x)·φ(q1 – x) … 
 
    Then, х can take infinitely many values; when considering them as 
so many causes of the observed phenomenon, the probability of each 
will be (§ 1) 
 

    1

1

φ( )φ( )φ( )...

φ( )φ( )φ( )...

dx x q x q x

dx x q x q x

− − −

− − −∫
  

 



 

where the integral in the denominator is taken over all the possible 
values of х. Denote this denominator by 1/Н and represent the curve of 
probabilities of the values of х with ordinate y corresponding to its 
abscissa х as 
 
    y = Hφ(– x) φ(q – x) φ(q1 – x) … 
 
    The mean result should be assumed as the value leading the error to 
be feared to its minimum. Each error, both positive and negative, 
should be regarded as a disadvantage, as a real loss in a game, and the 
mean loss is obtained by calculating the sum of the products of each 
by its probability. Therefore, the mean value of the error to be feared, 
l, is the sum of the products of each error taken without its sign by its 
probability. Let us determine now the abscissa corresponding to the 
minimal value of that sum. To this end, we choose the nearest end of 
the previous curve as the origin of the abscissas and denote the 
coordinates of the curve’s points by x′ and y′.  

Suppose we should choose the value l and that the real result is x′, 
then, until x′ < l, the error of l without taking into account its sign is l – 
x′. Now, y′ is the probability that x′ is the real result and that the sum of 
the errors to be feared without considering their signs will therefore be 
∫(l – x′)y′dx′ for all x′< l, so that the integral is taken over [0, l]. In a 
similar way, the sum of errors to be feared multiplied by their 
probabilities for all x′ > l is the integral ∫(x′ – l)y′dx′, taken from x′ = l 
to the abscissa of the remote end of the curve. The whole sum of such 
errors multiplied by their respective probabilities is therefore 

 
    ∫(l – x′)y′dx′ + ∫(x′ – l)y′dx′. 
 

The differential of this function with respect to l is 
 

    dl∫y′dx′ – dl∫y′dx′. 
 
Indeed, when differentiating the first integral we should first 
differentiate the value of l in the integrand and then add the increment 
occurring when the limit of the integral varies and takes the value l + 
dl. This increment is (l – x′)y′dx′ at x′ = l and therefore vanishes so that 
the differential of the first integral is dl∫y′dx′. Similarily, the 
differential of the second integral is – dl∫y′dx′ and, for the abscissa l, 
corresponding to the minimal value of the error to be feared, their sum 
is zero. 
    Therefore, for that abscissa, 
 
    ∫y′dx′ = ∫y′dx′, 
 
with the integrals extending over [0, l] and from x′ = l to the extreme 
value of x′. It follows that the abscissa for which the mean error to be 
feared is minimal, divides the area of the curve in two equal parts. The 
deviations of the real result from the established point [abscissa] are 
equally probable in both directions and that point can therefore be also 
called the mean in probability. Illustrious geometers have assumed the 



 

point rendering the observed result [results] most probable as the mean 
and have therefore chosen the abscissa corresponding to the maximal 
ordinate of the curve8. However, the mean which we have chosen is 
evidently indicated by the theory of probability. 

When φ(x) is represented as an exponential function exp [– ψ(x2)] so 
that it will correspond to positive and negative errors alike, we will 
have 

 
y = Hexp[– ψ(x2) – ψ(x – q)2 – ψ(x – q1)

2 – …]. (10) 
 

Assume now that x = a + z and expand the exponent of e in powers of 
z, then 
 
    y = Hexp[– M – 2Nz – Pz2 – Qz3 − …]. 
 
Here 
 
    M = ψ(a2) + ψ(a – q)2 + ψ(a – q1)

2 + …, 
    N = aψ′(a2) + (a – q)ψ′(a – q)2 + (a – q1)ψ′(a – q1)

2 + …, (11) 
P = ψ′(a2) + ψ′(a – q)2 + ψ′(a – q1)

2 + 2a2ψ″(a2) +  
       2(a – q)2ψ″(a – q)2 + 2(a – q1)

2ψ″(a – q1)
2 + …, 

 
ψ′(t) is the coefficient of dt in the differential of ψ(t), ψ″(t), its 
coefficient in the differential of ψ′(t) etc. 

Suppose that the number s of the observations is very large and 
determine а from the equation N = 0 which ensures the maximal value 
of у. We will have 

 
    y = Hexp [– M – Pz2 – Qz3 − …], 
 
where M, P, Q, … are of the order of s. And if z is very small, of the 
order of 1/√s, Qz3 will have the same order so that the exp(– Qz3 −…) 
can be considered to be unity. For z contained between 0 and r/√s we 
can therefore assume9 that 
 
    y = Hexp [– M – Pz2].                                       (12) 
 
    Beyond that interval, when z is of the order of s–m/2 with m < 1 [0 < 
m < 1], Pz2 will have order s1–m and, like у, exp(–Pz2) becomes 
insensible. We can therefore assume that equation (12) holds for all the 
extension of the curve. The value of а is determined by the condition N 
= 0 [see (11)], i. e., it is the abscissa х corresponding to the ordinate 
dividing the curve’s area in equal parts. All that area represents 
certainty or unity, so that 
 
    (1/H) = ∫dzexp(– M – Pz2), 
 
with the integral taken over (– ∞, ∞) and therefore 
 
    H = eM√P/√π. 
 



 

If а is the mean result of the observations, the mean error to be 
feared in excess and deficiency is ± ∫zydz, with the integral taken over 

[0, ∞], and that error is equal to ± 1/2 πP . However, the complete 
ignorance of whether exp[– ψ(x2)] is the law of observational errors 
does not allow us to compile the equation N = 0 [see (11)]. And so, the 
values q, q1, … do not ensure any posterior knowledge of the mean 
result a of the observations and we should therefore keep to the most 
advantageous value determined beforehand and provided, as we have 
seen, by the MLSq of errors. 
    Let us find the function ψ(x2), which will continually lead to the 
arithmetical means adopted by the observers. Assume that the first i 
observations out of s coincide, as do the last (s – i) ones. Then the 
equation N = 0 [see (11)] becomes 
 
    0 = iaψ′(a2) + (s – i)(a – q)ψ′(a – q)2, 
 
and the rule of the arithmetic means leads to  
 
    a = [(s – i)/s]q. 
 

The previous equation therefore becomes 
 

    ψ′{[(s – i)/s]2q2} = ψ′[(i2/s2)q2]. 
 
It should be valid for any i/s and q so that ψ′(t) is independent from t 
and is equal to ψ′(t) = k, a constant. Integration leads to 
 
    ψ(t) = kt – L, 
 
where L is an arbitrary constant. Therefore  
 
    exp [– ψ(x2)] = exp(L – kx2). 
 
    This, then, is the only function always leading to the rule of the 
arithmetic means. The constant L should be determined by the 
condition that the integral ∫dxexp(L – kx2) taken over (– ∞, ∞) is equal 
to unity since it is certain that the observational error ought to be 
contained within those boundaries. Thus, 

 

eL = /πk   
 

and the probability of error х is 
 

    /πk exp(– kx2). 
 

Actually, this expression leads to infinite boundaries of the errors 
which is not to be admitted. However, owing to the rapidity of the 
decrease of exponential functions of such kind with the increase of х, 
we can assume that k is sufficiently large for the probabilities of 



 

inadmissible errors to become insensible10 and to be thus considered as 
zeros.  
    For the general expression (10) the preceding law of error provides 
 

    y = /πsk exp(– ksu2). 
 
Determine now Н so that the whole integral ∫ydx equals unity and 
assume that 
 
    x = (Σqi/s) + u. 
 
The ordinate dividing the area of the curve in two equal parts 
corresponds to u = 0 so that  
 

x = (Σqi/s). 
 
We thus define the value х, which should be chosen as the mean 

result of the observations, and it is this value which leads to the rule of 
arithmetical means. The previous law of error of each observation thus 
certainly provides the same results as the indicated rule does and it is 
obviously the only law possessing such a property. 
    When assuming this law, the probability of error εi of the (i + 1)-st 
observation is 
 

    /πk exp(– kεi
2). 

 
In § 20 we saw that, if z is the correction of an element, this 
observation will provide a conditional equation 
 
    εi = piz – αi. 
 
    The probability of the value piz – αi is therefore 
 

     /πk exp[– k(piz – αi)
2], 

 
and the probability of the simultaneous existence of the s values (pz – 
α), (p1z – α1), …, (ps–1z – αs–1) will be11 
 

    ( /πk )s−1exp[– kΣ(piz – αi)
2]. 

 
    It varies with z and we will find the probability of some of its certain 
value z by multiplying the obtained magnitude by dz and dividing the 
product by its integral over (– ∞, ∞). Let 
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then its probability becomes 
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    Construct a curve extending from u = – ∞ to u = ∞, with its 
ordinates being the coefficients of du, and abscissas, those u, and it can 
be considered as the curve of probabilities of the errors u corrupting 
the result [i. e., the right side of formula (13) without the correctional 
term]. The ordinate which divides the area of the curve in two equal 
parts corresponds to value u = 0 and z is therefore equal to [the same].  
    This, therefore, is the result that should be chosen and it coincides 
with that of the MLSq of observational errors. The previous law of 
error of each observation thus also leads to it. That MLSq becomes 
necessary when we should choose the mean of many observations each 
of them provided by a large number of observations of different 
classes. 

Suppose that the same element is provided by the mean results 1) А, 
of s observations of the fist class; 2) А + q, of s1 observations of the 
second class; 3) А + q1, of s2 observations of the third class etc. If the 
true element is represented by А + х, the error of the first mean is – х. 

Let12 
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2

ipk

k a
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′′

∑
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When the mean result is provided by the MLSq [the probability of its 
error is] 
 

    
2

ipk

k a s′′

∑  

 
and when applying the ordinary method [of means], the probability of 
that error, according to § 20, is  
 
    (β/√π)exp [– β2x2]. 
 

The error of the result of s1 observations is q – х; in this case, denote 
by β1 what was called β, then the probability of that error is 

 
    (β1/√π)exp[– (β1

2(x – q)2]. 
 
Just the same, the probability of the error of q1 – x in the result of s2 
observations will be 
 
    (β2/√π)exp[– (β2

2(x – q1)
2] etc. 

 
The product of all these probabilities is the probability that – х, q – 

x, q1 – x, … [really] are the errors of the mean results of s, s1, s2, … 
observations. Multiply this product by dx and integrate the result over 



 

(– ∞, ∞). We will thus get the probability that the mean results of those 
observations exceed the mean result of s observations by q, q1, …  
If now we calculate that integral over some definite boundaries we will 
obtain under the mentioned condition the probability that the error of 
the first result is contained within those boundaries. Divide this 
probability by the probability of the condition itself to get the 
probability that the error of the first result is contained within given 
boundaries since [now] it is certain that that condition really takes 
place.  

That probability is therefore [the ratio of two coinciding integrals] 
 

    ∫dxexp[ – β2x2 – β1
2(x – q)2 – β2

2(x – q1)
2 – …], 

 
with the integral in the numerator calculated over the given boundaries 
and in the denominator, over (– ∞, ∞). We have 

 
β2x2 + β1

2(x – q)2 + β2
2(x – q1)

2 + … = (β2 + β1
2 + β2

2+ …)x2 – 
2x(β1

2q + β2
2q1 + …) + β1

2q2 + β2
2q1

2 + … 
 
    Let 
 
    x = [(β1

2q + β2
2q1 + …) ÷ (β2 + β1

2 + β2
2+ …)] + t,      (14) 

 
and the probability above will be [the quotient of two coinciding 
integrals] 
 
    ∫dtexp[ – (β2 + β1

2 + β2
2+ …)]t2, 

 
with the integral in the numerator calculated over the given 
boundaries, and in the denominator, over (– ∞, ∞). This latter is 
 

    
2 2 2

π

β β β ...′ ′′+ + +
. 

 
    Denote 
 

    t1 = t 2 2 2β β β ...′ ′′+ + +  

 
and the previous probability will be 
 

(1/√π)∫dt1exp(– t1
2). 

 
    The most probable value of t1 corresponds to t1 = 0 (!) so that the 
most probable value of х corresponds to the value t = 0. And so, the 
correction of the first result to which all the s, s1, s2, … observations 
are leading with the highest probability is [the expression (14) without 
the t]. Added to the result А, it provides the result to be chosen 
 



 

    
2 2 2

1
2 2 2

β ( )β ( )β ...

β β β ...

A A q A q′ ′′+ + + + +

′ ′′+ + +
 

 
whereas the previous correction reduces the function  
 
    β2x2 + β′2(x – q)2 + β″2(x – q1)

2 + … 
 
to its minimal value. 

As we have seen now, the maximal ordinate of the curve of 
probabilities of the first result is β/√π. For that curve of the second 
result, β′/√π etc. The mean to be chosen leads to the minimal value of 
the sum of the squares of the errors of each result multiplied by the 
maximal ordinates of the respective curves of probabilities. And the 
principle of minimal squares of errors becomes necessary if the mean 
of the results each provided by a large number of observations should 
be calculated. 

24. We saw that, at least when a large number of observations 
necessary for determining the elements is available, it is most 
advantageous to combine the conditional equations for determining the 
final linear equations by the MLSq. However, when going over to the 
least sum of other powers of the errors or to their quite different 
functions the final equations will not be linear anymore and remain 
unsolved. 

Nevertheless, there exists a case deserving special attention since it 
determines the system for which the maximal error without 
considering its sign is less than for any other system. This is the case 
of minimal [sum of] infinite and even powers of the errors. When 
dealing with the correction z of only one single element, represent, as 
above, the conditional equations in the form  
 
    εi = piz – αi, 
 
where i changes from 0 to s – 1 and s is the number of the 
observations. The sum of the errors raised to the power of 2n is Σ(αi – 
piz)2n, where the symbol Σ is extended over all the values of i.  
    We can assume that all the pi are positive; indeed, if one of them is 
negative, it will become positive after a permissible change of the 
signs of both terms of the respective binomial raised to the power of  
2n. And, when supposing that the magnitudes (α – pz), (α1 – p1z), 
(α2 – p2z), … are arranged so that p, p1, p2, … are positive and 
increase, and if 2n is infinite, the maximal term of the sum Σ(αi – piz)2n 
will be evidently equal to the entire sum, at least if there is no either 
single, or numerous other terms equal to it, although this circumstance 
should not occur in the case of a minimal sum.  

Actually, if only one single term, for example (αi – piz), is maximal 
without considering its sign, it can be decreased by a suitable change 
of z and since the sum Σ(αi – piz)2n will also decrease, it was not 
minimal. Moreover, if (αi – piz) and (αj – pjz) are two maximal terms 
equal to each other without considering their signs, they should have 
contrary signs. And if the sum 

 



 

    (αi – piz)2n + (αj – pjz)2n 
 
becomes minimal, its differential  
 
    – 2ndz[pi(αi – piz)2n–1 + pj(αj – pjz)2n–1] 
 
should vanish. With an infinite n this can only occur if those two terms 
have contrary signs and differ by an infinitely small magnitude. If 
three terms are maximal and equal to each other without considering 
their signs, their signs evidently can not coincide.  
    Consider now the sequence  
 
    (αs–1 – ps–1z), (αs–2 – ps–2z), (αs–3 – ps–3z), …, (α – pz), (– α +pz), …, 
    (– αs–3 + ps–3z), (– αs–2 + ps–2z), (– αs–1 + ps–1z).        (15) 
 
Suppose that z = – ∞. Then the first term will be larger than the other 
ones and when z increases it will remain larger until becoming equal to 
one of them. And then, when z continues to increase that new term will 
become larger than all the rest ones and remain larger than the 
following terms. For determining that term we form the sequence of 
quotients 
 

    1 2 1 3 1

1 2 1 3 1

α α α α α α
,  ,..., ,s s s s s

s s s s sp p p p p p
− − − − −

− − − − −

− − −

− − −
  

 

    1 1 1

1 1 1

α + α α +α
,..., .s s s

s s sp p p p
− − −

− − −+ +
 

 
Let [(αs–1 – αr)/(ps–1 – pr)] be the minimal quotient, now, however, 

allowing for the signs: consider that a larger negative magnitude is 
smaller than a lesser negative magnitude. If there are many smallest 
and equal quotients we choose that which concerns the term remotest 
from the first one in the system (15). This term will remain maximal 
until, when z increases, it becomes equal to one of the subsequent 
terms which will then become maximal. 

To determine that term form a new sequence of quotients 
 

    1 2

1 2

α α α α α α α +α
,  ,...,  ,  ...,  r r r r r r

r r r r r rp p p p p p p p
− −

− −

− − −

− − − +
 

 
The term of the sequence (15), to which the least of these quotients 
corresponds will be that new term. And so we should continue in the 
same way until one of the two terms which become equal to each other 
and maximal will be situated in the first half of the sequence (15) and 
the other, in the second half. Let these two terms be (αi – piz) and – (αj 
– pjz). The value of z to which corresponds the least of the maximal 
errors without considering their signs will be 
 
    z = (αi + αj)/(pi + pj). 

 



 

When there are many elements, the conditional equations which 
determine their corrections include many unknowns13 and the 
investigation of the system of corrections for which the maximal error 
without considering their signs is less than in any other system 
becomes more complicated. I studied this general case in Book 3 of 
the Mécanique Céleste [ca. 1804/1878, Chapter 5, § 39] and here I 
only remark that, just as in the case of one single unknown, the sum of 
the observational errors raised to the power of 2n is minimal when 2n 
is infinite. It easily follows that in the system under consideration the 
number of equal and maximal errors without paying attention to their 
signs should by unity exceed the number of the elements being 
corrected. 
    The results corresponding to a large value of 2n should 
understandably little differ from those to which leads an infinite 2n. 
And it is not even necessary for 2n to be very large. I know from many 
instances that even when 2n ≤ 2 (!) the results little differ from what is 
provided by the system of the minimal maximal errors and this is a 
new advantage of the MLSq of observational errors. 

For a long time geometers have been applying the arithmetic mean 
of their observations and, to determine the desirable elements, they 
have been choosing the most favourable circumstances so that the 
observational errors corrupted the values of those elements as little as 
possible. If I am not mistaken, Cotes was the first who offered the 
general rule for determining an element proportionally to the influence 
of many given observations. 

Consider each observation as a function of the element, and its error 
as an infinitely small differential, and it will equal the differential of 
that function with respect to that element. The larger is the coefficient 
of the differential of the element, the smaller should that element be 
varied so that the product of its variation by the coefficient will be 
equal to the observational error. This coefficient will thus express the 
influence of the observation on the value of the element. Cotes had 
thus represented all the values of the element provided by each 
observation by parts of an infinite straight line having a common 
origin. Let us now imagine weights proportional to the influence of the 
corresponding observations on their other ends. The distance from the 
common origin to the general centre of gravity of all those weights 
will be the value chosen for the element. 

I return now to the equation of § 20 
 
εi = piz − αi 
 

where εi is the error of the (i + 1)-st observation, z is the correction of 
an approximately known element and pi, which we can always suppose 
positive, expresses the influence of the corresponding observation. The 
value of z derived from the observations is αi/pi and the Cotes rule is 
reduced to multiplying it by pi, summing all such products and 
dividing the sum by the sum of all pi: 
 
    z = ∑αi/∑pi.                                                                          (16) 
 



 

This is the correction which had been adopted by the observers until 
the application of the MLSq of observational errors. However, after 
that excellent geometer we do not see anyone using this rule before 
Euler. It seems to me that [in 1749] he was the first, in his first memoir 
on Jupiter and Saturn, to apply conditional equations for determining 
the elements of the elliptical movements of these two planets. Almost 
at the same time [in 1750] Tobie [Tobias] Mayer applied them in his 
fine investigations of the libration of the Moon and then for compiling 
lunar tables.  

From that time onward the best astronomers had been applying that 
method and the success of their tables thus compiled justified its 
advantage. When only one element is determined this method does not 
involve any embarrassment; otherwise, however, it is required to form 
as many final equations as there are elements by combining a 
multitude of conditional equations and then to determine the 
corrections sought by [successive] elimination. But which method of 
combining those conditional equations is the most advantageous?  

It is here that the observers abandoned themselves to arbitrary 
guesswork leading them to differing results although deriving them 
from the very same observations. For avoiding such groping, Legendre 
conceived [in 1805] a simple idea to consider the sum of the squares of 
observational errors and to render it minimal which immediately leads 
to as many final equations as there are elements to be corrected. That 
learned geometer was the first to publish the indicated method, but we 
ought to acknowledge that Gauss had been invariably applying the 
same idea for many years before Legendre’s publication and 
communicated it to many astronomers. 

In his Theory of Motion (1809) Gauss attempted to coordinate this 
method with the theory of probability by showing that the very law of 
observational errors, which generally leads to the adopted rule of the 
arithmetic mean of many observations, at the same time provides the 
rule of least squares of observational errors, and this is seen in § 23. 
However, since nothing proved that the first of these rules leads to the 
most advantageous results, the same uncertainty existed with respect to 
the second one. The investigation of the most advantageous method of 
forming the final equations is certainly one of the most useful 
applications of the theory of probability, and its significance for 
physics and astronomy turned my attention to it. 

And I have considered how all the methods of combining the 
conditional equations for deriving a final equation are reduced to 
multiplying them by factors which disappear for those equations which 
we do not apply14 and to summing up all those products. This indeed 
leads to the first final equation. A second system of factors leads to the 
second final equation etc until there will be as many of these as there 
are elements to be corrected. 

Nevertheless, the systems of factors should be chosen in a way that 
ensures for each element the minimal value of the mean error to be 
feared in either direction. The mean error is the sum of the products of 
each error by its probability. With a small number of observations the 
choice of these systems depends on the law of error of each. However, 
when considering a large number of observations, which is indeed 



 

generally occurring in astronomical studies15, that choice becomes 
independent from the indicated law. The previous deliberations show 
that the analysis then immediately leads to the results of the MLSq of 
observational errors. This means that that method, which at first did 
not ensure anything except the derivation of the final equations 
without any arbitrariness at the same time provides the most precise 
corrections, at least if only linear final equations are being applied. 
This condition is necessary when a large number of observations is 
considered at once, since otherwise the [consecutive] elimination of 
the unknowns [from the equations] and their determination become 
impracticable. 

 
Notes 

1. Those equations are called observational. 
2. As noted by David (2001, p. 222), Gauss (1822), when applying the MLSq, 

called them normal.  
3. Laplace’s element really meant an unknown whose approximate value was 

necessary to correct. Laplace freely used non-standard analysis by treating definite 
integrals as sums (Bru 1981, p. 57). 

4. It seems that Laplace had thus recommended the construction of the tables 
almost anew and in any case he had not even mentioned systematic errors. Newcomb 
(Sheynin 2002, p. 146) accomplished a Herculean task of combining the catalogues 
of the main observatories the world over. 

5. This is difficult to understand since the previous integral did not at all contain t. 
6. As noted by Molina (1930, p. 386), Laplace (1786/1894, p. 308) had remarked 

that approximations in the theory of probability differed from the usual which ensure 
the result. 

7. Laplace had not really established that law (which was hardly possible). 
8. Those illustrious geometers were Lambert, in 1760 (Sheynin 1966; 1971, p. 

251), Daniel Bernoulli, in 1778 (Sheynin 2007, p. 293) and Gauss (1809). Gauss, 
however, joined the condition of maximal probability and the rule of the arithmetic 
mean rather than applying it all by itself. A few lines above and several times in the 
sequel Laplace applied a loose expression, area of a curve. 

9. Laplace did not specify that r. 
10. A large k (a small variance) can be certainly presumed although only in the 

stated restricted sense. 
11. The coefficient of the exponential function should be ks rather than k. 
12. Laplace had not directly specified β. 
13. I can only understand the unknown as an elegant variation of element, but in 

any case the phrase is awkward. 
14. This brings back the memory of the Boscovich method of adjusting 

observations (and linear programming). 
15. A large number of observations is not likely to obey the same law of 

distribution of their errors. And the number of observations in geodesy is not large at 
all. 
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XIV 
 

P. S. Laplace 
 

On the Application of the Calculus of Probability to 
Observations and Especially to [Trigonometric] Levelling 

 
Sur l’application du calcul des probabilités aux observations  

et spécialement aux opérations du nivellement (1819). 
Œuvr. Compl., t. 14. Paris, 1912, pp. 301 – 304 

 

    The extensive triangulation carried out for measuring the Earth 
includes the careful observation of the zenith distances of [the 
adjacent] surveying signals either for reducing the measurements [of 
the angles] to the horizon or for determining the relative heights of 
various stations1. Vertical refraction strongly influences those heights 
and they become very uncertain owing to its variability. 

Here, I propose to estimate the probability of errors to which they 
are susceptible. The theory of [vertical] refraction indicates that as 
long as the atmosphere is constant it is an aliquot part of the celestial 
arc contained between zeniths of the observer and the observed 
surveying signal. To determine that refraction it is thus sufficient to 
multiply the mentioned arc by a factor which does not change if the 
atmosphere remains invariably constant but which necessarily alters all 
the time due to the continuous changes in the temperature and density 
of the air. 

A large number of observations can provide the mean value of that 
factor and the law of the probabilities of its variation2. I issue from 
Delambre’s observations (Méchain & Delambre 1807) and determine 
the probability of error in the height of Paris above the sea level under 
the supposition that Dunkerque and Paris are connected by a chain of 
25 equilateral triangles which means that each side of those triangles is 
about 20,000 m long3. 

That height can be obtained by various methods, but we should 
prefer as the most advantageous that which provides a most rapidly 
decreasing law of the probabilities of error. Its investigation is a simple 
corollary of the analysis that I have carried out concerning all such 
issues. My result is that the odds are 9:1 that the error of the Paris 
height above the sea level does not exceed 8 m4.  

The method applied by Delambre for deciding that that height 
transferred by a chain of almost the same number of triangles is 
somewhat less precise. The main point is however that it was the large 
length of the sides of many of his triangles which caused the 
uncertainty of his result and it is not sufficiently probable that that 
uncertainty by no means amounts to 16 or 18 m. 

Equally probable errors essentially decrease with the stations being 
closer to each other and, when desiring to obtain precise levelling, this 
indispensable condition ought to be achieved. Large triangles, quite 
proper for measuring terrestrial degrees, are not at all suitable for 
measuring heights, and these two types of measurements should be 
separated. However, the error caused by measuring zenith distances 



 

increases with the number of stations and becomes comparable to that 
depending on the variability of the vertical refraction. 

This circumstance induced me to investigate the law of probabilities 
of the observational results in case of numerous sources of errors. Such 
is the case in most astronomical results since we observe celestial 
objects by two instruments, the meridional circle and a theodolite, both 
susceptible to errors whose laws of probabilities can not be supposed 
identical. The analysis that I provided in the Théorie analytique des 
probabilités is easily applicable to this case for any number of the 
sources of error and establishes the most advantageous results and the 
laws of probabilities of the errors to which they are susceptible5. For 
applying that analysis to levelling the law of probabilities of the errors 
caused by the astronomical [the vertical] refraction should be known. 
And I have just indicated that its results are determined by the great 
triangulations along the meridian. And we also ought to know the law 
of probabilities of the errors of the zenith distances. No appropriate 
observations are available, but we will little deviate from reality by 
supposing that it is the same as the law for the horizontal angles 
derived from the errors of the sums of the three angles of each 
triangulation triangle6.  

By issuing from these laws, I found that, when dividing the distance 
from Dunkerque to Paris by stations 1200 m apart you can bet 1000 to 
1 that the error of the height of Paris above sea level does not exceed 
0.4 m. This error decreases with the stations spaced nearer to each 
other, but the precision thus attained does not compensate the duration 
of the work required.  

The conditional equations which are compiled for deriving the 
astronomical elements indirectly include the errors of both instruments 
serving for the determination of the star places. Those errors influence 
the various coefficients of each equation. The system of the most 
advantageous factors by which those equations should be multiplied 
for deriving as many final equations as there are elements to be 
determined by joining the calculated products will not be anymore a 
system of coefficients of the elements in each conditional equation. 
Analysis led me to the general expression for this system of factors 
and therefore to the result with a less probable error to be feared than 
the error of the same magnitude inherent in any other system. The 
same analysis established the laws of probabilities of the errors of 
these results. 

The derived formulas include as many constants as there are sources 
of errors and they depend on the laws of probabilities of those errors. 
In case of only one source I provided in my theory of probability a 
means for estimating the constant by compiling the sum of the squares 
of the residual free terms of each conditional equations left there after 
the substitution of the calculated values of the elements. In the general 
case a similar method determines the value of those constants 
whichever their number and this concludes the application of the 
calculus of probability to the results of observation.  

I conclude by a remark which seems important to me. The small 
incertitude left in the values of those constants when the number of 
observations is not very large renders those probabilities determined 



 

by the analysis somewhat uncertain. However, almost always it 
suffices to know whether the probability of the errors of the obtained 
results is contained within narrow boundaries and extremely 
(extrêmement) tends to unity. If not, suffice it to find out how many 
more observations should be made for attaining a probability ensuring 
the virtue of the results beyond any reasonable doubt. 

Analytical formulas of probability perfectly accomplish this aim and 
from that viewpoint they can be considered as a necessary complement 
of the scientific method based on studying a set of a large number of 
observations susceptible to error. And so, if the error to be feared in 
the height of Paris above the sea level derived from large triangles 
measured along the meridian is decreased from 18 m to 15 it is not less 
true that this height is uncertain and that it should be determined by 
more precise methods.  

At the same time the analytical formulas concerning such triangles 
from the base measured near Perpignan to Formentera indicate that it 
is possible to bet 1,700,000 to 1 on the error of the corresponding arc 
of the meridian more than 460 km long not to exceed 60 m. This 
should dissipate the fear of an incertitude possibly inspired by the lack 
of a comparison base on the Spanish side [of the arc]. We can still be 
reassured in this respect even if the probability of an error equal or 
larger than 60 m exceeds the fraction established by the formulas and 
reaches 1:1,000,000. 

 
Notes 

1. Precise (spirit) levelling is accomplished by horizontal lines of sight achieved 
by optical levelling instruments. It came into general use in the mid-19th century. 
Theodolites of later design provided angles reduced to the horizontal plane. 

2. Empirical determination of the vertical refraction is only possible if at all for 
restricted homogeneous regions and a definite time of day. 

3. Such a chain, if laid out along a straight line, will be 260 km long. The distance 
from Dunkerque to Paris is 295 km. These cities have almost the same longitude. 

4. The mean height of Paris above the mean sea level (not just above the sea as 
the author wrote) is 30 m. Laplace did not specify whether he meant the mean height.  

5. Laplace (ca. 1819) had indeed studied the joint action of two (easily 
generalized to a larger number) sources of error. However, he restricted his study to 
the case of normal distributions and moreover did not provide anything new 
(Sheynin 1977, pp. 46 – 47; Hald 1998, pp. 430 – 431). 

6. Laplace apparently thought that both laws were normal (with differing 
variances).  

7. With the advent of invar wires (early beginning of the 20th century) two 
identically measured bases at the ends of a triangulation chain had been considered 
necessary rather than an ordinary and a comparison bases. When adjusting a chain, it 
became possible to disregard the comparatively insignificant errors of those bases. 
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XV 
 

P. S. Laplace 
 

Statement on the Export of Grain  
Made in the Chambre des Pairs in 1814 

 
Archives Parlementaires 1787 – 1860. Paris, 1868, pp. 470 – 471 

 

Gentlemen, I am asking the Chamber to hear patiently these 
reflections suggested to me by the report of its commission on the 
important bill with which we are dealing now. I entirely agree with the 
principles of the reporter on the free export of grain and I think that, as 
proved by the successful results of the Edicts of 1764 and 1774, the 
benefits provided by that trade for the soil of France has the same 
effect as the overflow of the Nile on the soil of Egypt. 

The following consideration will additionally support those 
principles. According to the law of nature common for all species of 
the organized beings, the population of mankind is known to tend 
incessantly to increase and reach the level of subsistence1. However, 
when arriving exactly at this condition people become miserable and 
no-one will have anything except the absolutely necessary. A least 
draught will kill millions as it frequently happens in China and India. 

It is therefore important for the general well-being that the 
possibilities always exceed the barely needs of the people. And this is 
admirably achieved by the grain trade which augments the 
reproduction of grain and extends prosperity into the most numerous 
classes of the society so that they will be able to subsist during sterile 
years by sacrificing their surpluses. Actually, the population is less 
considerable but more active and especially more happy. If I am not 
mistaken, this is one of the greatest advantages of the European 
societies and it is extremely useful to maintain and even to extend that 
advantage by a free exchange of the agricultural produce. 

However, if pressing circumstances compel us to restrict these 
natural rights of property both Chambers especially constituted for 
maintaining all rights should diminish the proposed obstacles to 
exercising them as much as prudence permits it. This is the aim of the 
report of your commission. The reasons provided there for suppressing 
the tax on exporting grain from the bill seem reasonable. However, I 
can not share its opinion about the suspension of that export by the 
government if it decides that that measure is necessary.  

It seems to me that such a possibility will totally destroy that trade 
which most of all needs security. Some years ago many merchants 
made losses because of a sudden suspension provoked by imaginary 
fears. Recalling this fact, speculators will undoubtedly shy away if the 
law will not take care to reassure them in that regard. This bill is only a 
concession to prejudices and popular fear. The separation of the 
départements in many classes seems to be a corollary of that plan. Two 
classes will possibly be enough.  

We will be able to judge better if, as is desirable, the bill [itself] 
separates the départements. This will also be advantageous by assuring 
the merchants against troubles caused by sudden changes in such 



 

separations. And the necessary security will be provided by an 
addition at the end of § 11 stating that once a governmental regulation 
is published, it will not experience any changes.  

This is how I propose to modify the bill presented to you. I regard 
my suggestion as a means for attaining some day an unbounded 
freedom of the grain trade demanded by the best authors of political 
economy and confirmed by the advantages enjoyed for a long time in 
Tuscany [Italy]. Due to the progress in enlightenment our provinces 
are not anymore alien to each other in this respect. Let us hope that the 
same will happen to all European nations.  

 
The Chamber resolved to publish the report of Count Laplace. 
 

Note 
1. Cf. Laplace (1814), Philosophical Essay on Probability. New York, 1995, p. 

85.  
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P. S. Laplace 
 

On the Execution of the Cadastral Surveying 
 

Sur l’exécution du cadastre 
Read in 1817 in the Chambre des Paires, published 1868. 

Oeuvres Compl., t. 14. Paris, 1912, pp. 372 – 374 
 

Gentlemen, the following reflections about the execution of the 
cadastral surveying especially concerns the government, but it seems 
to me that an operation with expenses reaching 100 mln deserves to 
attract for a few minutes the Chamber’s attention and I also believe 
that a statement from this tribune will be better heard. 

I do not at all consider whether by means other than that surveying 
it is possible to obtain with sufficient precision and more rapidly an 
evenly matched land-tax. Cadastral surveying is good in itself and it is 
now too advanced for being abandoned. I only desire to indicate 
proper measures for its improvement.  

It is its topographical part that requires most time and expenses. 
There is only one method of compiling a precise plan of a kingdom [of 
mapping it precisely], but it was not regrettably followed in the 
cadastral surveying. It consists of tracing two main mutually 
perpendicular lines directed, respectively, to north and south and east 
and west1. All the territory to be measured is covered by a network of 
large triangles connected to those lines; then each is separated into 
secondary triangles etc and thus the work descends to fixing the 
boundaries of the communes. The errors of local measurements are 
restricted by circumscribing triangles and the carelessness of the land 
surveyors is revealed and rectified. This is a system of operations fine 
in details and perfect as a whole. 

France has all the desired means for carrying out that system, − 
most capable scientists to direct it; and a corps of well educated 
engineers-geographers to execute the work in the best possible way 
and to whom artillery and supper officers can be joined. Cadastral 
surveying will offer those officers the most favourable occasion to 
exercise for the operations which they will have to carry out during 
wartime. And this is the way in which Prussia extends the topographic 
work of our engineers on the other side of the Rhine; it can not follow 
a better example. 

One of the fundamental lines which I mentioned above is already 
traversing France from Dunkerque to Perpignan; a perpendicular 
directed from Strasbourg to Brest has begun to be measured. The 
former was traced with an extreme precision and was continued on the 
other side of the Pyrenees to the island of Formentera in the 
Mediterranean. Owing to the well-informed care of the Minister of the 
Interior about the progress of science that line will also extend to the 
north [by turning north] until Yarmouth. 

By following the described method, Colonel Mudge2 as ably as 
thoroughly compiles plans [maps] of both England and Scotland. 
Together with French scientists he should lengthen our meridian [arc 



 

measurement] by joining his work to it. The actual length of this great 
arc amounts to ca. 1/7 of the distance from the pole to the equator. The 
latitudes of its extreme and many intermediate points are measured and 
so are the corresponding lengths of second pendulums. This work 
throws vivid light on the figure of the Earth and on the inequalities of 
its [meridional] degrees and gravity. The finest of its kind executed 
until now, it serves as the base of the decimal metric system of weights 
and measures whose general adoption will be a great blessing for the 
governments. It is a lucky complement of our admirable number 
system and, just like it, equally suitable to all peoples; it was just 
adopted by the kingdom of Netherlands.  

In France, only a few seconds, please, sometimes thwarted by the 
authorities, a successful struggle is going on against the obstacles 
placed by the force of habit which opposes even the most useful 
innovations. But later that force joined with reason will maintain the 
metric system and assure these humane institutions (?) an eternal 
duration.  

I would wish our ministers to take my plan3 into serious 
consideration. It is possible to adapt to it the accomplished portion of 
the surveying and to execute it without delay or increased expenses. In 
our present peaceful state it will perhaps be even possible to permit a 
large number of engineers-geographers to participate in this work in 
which we barely see foreigners and to execute the survey more rapidly 
and with less expenses. 

And a commission chosen  by the government for interpreting this 
issue will collect necessary information. It will examine how justified 
are the reproaches about negligence and inability levelled against 
many workers in the field and it will indicate measures to accelerate 
and perfect the surveying.  

The compilation of the great Map of France offers an example 
which other nations will be quick to follow. Therefore, we should not 
become inferior, should not retreat even a step back while they 
advance. Maintain the glory of our sciences and fine arts. Sweet and 
pacifying, it possesses the precious advantage of increasing without 
diminishing the glory of foreigners or the interests of any people and 
provides new enjoyment to all. 

 
Notes 

1. Below, Laplace mentions these lines once more. It follows that tracing them 
was not needed, and even less so since the lay-out of triangulation depends on the 
country. 

2. William Mudge (1762 – 1820). 
3. So where did Laplace describe his plan? 
 



 

XVII 
 

P. S. Laplace 
 

On the Suppression of the Lottery 
 

Sur la suppression de la loterie. Read in 1819 in the Chambre des Pairs,  
published 1868. Oeuvr. Compl., t. 14. Paris, 1912, pp. 375 – 378 

 

    Gentlemen, the state of our finances allows to decrease taxes. The 
bill presented to us decreases direct contributions and the deductions 
from salaries, but is this measure the most advantageous? I have the 
honour to submit to the Chamber the following reflections about this 
issue. […] 

I think that it is much more useful to suppress the tax of the lottery. 
Recall what had been said a thousand times against the immorality of 
that game and the evil that it causes. The banker gets the greatest 
benefit and most gamblers, the least luck, not from other games, but 
from the lottery. The gambler’s disadvantage, both physical and moral, 
much exceeds the disadvantage caused by other public games1 barely 
tolerated to prevent larger evil. 

In those other games the banker only deducts in advance2 1/40 of 
the stake; in the lottery, the government deducts 1/3. Bet 18 fr on one 
of the five winning numbers and the stake is reduced to 15 fr. It is 
reduced by 1/3 and 1/2 when betting on two and three numbers and 
much more when four numbers have to win, and this is the physical 
disadvantage of that game. However, those losses, insensible for the 
rich, are very sensible for the greatest number of participants, and this 
is their moral loss. 

The poor, excited by the desire of a better destiny and seduced by 
hopes whose unlikelihood they are unable to appreciate, expose their 
necessaries to that game. They clutch at the combinations which 
promise them a large benefit although it is seen at once how many of 
them are unfavourable. Thus, everything concurs to render this game 
disadvantageous and prompts us to suppress it by law. We would 
applaud a man who diverts his listeners from the lottery by 
passionately describing the crimes and misery, the bankruptcies and 
suicides which it breeds.  

Let us therefore hasten to abolish a game so contrary to the morality 
and so disadvantageous for the gamblers that the police do not allow it 
in many public games which they feel themselves compelled to 
tolerate. It is remarked that the tickets of foreign lotteries are creeping 
in. However, governmental supervision can impede this process or at 
least render the tickets so rare that they will not at all reach the 
population of the kingdom’s interior. It is possible to state that with 
some vigilance the stakes in those lotteries will not amount to 1/50 of 
those in the actual lottery of France. 

It is also remarked that for each individual that [factual] tax is 
voluntary3. Yes, but for a multitude of individuals it is necessary just 
as marriages, births and all variable effects are necessary and almost 
the same from year to year when considering large numbers. The 



 

revenue from the lottery is at least as constant as agricultural products 
are. 

That tax is the one requiring most expenses involved in collecting it; 
it burdens the people much more than it provides the government since 
the stakes do not return to a hundredth of the gamblers. Moreover, 
publicity pays special attention to the gains and this becomes a new 
cause of incitement to that pernicious game. Therefore, although the 
lottery only contributes 10 or 12 mln to the public treasury, the tax 
levied on a large, and, besides, the poorest part of the population, 
amounts to 40 or 50 mln. 

How much false reasoning, illusions and prejudices does the lottery 
hatch! It corrupts both the mind and the morality of people whereas the 
legislator mostly ought to bear in mind their moral education. He 
should sacrifice petty fiscal considerations to this great aim but I also 
maintain that that sacrifice will not in the least diminish our finances 
since here, as everywhere, what is good in itself is at the same time 
profitable. When becoming more industrious and more at their ease, 
people will more readily pay taxes and consume more so that the 
treasury will recover by indirect contributions more than it looses by 
the suppression of the lottery. 

Grace to the noble Peer4, the founder of the savings bank! That 
establishment, so favourable for morality and industry, diminishes the 
profits of the lottery which is one of its advantages. Let the 
government encourage similar establishments by whose means, when 
sacrificing a small part of his income, he [the head of a family] assures 
the existence of himself and family against the time when he will not 
be anymore able to cope with its needs. As much as the lottery is 
immoral, thus much are those establishments wholesome for morality 
by favouring the most pacifying tendencies of nature. 

They should be respected in the face of the vicissitudes of the public 
fortune since the expectations they present concern remote future; they 
can only prosper when delivered from all anxiety about their duration. 
This is an advantage of which the lucky form of the system of our 
governing can assure them. So let us also encourage the associations 
whose members mutually guarantee their property against accidents by 
proportionally supporting the burden of that guarantee. However, the 
establishments based on illusions of ignorance and greed should be 
rigorously banned. No benefit can compensate their evil effect. And 
we ought to regret greatly that the suppression of the lottery 
considered as a tribute rendered to morality was not placed at the head 
of the list of the taxes to be reduced. 

 
Notes 

1. Jeu public: as might be thought, a game regularly played in registered casinos. 
Below, the same term apparently concerned such casinos. 

2. The deduction in advance seems to concern the banker’s benefit due to the 
unfairness of a game. Poisson (1837, § 22) stated that the game thirty-and-forty only 
provided the banker less than 0.011 (< 1/91) of the stake but that the rapidity of the 
game ensured his benefit. He also stated that, owing to the moneys involved in it, 
that game was more harmful than the lottery. 

Then, after indicating that the government deducts 1/3 of the banker’s profit, 
Laplace adds information based on lacking calculations. Cournot (1843, § 55) 



 

provided the following figures for the banker’s benefit: 1/6, 1/3 and 22/25 of the 
stake when the gambler is betting on 1, 2 and 4 numbers out of the 5 winning.  

3. Petty (1662/1899, p. 64) stated that lotteries were properly a Tax upon 
unfortunate self-conceited fools. Several later authors left similar statements. 

4. Duke De la Rochefoucauld − Editors of the Oeuvr. Compl. The Duke (1747 – 
1827) established a savings-bank in a province. The first such bank appeared in Paris 
in 1818 (Grand Dict. Universel Larousse, t. 3, p. 92). Laplace borrowed a few lines 
at the end of his statement from his Essai (1814/1995, pp. 89 – 90) somewhat 
changing the earlier wording. 

5. The lottery was only suppressed in 1829, and only in some départements, then, 
in 1836, in the entire kingdom, but after some time allowed once more (La Grand 
Enc., t. 22, pp. 584 – 585, article Loterie). Poisson (1837, § 22) mentioned that the 
lottery was luckily suppressed by a recent law. 
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XVIII 
 

P. S. Laplace 
 

On the Manner in Which  
the Decision of Jury Panels Is Formed 

 
Sur la manière dont se forme la décision du jury.  

Read in the Chambre des Pairs in 1821, published 1868.  
Oeuvr. Compl., t. 14. Paris, 1912, pp. 379 – 381 

 

    Gentlemen, the manner in which the jury panel forms its decision 
is certainly the most important element of its constitution. From its 
introduction, that manner had been greatly inconvenient and startled 
sober minds. When 5 jurymen out of 12 declare that an event is not 
established, the law reasonably expresses doubt and attempts to 
dissipate it by an intervention of the judges of an assize court. It does 
not see a sufficient motive for convicting by a simple majority of 7 
votes out of 12 and looks for a confirmation of such a motive in the 
decision of judges.  

This is fair and conforms to the doctrine of probabilities which is 
basically only common sense reduced to a calculus [Laplace 
1814/1995, p. 124]. The latter provides the power for arriving at 
consequences that the former is unable to formulate independently. 
However, when the judges decide by a majority of 3 votes out of 5, far 
from confirming the motive for conviction, they weaken it. Is it not 
evident that, since the judgement was considered indeterminate, the 
new decision made it even less sufficient? And is it not contrary to 
common sense and humanism to convict an accused in such cases? 
[7/12 = 0.58, 3/5 = 0.60.]  

Even more: sometimes the jurymen, being uncertain about the 
culpability of the accused and wishing to pass the judgement to an 
assize court, arbitrarily form a majority of 7 votes against 5. In such 
cases their decision is fictitious and should be regarded null and void. 
[However,] the 5 judges of the assize court will deliberate and if 3 
votes against 2 are favourable for the accused, he is [nevertheless] 
condemned.  

I do not know whether judiciary annals of any people offer another 
example of a conviction pronounced by a minority vote1. It is therefore 
important to abolish promptly this great inconvenience. But it is said 
that the bill concerning that issue and presented to you perverts the 
institution of jurymen by preferring its majority over the majority of 
the assize court. This, however, only occurs in the interests of the 
accused when an attempt is made to find in the decision of the judges a 
new motive for strengthening the decision of the jurymen, insufficient 
in the eyes of the law, for condemning him. It is this insufficiency 
which, according to the bill, annuls the decision of the jurymen and 
which the assize court does not confirm but rather weakens. 

It is also remarked that an arbitrary division of 7 jurymen against 5 
will become oftener when they are not restrained by fear of the 
accused being condemned by a minority vote in the assize court. We 
do not know the rate of cases in which a simple majority [7:5] of the 



 

jurymen is just an agreement. On this point we have no observations 
without which that rate will be either exaggerated or diminished in the 
interests of the intended cause. Still less do we know how the bill will 
influence this rate. What we certainly know is that it is urgent to 
suppress a greatest possible abuse when an accused is condemned by a 
minority vote. The legislator ought to take into account the jurymen’s 
sense of duty felt when dealing with the life of fellow humans. Many 
jurymen had told me about such cases in which they easily persuaded 
the panel to check deeply the culpability of the accused. Even in the 
case in which the law does not prescribe an intervention of the assize 
court, is it possible to fear that the jurymen will not discuss with all 
necessary care the question submitted for them to decide?  

In many countries the law requires the jurymen to deliberate until 
reaching unanimity and thus to compel them to study their cases. Here, 
however, a new inconvenience presents itself. The obstinacy of the 
jurymen, their temperament and habits, and a thousand other causes 
alien to the judgement sometimes influence injuriously their decision 
so that the opinion of a minority of the jurymen prevails. Let us say 
that everything in this world has its inconveniences and advantages. 
The difficulty of a correct choice and introduction of useful 
innovations consists in their proper appreciation. 

Let us only change our laws after an extreme circumspection but 
promptly introduce improvements evidently indicated by common 
sense and humanism. It is objected, finally, that the approval of the bill 
will sanction the intervention of judges which seems to act contrary to 
the institution of the jury panels. However, when improving an 
existing law, the legislator never forbids the possibility of revising it as 
a whole or of introducing changes judged to be advantageous by 
experience and deep examination.  

Such an examination especially demands long and sober reflection 
when dealing with the important law concerning jury panels. In the 
presented bill we should only see an urgent correction of a grave abuse 
which could daily compromise innocence. From this very viewpoint I 
had made the same proposals more than four years ago and I urge to 
adopt them now. 

 
Note 

1. Laplace referred to his opinion pronounced in Supplement 1 to the Théor. Anal. 
Prob. (1816/1886, p. 529). There, he provided an example: 7 jurymen and 2 judges 
condemn the accused and 5 jurymen and 3 judges absolve him; 9 > 8 and he is 
condemned although the decision of the higher instance weakened the case against 
the accused. 

Cournot (1843, § 217) noted that in 1825 – 1830 convictions by a simple majority 
only held if confirmed by a majority of the 5 magistrates of an assize court. There 
also, he indirectly agreed that the practice of delivering agreed decisions did exist 
during the previous legislation. Commenting in the edition of 1984 on this statement, 
Bernard Bru noted that in 1838 Cournot pronounced an opposite opinion.  
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XIX 
 

S.-D. Poisson 
 

Speech at the Funeral of the Marquis de Laplace 
 

Discours prononcé aux obseques de M. le Marquis de Laplace.  
Conn. des tem[p]s pour 1830, 1827, pp. 19 – 22 of the second paging 

 
    Gentlemen, it is becoming that the centenary of Newton’s death 

was marked by the demise of one of his most illustrious successors 
whom England and France had often called the French Newton thus 
expressing at once the glory of those two nations! Undoubtedly this is 
not the time for attempting to diminish our profound sorrow. However, 
if we consider the whole century separating these two great events, 
what an admirable spectacle is presented to us by the advance of the 
sciences, by their tendency to the mathematical spirit which is the true 
philosophy, and especially by the height which physical astronomy has 
reached by combining the most sublime analysis with the most exact 
observations! 

When tracing this immense summary of discoveries with an able 
hand it is impossible to see without surprise that all its parts are 
explained by the genius of one and the same man1 whose loss alas! we 
are bemoaning. He experimented together with his friend Lavoisier 
which would have sufficed for a reputation of a physicist of the first 
rank; he was closely connected with Berthollet and between them there 
existed a community of ideas which bore fruit both in the Statique 
chimique [1803] and the Exposition [1796]. He contributed to all the 
sciences and they all respected him. Indeed, those among the most 
celebrated interpreters of all its branches, Haüy2, Berthollet, Cuvier, 
Biot, Humboldt, considered it as an honour to dedicate to him their 
contributions.  

Newton enclosed in a single idea the constant laws governing matter 
and, what is not less worthy of admiration, indicated most of the 
consequences of his principle which time and diligent observations 
should have allowed us to reveal. But how was it possible to follow 
further along the path anticipated by a genius who seemed to tower 
higher than humanity by appreciating completely the phenomena and 
perfectly comparing them with experience which constitutes the 
astronomy of our time! 

For achieving this goal the works of Euler, Clairaut, D’Alembert, 
Lagrange and Laplace were required. And today Laplace’s Mécanique 
Céleste is a complete development of the Math. Princíples of Natural 
Philosophy. Each of these contributions is only signed by a single 
author, but is the fruit of profound meditations of many generations.  

I can not name Lagrange without your recollection, Gentlemen, of 
how his name and the name of Laplace were often pronounced 
together and how they had been joined in the world’s opinion as 
representing the summit of intelligence. For a long time scientific 
Europe had been seeing how a memoir of one of them was succeeded 
by the other’s work on the same subject. And the Bureau of 
Longitudes, on whose behalf I am now speaking, will retain forever 



 

the memory of that memorable meeting when they both came to 
communicate works on the same theory, one of the most important in 
physical astronomy. The scope of the problems which occupied those 
superior men was so vast, that they were able to proceed from entirely 
different points of view, sometimes even without exhausting the issue.  

And their geniuses differed as has been remarked by everyone who 
studied their work. Be it the libration of the Moon or a problem 
concerning numbers, Lagrange most often seemed to see in them only 
mathematics and he therefore set high store by the elegance of his 
formulas and generality of his methods. On the contrary, for Laplace 
mathematical analysis was an instrument which he adapted for most 
various applications, but he always subordinated it to a special method 
suited to the very essence of the problem at hand. 

Posterity will perhaps consider one of them as a great geometer and 
the other as a great philosopher who had attempted to cognize nature 
by highest geometry. This is how Laplace had indeed provided for us 
the theory of capillary action, determined the degrees of probability of 
[the results of] various methods of treating a large number of 
observations. He determined the laws of the tides in spite of the large 
number of arbitrary elements on which they depended and expressed 
them by especially exact formulas representing observations separated 
by more than a hundred years. 

Laplace discovered the cause and measure of the secular equation of 
the Moon and the secular inequalities of Saturn and Jupiter, of the two 
problems with which geometers had been mostly occupied since the 
former Academy of Sciences had several times unsuccessfully 
proposed them: those tasks had invariably resisted the efforts made. 
Among the numerous periodic inequalities of the Moon Laplace 
distinguished those which depend on the solar parallax and he revealed 
inequalities caused by the Earth’s flattening. Without going out of his 
observatory, an astronomer can now actually determine the figure of 
our planet and our distance from the Sun by observing the lunar 
motion. 

Finally, to restrict this enumeration of the admirable results, in 
which I included those most pleasing his imagination, I am adding that 
the particular inclination of his mind allowed him to disentangle such 
complicated laws of motion of Jupiter’s satellites. The difficulty of this 
problem was caused by a unique circumstance which exists in the 
system of the world but Laplace perspicaciously picked it up: it was 
connected with the motion of the first three satellites [cf. Laplace 
(1814/1995, p. 113)]. 

These works had been appearing without interruption almost to his 
60-th year. Had we not known that fecundity is a perennial and 
essential feature of genius, we would have been surprised by their 
number and variety. We should also say that it had been his friend 
Bouvard3 who accomplished the numerical calculations, which 
absorbed a considerable part of such a precious time. Laplace’s 
formulas became the basis of Delambre’s astronomical tables4. He was 
Laplace’s friend as well, and his both capacities were mentioned at his 
funeral. 



 

It was D’Alembert who directed Laplace’s first steps of his 
scientific career and who was quick to see Laplace as a geometer 
whom he will soon have to emulate. Although entering the Academy 
at the age of 24, Laplace earlier discovered an essential fact, the 
invariability of the mean distances of the planets from the Sun, and 
besides, he published many important memoirs. The Bureau of 
Longitudes heard out the reading of his last work, and, so to say, the 
tone of his last voice. Even this year, just fifteen days before becoming 
ill, Laplace communicated to us a memoir on the oscillations of the 
atmosphere since published in the Connaissance des Tem[p]s. The 
printing of a new edition of the historical part of his Système du 
monde5 has begun. He prepared a first supplement to vol. 5 of the 
Mécanique Céleste, the fruit of his last years, and volume 6 of the 
Mémoires of the Academy of Sciences to be published forthwith 
contains one more of his memoirs worthy of ending a long series of his 
works with which he had enriched all our files and which originated in 
1772. 

This passionate affection for sciences was his life and it was only 
extinguished with its end. Who will now provide an impulsion to 
sciences which they had been getting from the activity of his spirit and 
the cordiality of his soul? Where will those who cultivate sciences find 
such pleasant approval, such noble encouragement? Musing over the 
welcome he bestowed upon me in my youth; over the signs of vivid 
friendship with which he so often lavished on me; over the 
communications of his thoughts which cleared up my mind about 
various issues, − in this last parting, musing over all this, I am quite 
unable to express all the love which I feel for, or how much I am 
obliged to him.  

 
Addition by Editors 

Laplace died in Paris on 5 March 1827, at 9 o’clock in the morning. 
He was born 23 March 1749 in Beaumont-en-Auge near Caen where 
he first studied. Monday, the day of his death, the Academy of 
Sciences assembled as usual, but decided to forgo its session on that 
day. When Euler died, the Petersburg Academy had provided that 
same example. 

In 1783 Laplace succeeded Bezout as the examiner at the Corps 
royale de l’artillerie. He married in 1788 and left a son, the inheritor of 
his title of Peer of France and a colonel of artillery who is occupied by 
calculating chances as can be seen in the Fourth Supplement to the 
Théorie analytique des probabilités6. 

 
Notes 

1. This is certainly wrong. Below, Poisson had himself remarked that the Méc. 
Cél. was the fruit of profound meditation of many generations. 

2. Rene-Just Haüy (1743 – 1822), a crystallographer and mineralogist. 
3. Alexis Bouvard (1767 – 1843), a tireless calculator. He made all the detailed 

calculations in the Méc. Cél. His unsuccessful tables of the motion of Uranus 
prompted the (successful) search of a further planet (Neptune). See Alexander 
(1970). 

4. His tables appeared in Lalande’s Astronomie (1792), then separately in 1806. 
5. That part (Chapter 5 of the Exposition) was first separately published in 1821. 



 

6. That Supplement (Laplace 1812/1886, pp. 617 – 645) of 1825 did not mention 
anyone at all. 
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XX 
 

S.-D. Poisson 
 

Review of P. S. Laplace, On the Approximation of Formulas  
being Functions of Very Large Numbers  
and on Their Application to Probability 

 
Sur les approximations des formules qui sont fonctions de très grands nombres  

et sur leurs application aux probabilités (1810).  
Œuvr. Compl., t. 12. Paris, 1898, pp. 301 – 345.  

Nouv. Bull. des Sciences. Soc. Philomatique de Paris,  
t. 2, No. 35, 1811, pp. 132 – 136 

 
Research contained in this memoir supplements the author’s earlier 

memoirs (1781, 1785, 1786). Solution of problems concerning 
probabilities often leads to formulas including very large numbers and 
numerical calculation becomes impossible. Analytic formulas contain 
general solutions of proposed problems but in each case we are 
prevented from arriving at a numerical value of the probability sought. 

It was necessary to derive a means for applying those formulas, and 
this is what Laplace had done in his preceding memoirs. One of them 
(1785) provides a general method for reducing functions of large 
numbers in series converging the more rapidly the larger are those 
numbers so that those series are the more convenient the more are they 
necessary. However, in some problems the required probability is only 
equal to a part of a function of large numbers while its other part is 
independent from it. This circumstance leads to a new difficulty whose 
elimination is the main goal of the latest memoir.  

Here, we restrict our explication to discussing his most remarkable 
results; concerning the extremely delicate analysis leading to those 
results we are unable to provide [here] a satisfactory idea and refer 
readers to the memoir itself. The author first proposed to determine the 
probability that the sum of the inclinations of some number of 
planetary or cometary orbits to the ecliptic is contained within given 
boundaries when supposing that all the inclinations between 0 and two 
right angles are equally possible. His first solution repeats the one 
obtained in 1781. The probability sought is  
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Here, (s + e2) and (s – e1) are the given boundaries1, h is a 

semicircle, n is the number of the inclinations. Each of the two 
obtained series should be continued until the term raised to the power 
of n is not positive anymore and all the other terms neglected. The 
expression (1) is always finite whichever are the boundaries (s + e2) 
and (s – e1).  



 

Laplace applies this formula to the planets discovered until now, 10 
in number, not including the Earth2. At the beginning of 1801 the sum 
of their inclinations to the ecliptic was 90grad.4187 [100grad = 90°] so 
that for h = 200grad, s + e2 = 91 grad.4187, s – e1 = 0, n = 10, and 
formula (1), if only all the inclinations are equally possible, provides 
the probability that the sum of these 10 inclinations should be 
contained in the interval [0, 91 grad.4187]. This result lets us know the 
degree of likelihood of that hypothesis. Formula (1) leads to 

 
    (1/10!) (91.4187/200)10 = 1.0972/1010. 
 

The probability of the contrary event is (1 – 1.0972/1010) which 
does not sensibly differ from certitude. We ought to conclude that the 
adopted hypothesis is quite unlikely. And so, in the beginning an 
unknown cause led to the proximity of the planetary orbits to the 
ecliptic and it is absurd to attribute to chance the smallness of those 
inclinations. It is evidently easy to calculate the numerical values 
provided by formula (1) when n is not very large. However, when 
desiring to apply that formula to cometary orbits and to take into 
account all 97 of those observed until now, calculation becomes 
impossible and the formula, useless.  

    Laplace had therefore provided a second solution according to 
which the probability sought was expressed by a series 
 

(2/√π)[∫dxexp(– x2) – (1/20n)exp(– x2)(3x – 2x3) + …] 
 

where π and е are […]. The boundaries of the mean inclination are 
supposed to be (1/2)K ± rK/(2√n), where K is a right angle, x2 =(3/2)r2 
and the lower limit of the integral is х. When n is very large as in the 
case of cometary orbits (n = 97) that series rapidly converges. 
    The mean inclination of their orbits to the plane of the ecliptic is 

51 grad.87663. Therefore, K = 100, /2 97rk = 1 grad.87663 and x = 
0.452731. The mean inclination should be contained between 50 grad ± 
1 grad.87663. Calculation provides probability 0.4913, almost equal to 
1/2. The probability of the contrary event, of the mean inclination 
being beyond those boundaries, is also 1/2. We have no reason to think 
that a primitive cause had influenced the inclinations, and the 
hypothesis of an equal facility of the inclinations can be admitted 
without any unlikelihood.  

After comparing these two solutions and achieving a coincidence of 
their results, Laplace arrived at this remarkable equation 
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Here, n is supposed to be a very large natural number and the formula 
is only approximate since magnitudes of the order of 1/n were 
disregarded. The value of r is arbitrary, positive or negative, and equal 



 

to the lower limit of integration. Just as above, the series in the left 
side should be continued until the term raised to the power of n is not 
positive anymore; all the other terms are neglected.  

It is permissible to differentiate or integrate that equation with 
respect to r any number of times and thus to form a sequence of other 
equations which, just like the previous one, are only valid when n is 
very large. Laplace arrived at this equation in an indirect way and a 
method directly leading to it is desirable. He provided much which we 
are regrettably unable to indicate here. On one occasion he remarked 
that the left side of that equation was a function of n and r which by its 
form should satisfy two partial differential equations by passing from 
the finite to the infinitely small. By approximately integrating them 
Laplace calculated this function anew. Another method of such 
calculations was based on a reciprocal passage from imaginary to real 
results which he (1809) had applied previously. Now he remarked: 

It is similar to a passage from natural to negative numbers and 
fractions by whose means geometers have been led by induction to 
many important theorems. When applied cautiously, as was their wont, 
it becomes a fruitful method of discovery and it ever more proves the 
generality of analysis. 

The preceding problem about the inclinations of the orbits is the 
same as that concerning the determination of the probability for the 
sum of errors of n observations to be contained within given 
boundaries provided that all the errors from 0 to some h are equally 
possible. The formulas which we cited were therefore immediately 
applicable for determining that probability. However, Laplace had also 
considered the general problem in which those errors were not equally 
possible and a given function expressing the law of their facilities was 
given. Whichever was that law, for the case of a large number of 
observations he discovered that the probability that the length of the 
interval within which the mean error was contained shortened with the 
increase in the number of observations. 

That error therefore continuously tended to a fixed term [number] 
common for both boundaries. Imagine that the law of those facilities of 
the errors is represented by a curve, then that fixed term is in general 
the abscissa corresponding to the ordinate of the centre of gravity of 
that curve with the origin of the abscissas coinciding with the zero 
error. When positive and negative errors are equally possible, that 
curve is symmetric with respect to the axis of ordinates and the 
abscissa of its centre of gravity is zero.  

The mean error then converges to zero and the mean result obtained 
from the set of the observations at the same time converges to reality. 
By multiplying the observations indefinitely, we increase the 
probability that in either direction that mean result differs from reality 
by an arbitrarily small magnitude. That probability, whose value 
Laplace had determined for an arbitrary number of observations, 
therefore ever closer approaches certitude and finally, in the case of an 
infinitely many observations, coincides with it.  

 
Notes 

1. More naturally: (s – e1) and (s + e2). 



 

2. Cournot (1843, § 146) listed 11 planets including the Earth, Uranus and the 
four first discovered minor planets. Poisson himself (1837, § 110) applied formula 
(1) for similar calculations, but he borrowed it from Laplace’s Théorie analytique 
des probabilités. 
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XXI 
 

S.-D. Poisson 
 

Review of P. S. Laplace, On generating Functions,  
Definite Integrals and Their Application to Probabilities1 

 
Sur les fonctions génératrices, les intégrales définies  

et leur application aux probabilités.  
Nouv. Bull. des Sciences. Société philomatique de Paris,  

t. 2, No. 49, 1811, pp. 360 – 364  

 
    Laplace first explicated general considerations about the theories 

of generating functions and functions of large numbers. He remarked 
that these theories are the two reciprocal branches of the same calculus 
of generating functions, as he named it. [Here, Poisson mentions 
earlier work by d’Arbogast, Euler and Kramp.]  

Laplace described their veritable theory and eliminated everything 
possibly paradoxical. Interpolation of series; similarities between 
powers and differences2; and many other parts of mathematical 
analysis naturally belong to that calculus. However, its greatest 
advantage is that it forms the basis of the calculus of probability and 
provides the methods necessary for evaluating probabilities. After 
these general observations Laplace occupies himself with studying the 
values of many definite integrals. […] 

It is seen that Laplace’s method is a new example of passing from 
real to imaginary magnitudes by induction which he often applies in 
his previous memoirs as a method of discovery. It is however 
important to confirm the results thus obtained by a direct method, and 
this is what we will do on another occasion about the integrals cited 
above.  

The memoir under review contains solutions of three problems on 
probabilities. I repeat their formulation and indicate, as far as possible, 
the analysis applied for their solution.  

[The first problem.] Consider gamblers A and B of equal ability. At 
first B has r counters whereas A has infinitely many. B obtains a 
counter from A when winning a set, and gives him a counter when 
losing it. The game continues until A wins all of B’s counters. Let r be 
a large number. It is required to determine the number of sets after 
which either even money can be bet, or the odds will be 2:1, 3:2, etc 
that A wins the game3. 

Laplace first proves that the probability that the game should end [in 
a finite number of sets] is unity, or certitude. Then he asks for the 
probability that it ends in a number of sets not exceeding x. That 
probability is a function of x and r and is expressed by a partial 
difference equation of second order which Laplace provides 
immediately after formulating his problem.  

He expresses that value [the value of the probability sought] by a 
definite integral. If x and r are very large, it is transformed into one of 
those considered previously. For betting equal money the value thus 
obtained is equated to 1/2. Laplace solved the obtained equation; for r 
= 100 he found out that it is disadvantageous/advantageous to bet on 



 

23,780/23,781 sets. In general, by equating that probability to m/(m + 
n), he determined the number of sets for advantageously betting m 
against n that the game is ended.  

The second problem. Consider two urns, A and B, each containing n 
balls with the same number of white and black balls in the total (in the 
2n). Suppose that a ball is drawn at the same time from each urn, that 
these balls are interchanged and put back and that this procedure is 
repeated r times. After each drawing of the two balls the urns are 
shaken so that the balls will be better mixed. It is required to 
determine the probability that after these r operations urn A will 
contain x white balls. 

That probability is a function of x and r. By a delicate analysis 
Laplace finds out all the presented chances expressed by a partial 
difference equation of second order. In case of very large values of x it 
is transformed into a partial differential equation. Complete integrals 
of such equations, which really are of the second order, have only one 
single arbitrary function. Laplace remarks that that problem offers the 
first example of applying such kind of equations in the calculus of 
probability. 

He determines the complete integral of that equation in a finite form 
by means of a definite integral, then derives the arbitrary function 
which it contains by issuing from the initial state of the urns supposed 
to be known. This step requires a remarkable expansion of the integral 
whose details are here impossible to analyse4. 

The third problem concerns the mean to be chosen of the results of 
observations. All its importance, especially for treating astronomical 
observations, is evident. The problem is here solved for the first time 
by a direct and general manner provided only that the number of 
observations is very large. The ordinary method is to choose that mean 
for which the sum of the observational errors disappears. By issuing 
from one of his previous memoirs Laplace determined the probability 
of [the error of] that result whichever is the law of the faculties of 
those errors, see [xx].  

Here, however, he considers that probability from a more general 
viewpoint: not the sum of errors should disappear, but the sum of each 
multiplied by indeterminate constants. Then he calculates these 
constants so that the error of the thus determined result is as small as 
possible. His analysis led him to the result obtained by the MLSq of 
errors which is being applied by many geometers. However, its 
advantage was not yet shown. Now Laplace proved that it provides the 
minimal value of the error to be feared in the result.  

And it also has another advantage which makes it preferable to the 
ordinary method. Actually, by comparing the results of both methods 
for the same problem, i. e., by determining the probabilities that their 
errors are contained within given boundaries, Laplace proved that for 
the same probabilities the boundaries for the MLSq are closer to each 
other; inversely, for the same boundaries the probability provided by 
that method is higher. Finally, the author considers the case in which 
the same result should be obtained by a large number of observations 
of differing kinds and shows that the MLSq of errors is necessary for 
choosing the mean of the results of such kinds of observations5. 



 

 
Notes 

1. The source as stated by the Editors (?) was a report soon to be published. 
Actually, Laplace (1811) greatly extended it and it appeared under a different title. 

2. Similarities and interpolation barely belong to one and the same theory. 
3. The gambler’s ruin is an important problem and many authors have studied it, 

see Sheynin (1994, p. 167). The first of them was Pascal who formulated its 
elementary version. In 1888, overlooked by commentators, Bertrand had considered 
several relevant problems including Laplace’s version, see Sheynin (Ibidem, p. 170). 

4. Laplace’s second problem deserves a detailed comment and I largely repeat my 
previous discussion (Sheynin 1976, pp. 149 – 151). Already Daniel Bernoulli (1770) 
solved Laplace’s problem No. 2. The same problem was solved by Lagrange 
(1777/1869, pp. 249 – 251), Malfatti (Todhunter 1865, pp. 434 – 438). 
    Laplace worked out a partial difference equation and mutilated it most unsparingly 
(Todhunter 1865, p. 558) obtaining a partial differential equation 
 
    u′r/n = 2u + 2µu′µ + u″µµ, x = (n + µ√n)/2 
 
and expressed its solution in terms of functions related to the [Chebyshev –] Hermite 
polynomials (Molina 1930, p. 385). Hald (1998, p. 339) showed, however, that 
Todhunter’s criticism was unfounded. 
    Later Markov (1915) somewhat generalized this problem by considering the cases 
of n → ∞, r/n → ∞, and n → ∞, r/n = const and Steklov (1915) proved the existence 
and uniqueness of the solution of Laplace’s differential equation with appropriate 
initial conditions added whereas Hald (2002) described the history of those 
polynomials. Hostinský (1932, p. 50) connected Laplace’s equation with the 
Brownian motion and thus with the appearance of a random process (Molina 1936). 
    Like Bernoulli, Laplace discovered that in the limit, and even in the case of 
several urns, the expected (as he specified on p. 306) numbers of white balls became 
approximately equal to one another in each of them. He also remarked that this 
conclusion did not depend on the initial distribution of the balls. Finally, in his Essai 
(1814/1995, p. 42), Laplace added that nothing changed if new urns, again with 
arbitrary distributions of balls, were placed in among the original urns. He declared, 
apparently too optimistically, that  
    These results may be extended to all naturally occurring combinations in which 
the constant forces animating their elements establish regular patterns of action 
suitable to disclose, in the very mist of chaos, systems governed by these admirable 
laws. 

Laplace had thus thought that his urn problem described many important natural 
processes. Anyway, the Ehrenfests’ celebrated model is nothing but that very 
problem due to Daniel Bernoulli (above). 

5. See [xiv, Note 5].  
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Addition to Note 4 

Here is a description of Markov’s paper as provided by O. V. 
Sarmanov on pp. 672 – 673 of Markov’s Izbrannye Trudy. 

Markov considered (Daniel Bernoulli − ) Laplace’s problem more 
generally. There were n1 and n2 balls in the urns and, in all, (n1 + n2)p 
were white and (n1 + n2)q, black, p + q = 1, and he denoted the 
probability that after r cyclic transpositions of the balls the first urn 
will contain x white balls by zx,r. 

   Markov issued from a partial difference equation connecting zx,r+1 
with zx,r and zx-1,r but it was Sarmanov who demonstrated it. Then 
Sarmanov stated that Markov’s finding supposed that 

 

1 2

1 2

1 1
( )  as ,   r n n
n n

+ → ∞ → ∞  

 
or that that product remained constant and equal to 2ρ.  

In both cases he considered the random variable 
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and indicated that in the first case its moments approached the 
moments of a normal distribution, and in the second case, of a normal 
distribution with a perturbative factor expanded into a series of 
Chebyshev − Hermitian polynomials (which Laplace called after 
Laplace, Chebyshev and Hermite) φ1(µ), φ2(µ), … 
 

1 + L1e
−2ρφ1(µ) + L2e

−4ρφ2(µ) + … 
 
Finally, Sarmanov noted that Bernstein (1927/1946, pp. 127 − 130) 

had considered a particular case of that problem.  
For large n1, n2 and r with given n1 and n2 the approximate expected 

number of white balls in the first urn will be, as Bernstein proved, 
 
Exr ≈ (n1 + n2)exp[−r(n1 + n2)].  
 
Bernstein S. N. (1927 Russ), Teoria Veroiatnostei (Theory of Probability). 

Moscow – Leningrad, 1946.



 

                                                       XXII 
 

S.-D. Poisson 
 

Review of P. S. Laplace, Théorie analytique des probabilités 
 

Nouv. Bull. des Sciences.  
Soc. Philomatique de Paris, année 5, t. 3, 1812, pp. 160 – 163 

 
In this treatise Laplace combined his earlier memoirs on probability 

including the two recently published (1810; 1811). A complete treatise 
on the theory of chances has resulted; we can find there uniform and 
general methods for solving related problems and an application of 
these methods to most important issues. We will briefly indicate the 
course followed by the author and the sequence of problems which he 
treated. 

Laplace’s work is separated in two parts. In the first one he 
described the analytical methods which he applied in the calculus of 
probability, reduced to a single general method entirely due to him, 
and called calculus of generating functions. That calculus is separated 
in two branches; one of them encloses the known theory of generating 
functions, and the other, inverse with respect to the former, includes 
methods for expressing functions of large numbers by definite 
integrals, then expanding them in converging series. 

In that first part we find important remarks about the metaphysics 
[philosophy] of the differential calculus, the passage from finite to 
infinitely small magnitudes, about the use of discontinuous functions 
in the calculus of partial difference equations and, finally, about a type 
of induction which Euler and he himself had applied many times1 and 
which had discovered for them the values of various definite integrals. 

The second part contains the general theory of probability and in 
particular an application of the calculus of generating functions to the 
most important issues of that theory. Laplace reduced the number of 
general principles on which that theory is founded to four2. The 
exposition and demonstration of those principles is the aim of Chapter 
1.  

In the second chapter he treats the probability of events consisting 
of simple events with known probabilities. The simplest problem of 
that kind and the first that he solved here consisted in calculating the 
chances in a lottery. Then he determined how many drawings are 
needed for betting even money on the extraction of all of its tickets. 
For a very large number of those tickets this problem provides the first 
application of formulas concerning functions of large numbers. 
Among the other problems here we note the celebrated problem of 
points first solved by Pascal and Fermat. Laplace offered a general 
solution for any number of gamblers with known relative abilities also 
considering a special circumstance never before entering calculations3. 
Here also is a complete solution of the problem about the inclination of 
planetary orbits with respect to the ecliptic. It occurred that from the 
very beginning almost certainly all the inclinations from 0 to 100 grads 
[to 90°] were not equally possible and that on the contrary, an 



 

unknown cause determined very small inclinations as observed by 
astronomers. 

In the next chapter Laplace discusses the laws of probability 
resulting from an indefinite [infinite] multiplication of events. He 
proves that in a long sequence of trials the possibilities of many simple 
events, only one of which ought to arrive at once, are proportional to 
the number of times that each event had occurred. If, for example, an 
urn has an unknown number of white and black balls and after a very 
large number of drawings a white and b black balls have arrived, it is 
highly probable that the balls of those colours contained in the urn are 
in the ratio of a:b. Laplace provided an expression of this probability 
which approaches certainty the closer, the more considerable was the 
number of drawings. Although the result is in itself very simple and 
seems to be naturally supposed, it is one of the most delicate points in 
the theory of chances4. Other problems solved here are remarkable 
since their solution depends of the application of partial differential 
equations.  

Laplace’s research of the mean to be chosen of a large number of 
observations, constitute the fourth chapter of his work. He proves 
that the MLSq provides the minimal error to be feared in the mean 
result of a large number of observations. He also provides the most 
probable expression of that minimal error. This chapter is especially 
interesting for astronomers since there they will find the surest means 
for comparing the respective merits of their tables5 and the principles 
which ought to direct them when compiling the conditional equations 
for correcting the elements. 

The fifth chapter deals with the application of the calculus of 
probability to examine phenomena and their causes. It ends by solving 
a curious and difficult problem never resolved before: 

A floor is divided into small rectangular cells by a net of mutually 
perpendicular lines. Determine the probability that a needle randomly 
thrown on the floor will rest on a joint of those cells6. 

The sixth chapter concerns probabilities of causes and future 
events as determined by observed events. The general problem solved 
there, of which the other ones are only particular cases, is this: 

An observed event is composed of simple events of the same kind 
and its possibility is unknown. Determine the probability that that 
possibility is contained within given boundaries. 

The formula which includes the solution of this problem is applied 
to the births observed in the main cities of Europe. Laplace concludes 
that the dominance of male over female births can not be attributed to 
chance and that on the contrary it results from an unknown cause. The 
ratio of these births derived from a large number of observations is 
expressed by 22/21 but in Paris it seems to be less and only equals 
25/24. Laplace calculated the probability that that anomaly, since it 
was too large, was not an effect of chance and decided that the 
observed difference between Paris and other large European cities is 
due to an unknown cause and very likely discovered it7. Also here he 
determined the probability of results based on mortality tables and 
finally calculated the population of a considerable empire by issuing 
from yearly births. Applying his results to France, Laplace found that 



 

its population numbered 42,500,0008 and showed that more than a 
1000 can be bet against 1 on the error of that estimate to be less than 
0.5·10−6. 

The seventh chapter treats the influence of unknown inequalities 
possibly existing between chances which we suppose to be perfectly 
equal. He proves that that influence is always favourable to a repetition 
of the same event. Thus, in a game of heads or tails, if the coin tends 
to rest on one side rather than on the other, it is always beneficial to 
bet on the similarity of the throws although the more probable side 
remains absolutely unknown to the gamblers.  

In the next two chapters Laplace studies the most important issues 
of political arithmetic, such as the mean life, marriages and other 
associations, mortality tables, advantages depending on the 
probabilities of future events and those [provided by] establishments 
based on probabilities of life. One of the most interesting results is the 
increase of mean life which happens if smallpox is completely got rid 
of by the use of the [Jennerian] vaccine: the increase amounts to more 
than three years if, however, the resulting increase of the population 
will not at all be arrested by insufficient subsistence9. 

Finally, the last chapter treats moral expectation. For determining 
it Laplace adopts the Daniel Bernoulli rule which supposes that the 
advantage resulting from some gain is inversely proportional to the 
already possessed fortune10. 

 
Notes 

1. The best known relevant place is Laplace’s Essay (1814/1995, Chapter On 
various approaches to certainty). There, he discussed induction, analogy and 
hypotheses and noted mistakes made by distinguished authors who had proceeded by 
incomplete induction. Fermat (p. 113) thus reasoned on a problem in number theory, 
but remarked that his conclusion (later refuted by Euler) was not really proved. On p. 
112 Laplace stated that the plausibility of inductive conclusions increased with the 
number of observed confirmations. See also Bottazzini (1981/1986, p. 132) about the 
application of induction by many authors including Laplace when passing over to the 
complex domain. Poisson [xxi] mentions definite instances of Laplace’s application 
of induction. 

2. Laplace had not properly isolated them from his context. Later he (1814/1995, 
pp. 6 – 14) formulated 10 principles. 

3. Actually, the third chapter (§§ 10 and 11) includes the problem about the 
gambler’s ruin with one of the gamblers having an unbounded capital and the so-
called Waldegrave problem solved earlier by Montmort, Nicolas Bernoulli and De 
Moivre (Todhunter 1865, pp. 122, 123 and 139).  

4. See my comments to [xxi, Note 4].  
5. See, however, [xiii, Note 4]. 
6. Laplace had not indicated and Poisson apparently did not know that Buffon had 

introduced that problem (and, definitely, geometric probability) although he 
considered a set of parallel lines rather than cells. Then, Poisson did not mention 
Laplace’s remark about the ensuing possibility of a statistical determination of the 
number π.  

7. Laplace (p. 392) explained the difference by foundlings, mostly girls, having 
been left in Paris by people from beyond the city. Neither he, nor his commentators 
said anything about the possible occurrence of the same phenomenon elsewhere. 

8. Poisson was mistaken, but only because Laplace did not formulate his 
conclusion understandably. On p. 399 he indicated a certain figure provided that the 
yearly births amounted to 1 mln, and on p. 401 he provided another figure 
(mentioned by Poisson) corresponding to 1.5 mln yearly births. Later he (1814/1995, 
p. 40) repeated the former figure, 28.353 thousand people, but, due to the barely 
known number of yearly births, only as a tentative estimate. 



 

9. Later Laplace (1814/1995, p. 83) mentioned both the inestimable discovery of 
the vaccine by Jenner, one of the greatest benefactors of mankind and the previous 
method of inoculation and its study by Daniel Bernoulli. 

10. Poisson overlooked Laplace’s Chapter 11 devoted to studying the testimonies 
of witnesses and verdicts of law courts. 
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XXIII 
 

S.-D. Poisson 
 

A Note on the Probability  
of the Mean Results of Observations 

 
Note sur la probabilité du résultat moyen des observations.  

Bull. Sci. Math. et Phys. Férussac’s Bull Universel Sci. et Industrie,  
Sect. math., astron., phys. et chim., t. 13, 1830, pp. 266 – 271 

 
We are obliged to Laplace for determining that probability provided 

that there are very many observations whichever is their law of 
possibilities. His formula does not depend on that law if only the errors 
equal in magnitude and having contrary signs are equally possible. It 
does not presume that that unknown law remains constant during the 
entire series of observations, as I have shown in my latest memoir 
(1829). This allows its application to observations made by different 
observers and instruments. Here is that formula which its illustrious 
author provided and in addition applied it to most interesting examples 
in his Théorie analytique.  

Denote by A some measured thing, by х its unknown value, by а1, 
а2, а3, ..., аn its equal or unequal observed values and let their sum be 
s, and m, the mean of all these values, then 
 
    s = а1 + а2 + а3 + ... + аn, m = s/n. 
 
Subtracting m from the observed values one by one, we find their 
deviations from the mean. In general, they are very small and are 
usually applied for judging the quality of the observations.  
    Denote by h half the sum of their squares 
 
    2h = (а1 – m)2 + (а2 – m)2 + … + (аn – m)2.           (1) 
 
There exists a certain probability р that the error to be feared when  
m is supposed to be the value of A is contained within the boundaries 
± 2α√h/n. Or, in other words, the probability that the difference x – m 
will not exceed those boundaries. Here, α is an arbitrary numerical 
coefficient on which р depends. And if n is a large number, and 
magnitudes of the order of 1/n are disregarded, the value of р will be 
 

    
α

2

0

2
exp( )

π
p t dt= −∫ .                                         (2) 

 
Here, е […], and π […]. At the end of his book Kramp (1799) 

provided a table of numerical values of that integral. It shows that as α 
increases the probability р rapidly approaches certitude and does not 
differ from it, for example, by 0.0005 even when the value of 2α is 
inconsiderable, such as 2α = 5. When desiring to have р = 1/2, we 
should choose α almost equal to 0.4764. And so, it is possible to bet 
equal money that the error to be feared in the mean result of a large 



 

number n of observations is contained within the boundaries ± 
(0.9528/n)√h. 

This value of h is derived from the equation (1), which can also be 
written in an equivalent form 
 
    2h = (1/n)s – (1/n2)σ,                                           (3) 
 
where σ is the sum of the squares of the n observational values1. The 
proof of the equation (2) is based on the method which Laplace had 
provided for reducing the integrals of exponential functions of very 
large numbers to convergent series. It was demonstrated for the case of 
one single and directly measured unknown but, without considering 
that method anew, it can be generalized on a linear function of two or 
more unknowns, each measured a very large number of times. Indeed, 
if the law of the possibilities of the errors of each unknown is given, 
the law of the errors of that function can be immediately derived. To 
show this, let А, А1 and С be some things whose unknown values are 
х, х1 and z. Suppose that they are connected by the equation 
 
    z = kx + k1x1, 
 
where k and k1 are known coefficients. А и А1 are directly measured a 
very large number of times n and n1. Let m and m1 be the means of the 
observed values and h and h1, the halfsums of the squares of their 
deviations and denote for the sake of brevity 
 

    β = 2α√h/n, β1 = 2α 1h /n1. 

 
Then there will be probability р provided by formula (1) that the 
differences x – m and x1 – m1 are contained within boundaries ± β and 
± β1.  
    Denote also 
 

    2 2 2 2
1 1β βk kγ = +  

 
then there will also be the same probability that the error to be feared 
in the value km + k1m1 of С is contained within the boundaries ± γ, or 
that the difference z – km – k1m1 will not in either direction exceed γ. 
Indeed, let 
 
    x = m + v, x1 = m1 + v1, 
 
then the infinitely low probabilities of the errors v and v1 are known to 
be 
 

    
2 2 2 2

1 1 1
1

11

exp( ) ,  exp( )
4 42 π 2 π

n n v n n v
dv dv

h hh h
− −  

 



 

where terms of the order of 1/n and 1/n1 are disregarded. In addition, 

we discard at once the terms of the order of 1/√n and 1/ 1n  which 

only include odd powers of v or v1 and therefore disappear from the 
final result. It will be precise to magnitudes of the order of squares and 
products of those fractions.  

The probability that the two errors, v and v1, take place at the same 
time is the product of the two previous probabilities, or, after taking 
account of the values of β and β1, 
 

    
2 2 2

2 1
12 2

1 1

α
exp[ α ( )]

πββ β β
v v

dvdv− + .  

 
Therefore, if  
 
    kv + k1v1 = u,                                                           (4) 
 
and integrating the preceding expression over all the values of v and v1 
satisfying that equation, we obtain the infinitely low probability that 
the error of  
 
С = km + k1m1                                                        (5) 
 

is exactly equal to u. And if 
 
    v = [u/(k + k1) + k1θ, v1 = [u/(k + k1)] – kθ,  
 
expression (4) will take place for arbitrary values of the variable θ.  
    We should therefore integrate with respect to θ over (– ∞, ∞). 
Substituting u and θ instead of v and v1 we will have, according to the 
known rule about the transformation of double integrals, dvdv1 = dudθ, 
 

    
2 2 2 2 2 2 2

1 1
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for the probability of the error u where γ is the same as above. 
However, according to a known formula, the integral with respect to θ 
is 
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so that that probability becomes equal to 
 
    (αdu/γ√π)exp(– α2u2/γ2). 
 



 

Therefore, the probability that the error to be feared in the value (5) 
of C is contained within the boundaries ± γ will be 
 

    
γ 2 2

2
γ

α α
exp( ) .

γγ π

u
q du

−

= −∫   

 
Let (αu/γ) = t, (αdu/γ) = dt. Then, finally, 
 

    
α α

2 2

α 0

1 2
exp( ) exp( )

π π
q t dt t dt

−

= − = −∫ ∫ , 

 
i. e., q = p, QED2. This result can be generalized on a linear function 
of three or more unknowns in agreement with the rule announced 
without proof by Fourier (1829) for an arbitrary function. 

Although formula (2) is generally independent from the law of 
possibilities of errors, I (1824) had an occasion to note the existence of 
a singular case in which this is not so and the boundaries of the error to 
be feared in the mean result do not ever approach with a definite 
probability the real value of the unknown as the number of 
observations increases3. In this exceptional case which can be ignored 
in practice the rule about the function of many unknowns does not 
hold either. 

 
Notes 

1. Poisson neither proved nor applied this formula. 
2. Poisson apparently supposed that the two random variables were distributed 

according to the same normal law, and proved that their linear function had the same 
distribution. He thus actually proved that the normal law was stable (although he 
issued from a large number of observations) which was known to Gauss and Laplace 
(and which Bessel proved in 1838).  

3. Poisson (1824, § 4) had considered the so-called Cauchy distribution. He did 
not provide an exact reference to Fourier and anyway his statement about Fourier 
was apparently wrong.  
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S.-D. Poisson 

 
Speech at the Funeral of Legendre 

 
Discours prononcé aux funérailles de M. Legendre. 

J. f. die reine u. angew. Math., Bd. 10, 1833, pp. 360 – 363 

 
Gentlemen, when losing one of our colleagues most advanced in age 

our grief is alleviated by the thought that he did not suffer during his 
last minutes, and, being weakened by a long life, died away without 
sorrow. Today, this consolation is lacking. The illness that terminated 
Legendre’s days at the age of 811 had been protracted and painful but 
he courageously endured his suffering without any illusions about its 
fatal outcome, and, which should have caused more mental anguish, 
resigned to leave the happiness of his home life, the care and the 
expectations surrounding him. Our colleague often expressed the wish 
that, when talking about him, only his work, which had actually been 
his life, should be discussed. And in this homage, which I render on 
behalf of the Academy of Sciences2 and the Bureau of Longitudes, to 
an illustrious geometer, the doyen of science whose loss is mourned by 
the scientific world, I will scrupulously keep to his desire. Being used 
to study his works, the task imposed on me is not difficult to carry out, 
and, when addressing you, Gentlemen, I fear to go into details in 
which you only find eulogistic references [?]. 

Legendre began his scientific career with one of his fine memoirs. 
In a short time he analysed the important problem of the attraction of 
spheroids which Newton and Maclaurin had already synthetically 
treated. Without fearing that that great analyst [apparently, Newton] 
had exhausted this issue, Legendre chose it as the subject of his first 
studies. He was successful, and the applied expansion into a series 
generated theorems. They were later developed but are still providing 
a basis for the general theory to which we have ascended.  

The work of the new geometer became necessary in 1783, when 
sciences have lost Euler and D’Alembert, and opened to him3 the doors 
of the Paris Academy of Sciences, so famous in Europe. His second 
memoir was devoted to a problem of no lesser importance connected 
with the first one. He offered the first and only known until now direct 
determination of the figure of a homogeneous fluid planet4. Soon he 
extended his research to the general case of planets consisting of 
heterogeneous layers. During the same period Legendre read out in the 
Academy a memoir on the calculus of partial differences and described 
many methods of integrating and applying them to various examples. 

After participating in an astronomical operation aiming to connect 
the meridians of Paris and Greenwich, Legendre was led to occupy 
himself with problems in trigonometry, and sciences gained a very 
useful theorem about the area of almost spherical triangles [1806] such 
as those traced on the Earth’s surface. The Mémoires of the First class 
of the Institut de France also include his other researches about 



 

spheroidal triangles which were preceded by a joint, with Delambre, 
publication [1799] on calculating meridian arcs. 

The Berlin Academy of Sciences proposed a prise problem about 
the motion of a projectile in the air. Legendre took part and won the 
prise. When additionally mentioning that our colleague was the author 
of a method of calculating cometary orbits; that the sciences of 
observation are obliged to him for a rule called the MLSq of errors 
which Laplace later proved to possess all possible advantage 
concerning precision of the results; if recalling his numerous studies of 
the two types of definite integrals which he called after Euler; if I say 
that, for example, for almost 40 years he participated in calculating the 
great, still unpublished logarithmic tables under the guidance of 
Prony5; and if I finally mention Legendre’s Eléments de Géometrié 
[1794] where he was the first to indicate a kind of equalities until then 
disregarded but necessary for completing the demonstrations known 
from the time of Euclid, − if adding all this together, you will 
undoubtedly agree, Gentlemen, that it entirely justifies Legendre’s 
elevated scientific rank.  

And I still have not, however, mentioned two branches of research 
which he had preferred, to which he had so many times returned 
during his long career and by which he ended it with two great 
relevant contributions and thus compiling everything he had done and 
all that we know as doctrines of the theory of numbers and of the 
Eulerian integrals. Problems about the properties of numbers, being 
remote from any applications, are indeed powerfully influencing 
mathematicians. They present extreme difficulties which Legendre had 
often overcome by following the two great geometers he most 
admired, Euler and Lagrange. 

The treatise on elliptical functions includes their numerical tables 
which he calculated and which in themselves meant an immense task. 
For a long time no one else had been occupied by that theory until 
Abel and [C. G. J.] Jacobi had not proved, in the beginning of their 
scientific work that after Euler and Legendre it was still possible to 
make fundamental discoveries in their beloved science. You will not 
forget, Gentlemen, how lucky he felt, how he abandoned himself to it, 
how effusively he exposited it. That science in which those two young 
rivals followed him, − he spoke about it as though it was a quite new 
creation. 

Nevertheless, Legendre did not remain behind their work. 
Moreover, although being almost 80 years old, in less than a year he 
published the third volume of his treatise on elliptic functions that 
contained all their discoveries [in that other field] and the 
developments which he was able to add. His satisfaction of 
discovering two successors worthy of himself had not lasted long: 
science lost Abel [in 1829] soon after he became known. 

Common to Legendre and many preceding geometers was that their 
work only died with their life. The latest volume of our Mémoires 
includes another memoir of Legendre about a difficult problem in the 
theory of numbers. And not long before he became terminally ill he 
got the most recent observations of comets with short periods for 
applying and perfecting his methods. This is quite worthy of 



 

remarking and it is also consolatory indeed to see that when our 
physical strength abandons us, our intellectual power is still quite 
vigorous for occupying ourselves with difficult speculations. History 
of science provides many such examples. At an age almost the same as 
that reached by Legendre, Lagrange died while publishing a second 
edition of his Mécanique analytique, twice larger than the first one. 
Laplace died while completing the fifth volume of his Mécanique 
Céleste6, and Euler, while having almost completed calculations of the 
buoyant force of balloons, of the invention then interesting the public 
and scientists. 

So that was an enumeration of the contributions of all the kinds 
which had been made without any interruption during the entire life of 
a celebrated geometer whose loss is added to those which the Institut 
[de France] had experienced this latest year. Less than in a year 
Cuvier was stolen from natural, and Legendre, from mathematical 
sciences. The cruelly fair death has at the same time hit both classes of 
our Academy. 

 
Notes 

1. Adrien-Marie Legendre, 1752 – 1833. 
2. In the absence of Arago who was charged with examinations in Metz. S.-D. P. 
3. The Academy included four more of our colleagues, De Cassini, De Jassieu, 

Desfontaines and Tassier. S.-D. P. 
Of our (parmi nous) certainly did not mean still living, see the Information below. 

O. S. 
4. Later classical work by Poincaré and Liapunov (stability of the figures of 

equilibrium of a rotating liquid) can be mentioned. 
5. In 1793, Prony with numerous calculators had begun compiling logarithmic 

and trigonometric tables to 14 – 29 decimal points which does not mean that their 
precision was the same and which was hardly necessary. Only their excerpt was 
published in 1891. 

6. That volume was published in 1825, about two years before Laplace died. 

 
Information about Scientists Mentioned by Poisson 

J. D. Comte de Cassini, 1748 – 1832, cartographer, astronomer 
R. L. Desfontaines, 1750 − 1833, botanist 
A. L. de Jussieu, 1748 – 1836, botanist 
G. C. F. M. R. de Prony, 1755 – 1839, mathematician and engineer  
H. A. Tessier, 1745 – 1837, professor of agriculture and commerce 
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